
A language for Markov's algorithms composition 
B y G . GERMANO a n d A . MAGGIOLO—SCHETTINI 

The present paper gives an improvement of [2]. There, after having noted that 
Markov's normal algorithms cannot be composed immediately like flow-charts, the 
authors presented four operations on Markov's normal algorithms without con-
cluding formulas which helped to overcome the difficulty; among these operations 
there were the analogs of if and goto. Here other operations are given: the analogs 
of if and goto are substituted by the analog of while. This allows to use only one 
alphabet for output strings, whereas in [2] infinitely many alphabets are used (in the 
sense that two different algorithms might have as output alphabets A' and AJ respec-
tively with iy^f), and to use a simpler definition of computability. 

Furthermore an Algol-like language L is given which is interpreted into Markov's 
normal algorithms without concluding formulas via the new operations defined for 
composing them. So the statements of L come out to be names of Markov's normal 
algorithms and it is immediate to pass from traditional programming to algorithms. 
As a practical motivation, we have already mentioned the fact that this work gives 
the possibility of writing Markov's algorithms along the familiar patterns of computer 
programming. As a theoretical motivation, after having recalled the known relation-
ship between programming and combinatory logic, we offer the following quotation 
from H.B. Curry [1]: 

"Altough it is well known that any partial recursive numerical function can be 
represented in combinatory logic... and thus, by Church's thesis, any effective process 
can be so represented via the detour of Godel representation, yet there is some interest 
in a direct representation, not involving this detour, of certain processes, like... Mar-
kov algorithms". 

§ 1. Operations on algorithms 

We will use alphabets ¡, [J with lSi 'Sco and will consider algorithms which 
transform words in the alphabet { A i , | i } into words in some alphabet I J { * ; , | i } 

(where I is finite for each algorithm) and eventually naturally transform such words 
into words in the alphabet {A „,1c} (see [3] for the notions of "transforms" and 
"naturally transforms"). We will use "x" and " y " to denote letters in the alphabet 



.32 G. Germano and A. Maggiolo-Schettini 

{À,-,!,}. Analogously to [2], we will use the following translations for words in 
.the alphabets above: , r , . _ , IT,. _ i 

* i ' • —. * l+J li • — li+j 
JtTJ - = Jt \T> A © • /\ CO I CO 

* i > : = * , IP 
4: TJ • = -k . IXJ 7\ o • Ay lo, 

These translations are extended to words in the usual way and we will write P j 
to mean that each letter in P is indexed by j. Algoritmhs are translated word by word. 

We introduce three operations for composing algorithms, namely juxtaposition, 
connection and controlled repetition and prove the relative theorems. 

1.1 Juxtaposition. The juxtaposition of the algorithms 91 and © is the algo-
rithm 

y m + 3 X2 "*" x2 y m + 3 

(2lr')Tm+2 

(©rm + 2)tm + n + s 

Xm + 2 -*" xa> 

, -̂ m + n + 3-*" Xa 
-where m=maxind 91 and w = maxind © (maxind 91 is defined as the highest index 
j < û ) occurring in 91, see [2]). 

Theorem. If £ is the juxtaposition of 91 and S then for every P € { A i , |i}A it 
.holds that £(/>) s; 9I(P) ©(P). 

The proof is immediate (see [2] p. 305 for analogy). 
1.2 Controlled repetition. The repetition of the algorithm © controlled by the 

algorithm 91 is the algorithm 

< 

X 1 J m + n + 3 ""*" x i y i (1) 
xl~~ x2xm + 3 (2) 

y m + 3 x2 x2 Y m + 3 (3) 

(9t r i) t m + 2 (4) 

^ m + 2Xm + 2ym + 2^~ A m + 2Xm + 2 (5) 

^ m+2Xm + 2ym + S J'm+S (6) 

^ m + 2xm + 3~* xct> ^ m + 2 (7) 

^ m + 2~*~ (8) 
+ 2^rm + n + 3 (9) 

^ rH-n + 3 - * ^ 1 (10) 
where m = maxind 91 and n = maxind ©. 



A language for Markov's algorithms composition 33 

Theorem. If G is the repetition of © controlled by 91 then for every P£ { A l t |i}* 
it holds that 

<£(P) = &(P) 

if j is the least (non negative ) integer such that 91 (93 J (P))~ A a whereas 

(i(P) is undefined 
if no such j exists. 

Proof. I. If for i with 0 s=i< / 91 ( » ' ( P ) ) ^ * m then it holds that 

G : P 

t= PiPm+3 by (2),(3) 

1= (2I(JP»m + 2JPm+3 by (4) 

N Pm + 3 by (5), (6) 

N (®0P))m+n + 3 by (9) 

N by (10), (1) 

t= 

A „, then it holds that 

G :P 

1= P^Pm + 3 by (2), (3) 

N ^ m+2-Pm + 3 by (4) 

N by (7) 

N P» "I by (8). 

From I and II the thesis of the theorem follows immediately. 

1.3. Connection. The connection of the algorithms 91 and S is the algorithm 

where m=maxind 91. 

Theorem. If £ is the connection of 91 and S then for every -P€{*i , | i}* it 
holds that 

G(P) =* 23(91 (P)). 

The proof is immediate (see [2] p. 304 for analogy). 
3 Acta Cybernetica III/l 



34 G. Germano and A. Maggiolo-Schettini 

§ 2. The language 

The syntactic definition of the language L is 
(initial statement) 
(projection statement) 
(statement) 

: = zero|succ|pred 
: = proj ¡¡(projection statement)i 
: = (initial statement)¡(projection statement)! 

((statement),(statement)) | 
while(statement)do((statement> | 
((statement); (statement)) 

j 

For short we will write proj(J) instead of proj i . . . i. As variables for statements we will 
use <3 and X. 

We define now an interpretation , / of L into Markov's normal algorithms 
without concluding formulas by induction on the syntactic definition of L: 

(zero) : = { a i - A , 

J (succ) : -I A i — A , 

J (pred): = 
A i l l - * A , 
A I - * A a, 

l i - L 

A A ILL— A T O A J 

L A I|I -*- LO, A I 

A CO A I A ÇA 

L A I - L 

J (proj W>): =<! 
A 0)1" A 

\o\l~*' !<y|co 

A J 2 - A r a 

A 2 A i -* - A 2 A 2 

A 2I1 — A'2 

A 1— A 2 

^/((S, 3;)) is defined as the juxtaposition of JQZ) and > ( 2 ) . £ (while S do Z) is 
defined as the repetition of */(£) controlled by */(£). ./((<3; 2)) is defined as the 
connection of J f (S) and J ( Ï ) . 



A language for Markov's algorithms composition 35 

§ 3. Application 

We say that a function / is computable by S (relatively to the input alphabet 
{ A i, |i} and to the output alphabet { A t»>L}) if and only if 

S- -L I"1 X ln* t X •••' • A l | l . . . A l | l 1= A a>\co 1 • 
As concerns computability of partial recursive functions (characterized as in [4]) 
it is immediate to see how to write programs for initial functions and concerning 
substitution. We give the programs concerning recursion scheme and /¿-operator. 

Let the function g be computable by <2, the function h be computable by Z and 
R M ^ - S O O 

\f(S(x),y)^h(y,f(x,y)) 

Then the function / is computable by 
((((proj«1?, projf^), (projO; ©)); 

while projW do (((prop); pred), proj<2>), ((proj<2>, proj<3>); 2))); proj<3>). 
Let the function g be computable by S and 

/(*!, ...,xk) ^ fix(g(x,x1, ...,xk) = 0) 
Then the func t ion / i s computable by 

(((... ((zero, proj(1>),..., proj(*>); 
while <3 do (... ((proj(1); succ), proj(2)),..., prop +*>)); proj(1)). 

So we may conclude that every partial recursive function is computable by 
Markov's normal algorithms without concluding formulas relatively to the input 
alphabet { A i, |i} and to the output alphabet { A a,,!^}. 

Abstract 

A programming language is introduced to whose statements Markov's algorithms univocally 
correspond via the operations of juxtaposition, connection and controlled repetition. Avoiding' 
goto statements allows to use only one output alphabet. 

LABORATORIO DI CIBERNETICA INSTITUTO DI SCIENZE DELL'INFORMAZIONE 
DEL C. N. R. DELL'UNIVERSITA, VIA VERNIERI 42 
80072 ARCO FELICE, ITALY 84100 SALERNO, ITALY • 

. References 

[1] CURRY, H. B., Representation of Markov algorithms by combinators, Notices Amer. Math. Soc., 
v. 20 , A - 5 9 0 , 1973. 

[2] GERMANO, G. & A. MAGGIOLO-SCHETTINI, A flow diagram composition of Markov's normal 
algorithms without concluding formulas, BIT, v. 13, 1973, pp. 301—312. 

[3] MARKOV, A. A., Teoria algoritmov (Russian), Trudy Math. Inst. Steklov., v. 42, 1954. 
[4] ROBINSON, R. M., Primitive recursive functions, Bull. Amer. Math. Soc., v. 53, 1947, pp. 925—942. 

(Received Oct. 7, 1974) 

3* 


