
Homogeneous event indexes
By F . FEIND, E. KNUTH, P . RADÔ, J. VARSÂNYI

1. Discrete event simulation

General purpose discrete simulation languages are based on the so-called "event
¡notice" concept. It means special data patterns assigned to each simulation event
and handled by the run-time timing routines of the systems.

These routines have the following main functions :
1) scheduling future events (generated in the course of program execution);
2) registering the events in a properly linked order so as to be able to produce the
"next event" in any case.

We assume in this paper that whenever an event is scheduled its event time is
always known. The examination of more general, e.g. conditional scheduling possibil-
ities would lead to much more complicated structures. Therefore we can assume
that definite time values are assigned to each event notice and they are necessarily
ordered according to their time values.

We are not dealing with the problems of multiple
•schedulations into the same time point, which may be
a question of disciplines or priorités but has no impor-
tance as to the performance of the algorithms we do.

Now discrete event simulation works as follows :
at the initiation and during the whole execution event
notices are generated and inserted into the event list
for all arisen simulation activity demanding a définit
timing. The program execution is controlled by the
event list i.e. having finished an activity assigned to an
event notice the activity corresponding to the next one is going to be carried out
according to the instantaneous state of the list structure. (More detailed descrip-
tions can be found in references [1], [2] and [3].)

po in te r s required
b y the event list s t ruc ture

po in te r to the assigned
p r o g r a m po in t ("p rocess")

Fig. I. General structure
of an event notice

4 4 F. Feind, E. Knuth , P. Rado arid J. Varsanyi

2. Event list algorithms

The functional activities of event list algorithms may be comprised by the fol-
lowing four procedures:

1. scan (/)
The procedure finds the event after which a new event will have to be inserted

if its event time value is t. Thus using the SIMULA formalism [4] the procedure specifi-
cation is

ref (event) procedure scan (/); real t;
or according to the PASCAL formalism [7]

function scan (i:real): event;
where we denoted the data structure "event notice" simply by "event".

2. insert (E, P, t)
E is the event after which the insertion must be done. P is the simulation activity

having to be timed. The procedure must generate a new event notice of time value
t and insert it after E referring to the simulation activity P.

The formal spedification is
procedure insert (E, P, t); ref (event) E; ref (process) P; real t;

or
procedure insert (-¿".'event, P:process, /:real);

and the most typical call of the procedure is insert (scan (/), P, t);.

3. delete (E)
This procedure must delete the event E from the event list preserving the cor-

rectness of the remaining list. Formally:
procedure delete (E); ref (event) E\

or
procedure delete (E: event);

4. delete current
This procedure is equivalent to the call delete (current); where "current" is always

the first event of the list. For a deletion implied by the termination of any simultation
activity is always related to the current event, it is worth doing to develop this proce-
dure in a more special way than the previous, general one.

3. Linear list structure

The simplest structure, the linear list is widely used in simulation languages
including SIMULA [4], SIMSCRIPT f las t^event j (

!
—["suc H
4 p r e d I

j evt ime :

L p r o c _ J

Fig. 2. Structure of the linear list

[5] , GPSS [6].
Sue and pred are the linking
pointers. Evtime is the time value
assigned to the notices. If E is
an event notice then the relation

E.suc.evtime S E.evtime*

0

Homogeneous event indexes 45

must always be satisfied. The pointers current and last event always point to the
first and last events respectively.

The event list algorithms for linear lists are very simple:
1. scan (t)

Begin to compare t with the values evtime from the last event and follow it
sequentially while evtime^t holds. (This simple algorithm is described in the
Appendix in detail.) The reason of scanning from the end of the list is its better per-
formance.

2. insert (E, P, t)
The procedure is to perform a usual

insertion into a two-way list as it is shown
in Fig. 3 and in formal way in the Ap-
pendix.

3—4. delete (E)
Now a deletion simply means reset-

ting the pointers having been set by the
insertion Fig. 3 (see Appendix). The spe-
cial procedure "delete current" need not

4. Further structures proposed

With the linear list structure, the overhead time taken by a call of the procedure
scan is proportianal to N, the number of events in the list. (It leads to the amount
of scheduling overhead proportional to N2.)

Myhrhaug [8] gave the first results to improve it replacing the linear list by
binary tree structures. Knuth [9,p. 150] also gave a brief account under the title of
"priority queues" and suggested the use of the so-called "post-order trees".

A complete investigation on this topic can be found in the work [10] with tests
using a set of typical stochastic scheduling distributions. The paper explicitely pro-
duces the algorithms of three different structures and compares them with the linear
one.

These structures are the following:

• post — order tree,

• end — order tree,

• indexed list.

The behaviour of all the structures highly depends on the probabilistic nature
of the event stream, but the indexed list structure provides the best overall perform-
ance. This structure, however, needs an adaptive mechanism to set an interval para-
meter according to the operating conditions.

E

I <P

Fig. 3. Insertion into a linear list

be done in different way.

* In connection with dot notation we refer to [4] and [6].

46 F. Feind, E. Knuth, P. Rado arid J. Varsanyi

In this paper we introduce a dynamic version of the indexed list structure which
has only a bit worse performance than a well chosen static one, but it needs no adap-
tive mechanism and it is completely independent of the probabilistic properties of the
arrival stream because of its homogeneous nature.

5. General characteristic of homogeneous structures

Let /c>l be an integer. Suppose that we have a linear list and every /c-th of the
elements is pointed to by indexes constituting a new linear list. All the &,-th elements
of this list are also pointed to by second level indexes and the structure of levels

is continued terminating at a highest level
consisting of only one element.

The first task is to find the optimal value
of the indexing step k :

level / •
/

level 1

level 0 • - 6 - • • • - D

Theorem 1. The average number of com-
parisons needed by a call of the procedure
scan is minimal if fc = 3.

Proof. The procedure scan works in a
* * " natural way: beginning at the highest level

Fig. 4. Fixed homogeneous indexes the procedure executes a linear list scan in
each level from the entry point designated by

the pointer having been found at the previous level. Thus, supposing that the proba-
bilities of terminating the scan in a given level are all the same for any of the ele-
ments, the average number of conparisons in any level is equal to kjl. Hence the
average number m(k) of the comparisons in all levels will be

_ UogN
m W ~ 2 log k '

Considering m(x) as a continuous function of x > l simple derivation shows that
its only local minimum is achieved at the point x = e, and referring to the monotonity
when ,Y>e the simple comparison m(2)>m(3) proves the statement.

6. The „2/3-structure"

The following structure (proposed by one of the authors of this paper E. Knuth)
is theoretically based on the result of Theorem 1.

Let us allow to use steps of size both k=2 and k = 3 at random in the following
way:

• If an arrival occurs into a "molecule" of 2 elements it will simply become
a "molecule" of 3 elements.

• If an arrival occurs into a "molecule" of 3 elements it will form two
"molecules" of 2 elements and a new index will have to be inserted into
the next level in the very same way just described. This process continues

Homogeneous event indexes 4 T-

up to a level in which the insertion can be done into a "molecule" o f
only 2 elements.

The main properties of the structure we defined
are the following:

1. The average number of new elements having
to be inserted when calling the procedure insert is
less than two. This follows from the simple fact
that in the worst case, when all the molecules
have two elements the whole structure has 2N— 1
elements. (The exact value of the mean number Fig. 5. Example of a "2/3-structure"
will be determined in paragraph 7.)

2. The average number of comparisons needed by a call of the procedure scan
is less than m(3) i.e. it is nearer to the ideal value m(e). (Also proved in para-
graph 7.)

3. The "2/3-structure" has a homogeneous nature i.e. it is independent of
the distribution of the arrival stream. (This follows from its logical symmetry and
has been empirically tested too.)

4. The static structure described in paragraph 5. is naturally unsuitable to-
practical use for preserving the fixed structure would need complicated insertion,
procedures. This is also solved by allowing variable size molecules.

7. Stochastic behaviour

Let a t and /?,- be the numbers of the molecules of 2 elements and 3 elements,
respectively after the i'-th insertion.

Theorem 2. stochastically tends to 2.
Pi

Proof. Let ck be the number of elements contained in all the molecules of 2"
elements after the insertion of the k+7- th element. Then ck is an inhomogeneous.
Markov process with £ 0 = 4 (seven elements can be arranged in a unique way).

Let
0 if the k + 7-th arrival changes a molecule of
2 elements to a molecule of 3 elements;

(Pk •
1 if the k + 7-th arrival cuts a molecule of
3 elements to two molecules of 2 elements.

Considering the effect of an arrival we have

4 = ^-i + 4% + 2(%-1) = + 6<pk - 2
hence k

Qk = CO + 6 2 (Pi-2k.
/ = 1

From the construction

P{<Pk= H^-i, ...,Vl)= 1 - ^ = 1 ^

4 8 F. Feind, E. Knuth, P. Rado arid J. Varsanyi

holds with probability 1. For

P{<Pk = 1} = Ecpk

it follows

therefore

E{(pk\q>k-i, ...,<Pi) =
3k-6Z<Pi

/=1
k + 6

E<pk =

3k-6 k£ Ecpi
1=1

k + 6

3 3
S i n c e w e g e t E<px-=— a n d b y i n d u c t i o n E(pk=— f o r k ^ l .

Now we have to find the variance

D\E(cpk\<pk_lt

From the relation

P{(P; = 1|<pj = 0, <p, + 1 = yJ+1, = y^!, = x)-

~P{<P, = 1 \9j = 0, (pj+1 = yj+l, ~;<Pi-l = yi-i, Zi-1 = x) = j

for any yJ+i, J ' i _ 1 =0, 1 and we get

And from

it follows

¡Hence

P{<pt = 1|cpj = 0 } - P { q > , = 1|<pj = 1} = j U < 0 -

j P { 9 , = 1| <Pj = 0 } + | P { < p , - = l\(pj = 1} = |

3 2 4
E i M j l - E M E t o j) = />{<?,- = l}(P{<pf = I K = = 1}) = y - ^ -

On this basis

lim D2(E((pk\q>k_1, ...,(pj)= lim

K 7 2
2 »tod 2 2 ^
1=1 , ISi-zjSk I"1

(k + 6) 2 (A: + 6) 2 = 0

Homogeneous event indexes
4 T-

and referring to the Tchebycheff inequality, it implies the stochastic convergence

_ J i _ 1
k + 6 7

which is equivalent to the statement of the theorem.

Corollary 1. From theorem 2. we get by simple conputation that the average
number of events having to be inserted when calling the procedure insert is equal
to 1.75.

Corollary 2. The average number of comparisons needed by a call of the proce-

dure scan is Comparing it to the best fixed structure m(3) we find w [y] <

< m (3).

8. Algorithms for the 2/3-structure

To build the algorithms in detail first we have to define the following pointers:

• sue (successor) and pred (predecessor) are the usual linkage
pointers for linear lists.

• for (forward link) is the indexing pointer between the lev-
els, see Fig. 4. (When being in the lowest level we use for
to point at the process assigned.)

• back (backward link) is a redundant pointer not shown
in Figures 4 and 5. The reason of introducing it is to
make the building of procedure delete easier. The pointer
value is defined by

for F: — E. for, F. sue while F=/ = E. sue. for do F. back: — E;

where E is any event not at the lowest level.

Fig. 7. Definition of the pointer back Fig 8. evtime values

Fig. 6.
Event notice
pointers at

homogeneous
structures

Now let us define the evtime values at all the levels in the natural way:

E.evtime = E.for.evtime.

4 Acta Cybernetica in/1

50 F. Feind, E. Knuth, P. Rado arid J. Varsanyi

On these bases the logical
structures of the procedures we
tested are the following. (The
exact versions are contained in
the Appendix.)

The general procedure delete
(E) is contained only by the
Appendix for its structure is quite
similar one barring that techni-
cally more complicated.

insert new
pr imary event

<has the inser t ion d o n e

at the h ighes t level? J ~
- • \

Chas the inser t ion d o n e
into a d o u b l e t o n ? J

insert n e w even t
into t h e next level t o o

increase ihe
yes ' n u m b e r of levels

Fig. 10. Logical struclure of procedure insert (E, P, t)

Fig. 9. Logical structure
of procedure scan (f)

Fig. 11. Logical structure of procedure
delete current

9. Experimental results

We chose the execution times of the typical call insert (scan (t) , P, t) to compare.
The algorithms used are exactly those contained in the Appendix. The test were

performed on a Control Data 3300
computer.

In the test the parameter t in the
call insert (scan (t), P, /) was expo-
nentially distributed. As it is known the
increase of the line describing the per-
formance of the linear list depends on
the choice of the distribution of t, but
our experimental results showed that
using homogeneous indexes the per-
formance was quite independent of it.

The deletion procedure proved to
be about 1.8.-times slower than the
simple linear one with a small variance.

Fig. 12. Comparison of scan + insertion times (Th i s is 1.85 f o r t h e genera l v e r s i o n .)

Homogeneous event indexes
4 T-

These results altogether designate a limit of about 100 events below which the
simple linear method may well be used and the relative performance of the homoge-
neous structure fastly increases beyond.

10. Further problems

There are several further questions which seem very useful to study. Construct-
ing more and more effective structures is important not only for discrete event
simulation but for any other linked structures sorted' by continuous keys too. We
propose the following problems:

1. We used duplicated events at the higher levels indexing the original ones
of the lowest level. We have seen that it leads to an average number 3N/4 of du-
plications. However, it seems possible that using certain further pointers even a linear
list can be supplied by a crafty additional structure ensuring effective search without
duplicated events.

2. The performance can be improved by not cancelling the events when their
activity is terminated but leaving them for some kind of "garbage collector". It will
not decrease the effectivity of the procedure scan if it is always starts from the end of
the list.

3. Finally we notice that during a discrete event simulation the region of time
values interested is permanently being shifted to higher values. If we could describe
stochastically the distributions of events resulted by such a consistent shift, then it
would be possible to develop special structures based on this probabilistic behaviour.

Appendix

In this part we use the S IMULA 6 7 formalism [4] but the reader needs not to
know it precisely because the denotations used are self-explanatory.

A. Algorithms for linear lists

ref (event) procedure scan (?); real t;
begin ref (event) F;

F: — last event;
for F: — F while F. evtime do F: — F.pred;
scan: — F;

end;

procedure insert (E, P, t);
ref (event) E\ ref (process) P; real t;

52 F. Feind, E. Knuth, P. Rado arid J. Varsanyi

begin ref (event) F;
F: — new event (t, P);
F.pred: — E;
F. sue: — F.suc;
F.pred.suc: — F.suc.pred: — F;

end;

(The last procedure body illustrates how to set the new pointer references. If the sub-
class relation link class event is assumed using the standard SIMULA list processing
facilities the whole procedure body may be simply replaced by new event (/, P).
follow (£•).)

| £ : - | r o o t ; |

£ . fo r is process) >J s can : — £ : I — exit

| J yes I -J

| £":—£- f o r ; |

n o f ^ (E. sue qua event , t ime <i
t

[e-.-E. sue; |

Fig. 13. ref (event) procedure scan (0 ;

procedure delete (E); ref (event) E;
begin

E. sue. pred: — E. pred;
E. pred. sue: — E. sue;
E. sue: — E. pred: — none;

end;

(The procedure body is equivalent to the standard SIMULA procedure F.out.)

B. Algorithms for the 2/3-structure

The structure of the event notice could be defined by
class event (back,for, time);

ref (event) back, for-, real time;
begin

ref (event) sue,pred;
end;

but for practical reasons in the algorithms it is replaced by the following version
using the SIMULA linkage possibilities:

link class event (back, for, time);
ref (event) back,for, real time;;

Homogeneous event indexes
4 T-

We use the global pointers:
ref (event) root, current;

and the initiation is
root: — current: — new event (none, new process, 0);
root.into (new head);

The algorithms are contained by figures 13—16.

Fig. 14. procedure insert (£, proc, /);

exit

-v. Fig. 15. procedure delete current ;

Finally we give the logical structure of the general procedure delete. The dia-
gram may readily be programmed in a similar way as the procedure delete current.

Fig. 16. Logical structure of procedure delete (£);

Homogeneous event indexes
4 T-

Abstract

Simulation event scheduling algorithms based on linear lists are generally used in simulation
languages. Under heavy traffic conditions these algorithms have poor performance. The best of
the more complicated algorithms having proposed to improve it is the indexed list method.

In this paper we introduce a multiple-indexed list structure of fully homogeneous nature to
eliminate certain disadvantages of the use of static indexes and to gain further improvements. We
give all the necessary program routines in detail. The sense of probabilistic behaviour is also given
and simulation results are presented to make a comparison with linear list algorithm.

COMPUTER A N D AUTIMATION INSTITUTE
HUNGARIAN ACADEMY OF SCIENCES
H-1502 BUDAPEST, HUNGARY

References

[1] BUXTON, J. N. (ed.), Simulation programming languages, North—Holland, Amsterdam,
1968.

[2] GENUYS, F. (ed.), Programming languages, Academic Press, N. Y., 1968.
[3] GORDON, G., System simulation. Prentice — Hall, Englewood Cliffs, N. J., 1968.
[4] DAHL, O . J. , B . MYHRHAUG, K . NYGAARD, SIMULA 67 common base language, S22 , N o r w e g i a n

Computing, Centre, 1967.
[5] KIVIAT, P. J., R . VILLANVEVA, H . H . MARKOWITZ, The SIMSCRIPT II programming language.

Prentice—Hall, Englewood Cliffs, N. J., 1968.
[6] General purpose simulation system 360 — User's manual, H20—0326, IBM Corp., White Plain,

N. Y., 1968.
[7] WIRTH, N., The programming language PASCAL, Acta Informat., v. 1, 1971, pp. 35—63.
[8] MYHRHAUG, B., Sequencing set efficiency, A9, Norwegian Computing Centre.
[9] KNUTH, D. E., The art of computer programming, v. 3, Addison Wesley, Reading, Mass.,

1973.
[10] VAUCHER, J. G. & P. DUVAL, A comparison of simulation event list algorithms, Comm. ACM,

v. 18, 1975, p p . 2 2 3 — 2 3 0 .

(Received March 11, 1976)

