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1. Discrete event simulation 

General purpose discrete simulation languages are based on the so-called "event 
¡notice" concept. It means special data patterns assigned to each simulation event 
and handled by the run-time timing routines of the systems. 

These routines have the following main functions : 
1) scheduling future events (generated in the course of program execution); 
2) registering the events in a properly linked order so as to be able to produce the 
"next event" in any case. 

We assume in this paper that whenever an event is scheduled its event time is 
always known. The examination of more general, e.g. conditional scheduling possibil-
ities would lead to much more complicated structures. Therefore we can assume 
that definite time values are assigned to each event notice and they are necessarily 
ordered according to their time values. 

We are not dealing with the problems of multiple 
•schedulations into the same time point, which may be 
a question of disciplines or priorités but has no impor-
tance as to the performance of the algorithms we do. 

Now discrete event simulation works as follows : 
at the initiation and during the whole execution event 
notices are generated and inserted into the event list 
for all arisen simulation activity demanding a définit 
timing. The program execution is controlled by the 
event list i.e. having finished an activity assigned to an 
event notice the activity corresponding to the next one is going to be carried out 
according to the instantaneous state of the list structure. (More detailed descrip-
tions can be found in references [1], [2] and [3].) 

po in te r s required 
b y the event list s t ruc ture 

po in te r to the assigned 
p r o g r a m po in t ( "p rocess" ) 

Fig. I. General structure 
of an event notice 
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2. Event list algorithms 

The functional activities of event list algorithms may be comprised by the fol-
lowing four procedures: 

1. scan (/) 
The procedure finds the event after which a new event will have to be inserted 

if its event time value is t. Thus using the SIMULA formalism [4] the procedure specifi-
cation is 

ref (event) procedure scan (/); real t; 
or according to the PASCAL formalism [7] 

function scan (i:real): event; 
where we denoted the data structure "event notice" simply by "event". 

2. insert (E, P, t) 
E is the event after which the insertion must be done. P is the simulation activity 

having to be timed. The procedure must generate a new event notice of time value 
t and insert it after E referring to the simulation activity P. 

The formal spedification is 
procedure insert (E, P, t); ref (event) E; ref (process) P; real t; 

or 
procedure insert (-¿".'event, P:process, /:real); 

and the most typical call of the procedure is insert (scan (/), P, t);. 

3. delete (E) 
This procedure must delete the event E from the event list preserving the cor-

rectness of the remaining list. Formally: 
procedure delete (E); ref (event) E\ 

or 
procedure delete (E: event); 

4. delete current 
This procedure is equivalent to the call delete (current); where "current" is always 

the first event of the list. For a deletion implied by the termination of any simultation 
activity is always related to the current event, it is worth doing to develop this proce-
dure in a more special way than the previous, general one. 

3. Linear list structure 

The simplest structure, the linear list is widely used in simulation languages 
including SIMULA [4], SIMSCRIPT f las t^event j ( 

! 
—["suc H 
4 p r e d I 

j evt ime : 

L p r o c _ J 

Fig. 2. Structure of the linear list 

[5] , GPSS [6]. 
Sue and pred are the linking 
pointers. Evtime is the time value 
assigned to the notices. If E is 
an event notice then the relation 

E.suc.evtime S E.evtime* 
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must always be satisfied. The pointers current and last event always point to the 
first and last events respectively. 

The event list algorithms for linear lists are very simple: 
1. scan (t) 

Begin to compare t with the values evtime from the last event and follow it 
sequentially while evtime^t holds. (This simple algorithm is described in the 
Appendix in detail.) The reason of scanning from the end of the list is its better per-
formance. 

2. insert (E, P, t) 
The procedure is to perform a usual 

insertion into a two-way list as it is shown 
in Fig. 3 and in formal way in the Ap-
pendix. 

3—4. delete (E) 
Now a deletion simply means reset-

ting the pointers having been set by the 
insertion Fig. 3 (see Appendix). The spe-
cial procedure "delete current" need not 

4. Further structures proposed 

With the linear list structure, the overhead time taken by a call of the procedure 
scan is proportianal to N, the number of events in the list. (It leads to the amount 
of scheduling overhead proportional to N2.) 

Myhrhaug [8] gave the first results to improve it replacing the linear list by 
binary tree structures. Knuth [9,p. 150] also gave a brief account under the title of 
"priority queues" and suggested the use of the so-called "post-order trees". 

A complete investigation on this topic can be found in the work [10] with tests 
using a set of typical stochastic scheduling distributions. The paper explicitely pro-
duces the algorithms of three different structures and compares them with the linear 
one. 

These structures are the following: 

• post — order tree, 

• end — order tree, 

• indexed list. 

The behaviour of all the structures highly depends on the probabilistic nature 
of the event stream, but the indexed list structure provides the best overall perform-
ance. This structure, however, needs an adaptive mechanism to set an interval para-
meter according to the operating conditions. 

E 

I <P 

Fig. 3. Insertion into a linear list 

be done in different way. 

* In connection with dot notation we refer to [4] and [6]. 
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In this paper we introduce a dynamic version of the indexed list structure which 
has only a bit worse performance than a well chosen static one, but it needs no adap-
tive mechanism and it is completely independent of the probabilistic properties of the 
arrival stream because of its homogeneous nature. 

5. General characteristic of homogeneous structures 

Let /c>l be an integer. Suppose that we have a linear list and every /c-th of the 
elements is pointed to by indexes constituting a new linear list. All the &,-th elements 
of this list are also pointed to by second level indexes and the structure of levels 

is continued terminating at a highest level 
consisting of only one element. 

The first task is to find the optimal value 
of the indexing step k : 

level / • 
/ 

level 1 

level 0 • - 6 - • • • - D 

Theorem 1. The average number of com-
parisons needed by a call of the procedure 
scan is minimal if fc = 3. 

Proof. The procedure scan works in a 
* * " natural way: beginning at the highest level 

Fig. 4. Fixed homogeneous indexes the procedure executes a linear list scan in 
each level from the entry point designated by 

the pointer having been found at the previous level. Thus, supposing that the proba-
bilities of terminating the scan in a given level are all the same for any of the ele-
ments, the average number of conparisons in any level is equal to kjl. Hence the 
average number m(k) of the comparisons in all levels will be 

_ UogN 
m W ~ 2 log k ' 

Considering m(x) as a continuous function of x > l simple derivation shows that 
its only local minimum is achieved at the point x = e, and referring to the monotonity 
when ,Y>e the simple comparison m(2)>m(3) proves the statement. 

6. The „2/3-structure" 

The following structure (proposed by one of the authors of this paper E. Knuth) 
is theoretically based on the result of Theorem 1. 

Let us allow to use steps of size both k=2 and k = 3 at random in the following 
way: 

• If an arrival occurs into a "molecule" of 2 elements it will simply become 
a "molecule" of 3 elements. 

• If an arrival occurs into a "molecule" of 3 elements it will form two 
"molecules" of 2 elements and a new index will have to be inserted into 
the next level in the very same way just described. This process continues 
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up to a level in which the insertion can be done into a "molecule" o f 
only 2 elements. 

The main properties of the structure we defined 
are the following: 

1. The average number of new elements having 
to be inserted when calling the procedure insert is 
less than two. This follows from the simple fact 
that in the worst case, when all the molecules 
have two elements the whole structure has 2N— 1 
elements. (The exact value of the mean number Fig. 5. Example of a "2/3-structure" 
will be determined in paragraph 7.) 

2. The average number of comparisons needed by a call of the procedure scan 
is less than m(3) i.e. it is nearer to the ideal value m(e). (Also proved in para-
graph 7.) 

3. The "2/3-structure" has a homogeneous nature i.e. it is independent of 
the distribution of the arrival stream. (This follows from its logical symmetry and 
has been empirically tested too.) 

4. The static structure described in paragraph 5. is naturally unsuitable to-
practical use for preserving the fixed structure would need complicated insertion, 
procedures. This is also solved by allowing variable size molecules. 

7. Stochastic behaviour 

Let a t and /?,- be the numbers of the molecules of 2 elements and 3 elements, 
respectively after the i'-th insertion. 

Theorem 2. stochastically tends to 2. 
Pi 

Proof. Let ck be the number of elements contained in all the molecules of 2" 
elements after the insertion of the k+7- th element. Then ck is an inhomogeneous. 
Markov process with £ 0 = 4 (seven elements can be arranged in a unique way). 

Let 
0 if the k + 7-th arrival changes a molecule of 
2 elements to a molecule of 3 elements; 

(Pk • 
1 if the k + 7-th arrival cuts a molecule of 
3 elements to two molecules of 2 elements. 

Considering the effect of an arrival we have 

4 = ^-i + 4% + 2(%-1) = + 6<pk - 2 
hence k 

Qk = CO + 6 2 (Pi-2k. 
/ = 1 

From the construction 

P{<Pk= H^-i, ...,Vl)= 1 - ^ = 1 ^ 
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holds with probability 1. For 

P{<Pk = 1} = Ecpk 

it follows 

therefore 

E{(pk\q>k-i, ...,<Pi) = 
3k-6Z<Pi 

/=1 
k + 6 

E<pk = 

3k-6 k£ Ecpi 
1=1 

k + 6 

3 3 
S i n c e w e g e t E<px-=— a n d b y i n d u c t i o n E(pk=— f o r k ^ l . 

Now we have to find the variance 

D\E(cpk\<pk_lt 

From the relation 

P{(P; = 1|<pj = 0, <p, + 1 = yJ+1, = y^!, = x)-

~P{<P, = 1 \9j = 0, (pj+1 = yj+l, ~;<Pi-l = yi-i, Zi-1 = x) = j 

for any yJ+i, J ' i _ 1 =0, 1 and we get 

And from 

it follows 

¡Hence 

P{<pt = 1|cpj = 0 } - P { q > , = 1|<pj = 1} = j U < 0 -

j P { 9 , = 1| <Pj = 0 } + | P { < p , - = l\(pj = 1} = | 

3 2 4 
E i M j l - E M E t o j ) = />{<?,- = l}(P{<pf = I K = = 1}) = y - ^ -

On this basis 

lim D2(E((pk\q>k_1, ...,(pj)= lim 

K 7 2 
2 »tod 2 2 ^ 
1=1 , ISi-zjSk I"1 

(k + 6) 2 (A: + 6) 2 = 0 
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and referring to the Tchebycheff inequality, it implies the stochastic convergence 

_ J i _ 1 
k + 6 7 

which is equivalent to the statement of the theorem. 

Corollary 1. From theorem 2. we get by simple conputation that the average 
number of events having to be inserted when calling the procedure insert is equal 
to 1.75. 

Corollary 2. The average number of comparisons needed by a call of the proce-

dure scan is Comparing it to the best fixed structure m(3) we find w [ y ] < 

< m ( 3). 

8. Algorithms for the 2/3-structure 

To build the algorithms in detail first we have to define the following pointers: 

• sue (successor) and pred (predecessor) are the usual linkage 
pointers for linear lists. 

• for (forward link) is the indexing pointer between the lev-
els, see Fig. 4. (When being in the lowest level we use for 
to point at the process assigned.) 

• back (backward link) is a redundant pointer not shown 
in Figures 4 and 5. The reason of introducing it is to 
make the building of procedure delete easier. The pointer 
value is defined by 

for F: — E. for, F. sue while F=/ = E. sue. for do F. back: — E; 

where E is any event not at the lowest level. 

Fig. 7. Definition of the pointer back Fig 8. evtime values 

Fig. 6. 
Event notice 
pointers at 

homogeneous 
structures 

Now let us define the evtime values at all the levels in the natural way: 

E.evtime = E.for.evtime. 

4 Acta Cybernetica in/1 



50 F. Feind, E. Knuth, P. Rado arid J. Varsanyi 

On these bases the logical 
structures of the procedures we 
tested are the following. (The 
exact versions are contained in 
the Appendix.) 

The general procedure delete 
(E) is contained only by the 
Appendix for its structure is quite 
similar one barring that techni-
cally more complicated. 

insert new 
pr imary event 

<has the inser t ion d o n e 

at the h ighes t level? J ~ 
- • \ 

Chas the inser t ion d o n e 
into a d o u b l e t o n ? J 

insert n e w even t 
into t h e next level t o o 

increase ihe 
yes ' n u m b e r of levels 

Fig. 10. Logical struclure of procedure insert (E, P, t) 

Fig. 9. Logical structure 
of procedure scan (f) 

Fig. 11. Logical structure of procedure 
delete current 

9. Experimental results 

We chose the execution times of the typical call insert (scan ( t) , P, t) to compare. 
The algorithms used are exactly those contained in the Appendix. The test were 

performed on a Control Data 3300 
computer. 

In the test the parameter t in the 
call insert (scan (t), P, /) was expo-
nentially distributed. As it is known the 
increase of the line describing the per-
formance of the linear list depends on 
the choice of the distribution of t, but 
our experimental results showed that 
using homogeneous indexes the per-
formance was quite independent of it. 

The deletion procedure proved to 
be about 1.8.-times slower than the 
simple linear one with a small variance. 

Fig. 12. Comparison of scan + insertion times (Th i s is 1.85 f o r t h e genera l v e r s i o n . ) 
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These results altogether designate a limit of about 100 events below which the 
simple linear method may well be used and the relative performance of the homoge-
neous structure fastly increases beyond. 

10. Further problems 

There are several further questions which seem very useful to study. Construct-
ing more and more effective structures is important not only for discrete event 
simulation but for any other linked structures sorted' by continuous keys too. We 
propose the following problems: 

1. We used duplicated events at the higher levels indexing the original ones 
of the lowest level. We have seen that it leads to an average number 3N/4 of du-
plications. However, it seems possible that using certain further pointers even a linear 
list can be supplied by a crafty additional structure ensuring effective search without 
duplicated events. 

2. The performance can be improved by not cancelling the events when their 
activity is terminated but leaving them for some kind of "garbage collector". It will 
not decrease the effectivity of the procedure scan if it is always starts from the end of 
the list. 

3. Finally we notice that during a discrete event simulation the region of time 
values interested is permanently being shifted to higher values. If we could describe 
stochastically the distributions of events resulted by such a consistent shift, then it 
would be possible to develop special structures based on this probabilistic behaviour. 

Appendix 

In this part we use the S IMULA 6 7 formalism [ 4 ] but the reader needs not to 
know it precisely because the denotations used are self-explanatory. 

A. Algorithms for linear lists 

ref (event) procedure scan (?); real t; 
begin ref (event) F; 

F: — last event; 
for F: — F while F. evtime do F: — F.pred; 
scan: — F; 

end; 

procedure insert (E, P, t); 
ref (event) E\ ref (process) P; real t; 
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begin ref (event) F; 
F: — new event (t, P); 
F.pred: — E; 
F. sue: — F.suc; 
F.pred.suc: — F.suc.pred: — F; 

end; 

(The last procedure body illustrates how to set the new pointer references. If the sub-
class relation link class event is assumed using the standard SIMULA list processing 
facilities the whole procedure body may be simply replaced by new event (/, P). 
follow (£•).) 

| £ : - | r o o t ; | 

£ . fo r is process ) >J s can : — £ : I — exit 

| J yes I -J 

| £":—£- f o r ; | 

n o f ^ ( E. sue qua event , t ime <i 
t 

[e-.-E. sue; | 

Fig. 13. ref (event) procedure scan ( 0 ; 

procedure delete (E); ref (event) E; 
begin 

E. sue. pred: — E. pred; 
E. pred. sue: — E. sue; 
E. sue: — E. pred: — none; 

end; 

(The procedure body is equivalent to the standard SIMULA procedure F.out.) 

B. Algorithms for the 2/3-structure 

The structure of the event notice could be defined by 
class event (back,for, time); 

ref (event) back, for-, real time; 
begin 

ref (event) sue,pred; 
end; 

but for practical reasons in the algorithms it is replaced by the following version 
using the SIMULA linkage possibilities: 

link class event (back, for, time); 
ref (event) back,for, real time;; 
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We use the global pointers: 
ref (event) root, current; 

and the initiation is 
root: — current: — new event (none, new process, 0); 
root.into (new head); 

The algorithms are contained by figures 13—16. 

Fig. 14. procedure insert (£, proc, /); 

exit 

-v. Fig. 15. procedure delete current ; 

Finally we give the logical structure of the general procedure delete. The dia-
gram may readily be programmed in a similar way as the procedure delete current. 



Fig. 16. Logical structure of procedure delete (£); 
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Abstract 

Simulation event scheduling algorithms based on linear lists are generally used in simulation 
languages. Under heavy traffic conditions these algorithms have poor performance. The best of 
the more complicated algorithms having proposed to improve it is the indexed list method. 

In this paper we introduce a multiple-indexed list structure of fully homogeneous nature to 
eliminate certain disadvantages of the use of static indexes and to gain further improvements. We 
give all the necessary program routines in detail. The sense of probabilistic behaviour is also given 
and simulation results are presented to make a comparison with linear list algorithm. 

COMPUTER A N D AUTIMATION INSTITUTE 
HUNGARIAN ACADEMY OF SCIENCES 
H-1502 BUDAPEST, HUNGARY 
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