Characteristically free quasi-automata

By I. BABCSANYI . o ,

\

In [2], [3] and [4] we dealt with the cyclic state-independent, well-generated
group-type and reversible state-independent quasi-automata, respectively. In this
paper we investigate a more general class of quasi-automata the characteristically
free quasi-automata. For the notions and notations which are not defined hete we
refer the reader to [3] and .

1. General prellmmanes ;

The A-sub-quasi- -automaton AIW(AI, F, 8y) of the quasi-automaton A=(A4, F,3)

is the kernel of A if
A, ={5(a,f)lacA, feF). . 1)

A is well-generated if A=A,. In [3] and [4] the well-generated quasi-automaton is
called simply generated quasi-automaton. F4 (or simply F) denotes the characteristic
semigroup of A, and f4 (or f ) is the element of F4 represented by f(€ F).

The well-generated quasi-automaton A=(4, F, J) is said to be characterlstlcally
free if there exists a generating system G of A such that

6(a,f)=0(b,g)=a=>b, f=g(a beG;f gcF). @

G'is called a characteristically free generating system of A, and its elements are
called characteristically free generating elements-of A.-
We note that every characteristically free generating system is minimal.

. Theorem 1. The quasi-automaton A=(A, F, 8) is characteristically free if and
only if A is a direct sum of isomorphic characteristically free cyclic quasi-automata.

Proof.- It can easily be seen that the subsets 4,={3(b,f)[f€F) (bcG) of 4
form a partition on 4, where G is a characteristically free generating system of A.
Quasi-automata A,=(4,, F,8,) (b€G) are characteristically free cyclic quasi-
automata. Let_b,, b, (€G) be arbitrary generating elements. The mapping

Py, by 5(b1,f)—'5(bz,f) (feF) ‘ @)

is an isomorphism of A, onto A,,.
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Conversely, it is clear that the direct sum of isomorphic characteristically free
cyclic quasi-automata is characteristically free.

Theorems 1. and 2. are equivalent for A-finite well-generated quasi-automata.

Theorem 2. The A-finite well-generated quasi-automaton A=(A, F, d) is charac-
teristically free if and only if there exists a generating system G of A such that

|| = 6] O(F).

(In this case G is a characterzstzcally Sree generatzng system )

Proof. Let G be a generating system of the A- ﬁmte well-generated quasi-
automaton A=(A, F, ) such that .

|4 = 1G] O(F).
Since |4,|=0(F) (b¢G) and A= |J 4, therefore
. _ b€EG

|4l = 3 |4,| =|G|-O(F) = |4], ;
beEG R
thus

IAI = Z |Ab|-
bEG

This means that 4, (b€G) form'a partition on 4 and [4,|=0(F). It is evident that
the mapping f—§&(b, f) (f€ F) is one-to-one. Therefore, the quasi-automata A, (b€G)
are characteristically free, cyclic, and for every pair b,, b, (€G), A, =A,,. By
Theorem 1, the quasi-automaton A=(A, F, d) is characteristically free, and G is
a characteristically free generating system of A.

The necessity of this theorem follows from Theorem 1.

_ Lemma 1. (I. BABCSANYI [31) Arbitrary two minimal generatmg systems of
a well-generated quasi-automaton have the same cardinality.
Corollary 1 and 2 follow immadeately from Theorem 2 and Lemma 1.

Corollary 1. The A-finite cyclic quasi-automaton A=(A, F, 8) is character-
istically free if and only if |A|=O(F).

The necessity of Corollary 1 is true for infinite quasi- -automata; thus we get
the following result:

Theorem 3. lf the cyclic quasi-automaton A=(A, F, 5) is cha)acterzstzcally

_ free then |A|=0O(F).

It should be noted that the converse of Theorem 3 does not hold. Indeed in
Example | for the quasi-automaton A=(4, F,(X), 5) we show that |4|=O0(F (X)),
but A is not characteristically free.

Example 1. A=(1;2;3;...), X=(x, ),

s(L,x) =2 6(l.y) =1, 8(,x) =8,y =i+1 (i=23..)

It can be seen that Fl(X) (y x i, j=0,1,2,...). (We note that x=)°* is the
empty word.)
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Corollary 2. Every minimal generating system of an A-finite characteristically
Jfree quasi-automaton is, characterlstzcally Jree.

In the following example it is shown that Corollary 2 does not hold for infinite
quasi-automata. \

Example 2. Let N be the set of natural numbers, A=NXN and X= (x .
‘The deﬁmtlon of next state functlon 0 is the followmg

' 5((1 1), x) = (i, 2), o
(G, 2), x) = 8((1, 4, x) = (i, 3),
(GG, 2j+1), x) = 6((1, 2j+4), x) = (i, 2j +3),
S DY) = GHL Y, '
6((,2), y) = 6(G, 4, y) = G, 1),
(G, 21+ 1), ¥). = (G, 21 +4), ¥) = (5,21+2) (j=1,2,3,..).

The quasi-automaton A=(4, F(X), 5) is cyclic. {(1,/)) (j=1,2,3,...) are minimal
generating systems, but only {(1, 1)) is characteristically free.

Lemma 2. The characteristic semigroup of every characteristically free quasz-
automaton has a left identity element. - o . , .

Proof. Let G be a characteristically free g‘enera‘ting system of the quasi-auto-
maton A=(4, F, 8) and b€ G. There exists an e€ F such that §(b, ¢)=5b. Thus ,

A flo(b, 1) —5(5(17 e) f)—5(b ef)l,
that is, _
‘ | pa fIf=¢e)

Theorem 4. Let a, be a character:stlcally Jfree generating element of the cyclic
quasi-automaton A=(A, F, 0). d(ay, h) (h€ F) is a characteristically free generating
element of A if and only.if there exists a k€ F such that 6(a,, hk)=a, and kh is a left
identity element of F.

Proof. Let a, be a characteristica]ly free generating element of A, 5(a0, hk)=a,
(h, k€ F)y and kh a left identity element of F. Furthermore, for f, g(€F), let,

6(a0’ hf) - 5(5(‘10’ h) f) - 5(5(00, h) g) - 5(‘10’ hg)
Smce aq is a characterlstlcally free generatmg element thus,
hf = hg,

T = Rif = Rig = g

that is,

This means that 6(ay, #) is. a characteristically free generating element of A.
Conversely, let 8(aq, i) (h€ F) be a characteristically free generating element of A.
There exists a k€ F such that a,=0(ay, hk). Now let f¢ F be arbitrary. By Lemma 2,
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RE is a left identity element of F. Therefore
5(5(as, 1), 1) = 6(ay, hf) = 8(ay, hkhf) = 5(5(ao, h), khf),

f = Kkhy.

It is clear that every well-generated state-independent quasi-automaton is
characteristically free. The converse of this statement does not hold (see Example 2).
However, by Corollary 2, every A-finite strongly connected characteristically free
quasi-automaton is state-independent.

Lemma 3. The characteristic semigroup of a state-independent quasi-automaton
is'left cancellative.

Proof. Let the quasi-automaton A=(4, F, §) be state-independent and hf=hg
(h, f, g€ F). Then for an arbitrary state a(€ 4).

5(a, bf) = 5(5(a, h), f) = 6(6(a, h), g) = &(a, hg).
Since A is state-independent thus f=g, ie., the characteristic semigroup F of A is

left cancellative.

The converse of Lemma 3 does not hold. Indeed, in Example 3 the characteristic,
semigroup F(X) of the quasi-automaton A=(4, F(X), 6) is left cancellative, but
. A is obviously not state-independent.

Example 3. A=(1,2,3), X=(x, y)

that is,

6123 Flzg #j
212 “x|x2x

232 2% 2y o

jl e 2y

\ Elz 2y 5

) /
A is not a characteristically free quasi-automaton.

Theorem 5. A characteristically free quasi-automaton is state-independent if
and only if its characteristic semigroup is left cancellative.

: Proof. The necessity obviously follows from Lemma 3. For the proof of
sufficiency, let the characteristic semigroup F of the characteristically free quasi- -
automaton A=(4, F, J) be left cancellative. Take the elements a(EA) and f, g(¢F )
such that 6 (a, f)=0(a, g). Let G be a characteristically free generating system of-A
There are b(E G) and h(EF ) such that o(b, h)=a, thus,

" 5(b, bf) = 5(b, hg).

Since A is characterlsncally free thus if=hg. But Fis left cancellatlve Therefore,
f=2. This means that A is state-independent.
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We note that if a characteristically free qua'si automaton is state-independent,
then each of its minimal generating systems is characteristically free.

In the following two paragraphs we generalise some results of papers [2] and [4],
concerning cyclic state—mdependent and reversible state- 1ndependent quasi-automata
for charactéristically free quasi-automata.

2. Endomorphism semigroup

Theorem 6. Let a, be a characteristically free generating element of the charac-
“teristically free cyclic quasz -automaton A= (A F,d) and 0(ay, e)=ay (e€F). Then

E(A)
Proof Define the followmg mappings o,,,,: 4 —~A4 _
%y, 1(8(a0, f)) = 8(av, hf) (feF). : “

If 3 (a5, f)=0(ay, &) (f; g€ F) then, by (2), f=g, thus,
h 3(ao, hf) = 8(3(aq, ), f) = 5(3(ao, h), g) = 6(ay, hg),

ie., o, is well-defined. Let a(€4) and f(€F) be arbitrary elements. Then there
ex1sts a g(€F) such that 6(a,y, g)=a Therefore,

%,,4(8(a, 1)) = %y, 1(8(a0; &f)) = 6(ay, hgf) =
= 5(5(a0, hg), f) = 8 (%, (8 (a0, 8)): ) = 0(tay, (@), f ), -

ie., .ocao;,, is an.endomorphism of A. Let a be arbitrary endomorphism of A. There
exists an A€ F such that d(a,, #)=u(a,). Then for every a=d(a,, g)€ 4,

O((G) = a(a(ao, g)) = 5(“(“0)’ g)/\:: 5(5(("0’ h), g) = 5(‘10, hg) =
- | = %,,1(0(a0, ) =ty u@, -7

that is, @=d,, ;. - Therefore, every endomorphism of A is of type (4). :
From Lemma 2 it follows that € is a left identity element of F. It can easily
be seen that the mapping -
dgp.n —~ he (hEF) o a

is an isomorphism of E(A4) onto Fe.

Corollary 3. The endomorphism semigroup of a characteristically free cyclic
quasi-automaton is a homomorphic image of its characteristic semigroup.

Proof. The mapping f—fe (feF) is an endomorphism of F.

In Example 2 Xy is a left identity element of F(X).

F(X) = (x5 y%; xFy; y'x" VXl k1 =1,2,3,..),
FOO®y = (F; ¥; Yo7yl j k, 1=1,2,3, e

Let G be a characteristicaflly free generating system of the characteristically
free quasi-automaton A=(4, F, d). Furthermore, n: G—~G and w:G~F.

/

- 6 Acta Cybernetica I11/2

\
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Theorem 7. The mapping ¢..,: A—A for which )
Pra(0(b, 1)) = 6(n(b), @(B)f) (PEG; fEF) &)

is an endomorphism of A. Furthermore, every endomor})hism of A is of type (5) and

Pro = U @b, n(v) %, 00>
bEG

where @p . () is a mapping of type (3) and o, 0 vy IS @ mapping of type (4).

Proof. Let 5(b,f)=0(c,g) (b, c€G; [, g€ F). From (2) it follows that b=c

and f=g, that is, 7(b)=n(c) and w()f = w()g. Therefore, ¢, is well-defined.
Let a=6(b, 4) be an arbitrary state of A and f¢ F. Then

P20(0(a, ) = @ro(3(b, b)) = S(m(b), (D) hf )=
= 3(6(m(B), 0 (B)h),f) = 3(@r0(8(b, h)), f) = 8(Pr0 (@) f)-

Therefore, ¢, is an endomorphism of A. Let a be an arbitrary endomorphism of A,

a(b)eA, (b, c€G)and a(b)= 5(c, h) (he F). Since the subsets A, (c€G) of 4 form

a partition on A, thus the mappmg n: b—c is well-defined. Let w: G— F such that
8(c, w(b))=a(b). Then

. a(6(b, /) = 6(x(b). f) = 5(5(_c, w®),f) =
. = 8(c; w(B)f) = 3(n(d), w(B)f) = 9:0(0(b, 1)) (bEG, fEF),
that is, «=@,,. This means that « is a mapping of type (5). Furthérmore
. ¢nw(5(b f)) = 5(”(17), a)(b)f) Gy, n(b)((s(b (u(b)f)) = (Pb n (b) %b, w(b)(é(b f))

that is,
Drw|ap, = Pb,z(b) %b, @ (b)

Denote the set of mappings Q= U @b,z ) DY T and the set of mappings
U %, o DY H. T and H are subsemlgroups of E (A) under the usual multipli-

catlon of mappings.

Corollary 4. If the quasi-automaton A=(A, F, 8) is characteristically free then

E(A)=TH and TN H={}.
Proof. It is evident that (p,.ngonda, and
| Pr =0y & Qg = 0y =1, .

where 1 is the identity element of E(4).

Corollary 5. If the A-finite quasi-automaton A=(A, F, d) is characteristically
free and F is a monoid then .

O(E(A)) = |4]i¢!

‘where G is a characteristically free generating system of A.
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Proof. By Theorem 1, O(T) is equal to the number of the transformations
of G, that is, O(T)=|G|!¢!. Since Fis a monoid thus, by Theorem 6, E(Abl) >~ F(beG).
— ' IG
By Theorem 2, O(F )=%. Therefore, by Theorem 7, O(H )=(%) . Thus, by
Corollary 4,

161
O(EW) = 0)-0(H) = 61+ (1Al) " = apr
Theorem 8. Let the quasi-automaton A=(A, F, ) be characteristically free. Then
1) ©,€G(A) if and only if 7t is a permutation of G, where G is a characteristically
free generating system of A.
2) ,6€G(A4) if and only if G'=(5(b, w(B))bEG) is a characteristically free
generating system of A.
Proof. 1) By Theorem 1, ¢4, (b€G) is an isomorphism. Thus ¢,€G(4) if
and only if
Drya, = (pn|Ac(b7 c€G) = A, = A4,
that is, b=c. This means that 7 is a permutation of G.
2) By (3), 2,€G(A) if and only if for every b€ G,

wb)f=wbd)e (f.gcF)=>f=§
and G’'={8(b, w(b))|b€G) is a generating system of A, i.e., G’ is a characteristically
free generating system of A.

The quasi-automaton A=(A, F, d) is called reversible if for every pair-a(€4),
S (€ F) there exists a g (€ F) such that d(q, fg)=a. (s. V. M. GLUSKOV [9].)

We note that if F is left cancellative (i.e., if the characteristically free quasi-
automaton A is state-independent) then every mapping «, is one-to-one. If every
A, (b€G) is strongly connected (i.e., A is reversible) then a,, is onto. If A is reversible
and state-independent then H is a subgroup of G(A4) (see [3] and [4]).

If ¢,, 2,£G(A4) then :

/‘Pm(5(b,f)) = 5(75(17)» w(b)f) = On (b, w (b) (5(" (b)’f)) =

. = Oz (b), 0 (b) (Pb,n(b)(é(baf)) (fEF, beG),
that is,

Pnle, = P = U Xa (b), 0 (b) Pb, (b)) = U %,0G16) @x-1¢)s = X P
- bEG bEG
where aj,:= {J o, w@-10)-
bEG

We denote the set of mappings a,, (€G(A)) by H'. H’ is a subgroup of H. Let
us denote the set of mappings ¢,(€G(4)) by P. P is a subgroup of T.

Corollary 6. If the quasi-automaton A=(A, F, 0) is characteristically free then

G(4)=PH'=H’P and PNH ={)}.

Proof. 1t is evident that PH’, H' RS G(A4). Let a€G(A4). Then there exist
¢.€T and o,€ H such that a=¢,a,,, by Corollary 4. We show that ¢,.¢ Pand a,€ H’.
Using the proof of Theorem 7, we get that the mapping n: b—c¢ (b, c€G), where
a(b)€A,, is a transformation of G. Assume that «(b,), a(b)€A,. (b, by, c€G).

6'
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Then there exist Ay, h,€ F for which a(b)=6d(c, ;) and a(by)=0(c, /i,), that is,
by =08(a"1(c), h;) and b,=5(x"1(c), hy). By Theorem 1, A, =4,,, that is, b;=b,.
Thus 7 is one-to-one. Smce a(b)c A, thus a(A,,)CA Thus for every ¢(€G) there
exists a b(€G) such that «(b)€A4,., since « is an automorphism. Therefore, 7 is
a permutation of G, that is, ¢,€G(4). This means that a,=¢; 'a€G(4). Since
@0, =0,0,, Where a,€H, thus o=@ 2,07 L G(A). )

Corollary 7. If the quasi-automaton A=(A, F, 8) is characteristically free, then
P can be embedded homomorphically into the automorphism group of H'.

Proof. It is clear that the mapping O,: a,—2,, is an automorphism of H’
(9.€P, a,, a,€ H’). The mapping ¢,—~0, (¢.<P) is well-defined. Take arbitrary
mappings @,,, ¢,, (€P) and a, (€H). If

Pry%y = Oy Py and q).nl“wl = Oy Py (awls at&)gE H’)
then . ‘
Dryne P = Qry Pry%e = ¢n1ab1§0ng = Uy, Dy Pro = %3 Prynas

O 0ry() = O, (1) = % = Oy, (20,
that is, ©,,0,, = O, ,,.

. We note that if the quasi-automaton A is reversible and state-indépendent
then H'=H (see [. BABCsANYI [4].)

thus,

Example 4,
Al123456 Flxy
333666 _ X|xx X
213546 7ls5 5
; Pley » g
G=(1; 4) is a characteristically free generatmg system of A.

A I P o
D e (S (A T

W = (£ i] Wy = (i ‘_‘) Wy = [E ‘f] Wy = (i i)
vy X y:y VAS
T =1 = @nps Pivy> Pry» Py, H =2 ]I =1,2,...,9),
O(T)=4, O(H)=9, O(E(A)=0(TH) = |4|'% =-6* = 36, .
TNH={} P = (= Qrys P ‘H" = (Ui » Aasy> Aogs Aang = 1)
Pro; = %oy Pryr Prlwg = Uog@Pr, AN Pr %y = Xy Prys
that is, G(4)=PH’=H’P, PNH’ ={1}.
|HT| ='24. Therefore, E(A) =TH = HT. -
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3. Reduced quasi-automata

In the paper [2] we introduced on the state set 4 of the quaSI automaton
A=(4, F, ) the following congruence relation g:

agh= ¥ f1b(a,f) = 5(b, 1)) ©)

The factor quasi-automaton A:=A/g is said to be the reduced quasi-automaton
belonging to A. The qua51 -automaton A=(4, F, §) i is called reduced if for arbitrary
a,b(cA):

aQb =a=5.

We note that if  is a left identity element of F then

agb(a,beAd) = 5(a,e) = 5(b, e). -
If the characteristic semigroup F of a well-generated quasi-automaton A is a monoid,
then A is reduced. The proof is obvious; we only note that A is well-generated if .
and only if .
¥ alé(a,e) = a],

acA

where € is a right identity element of F (see I. BABCSANYI [4]).
Denote the characteristic semigroup of A=(4, F, §) by F. Let f be the element
of F represented by f (€ F). Furthermore @ is the e]ement of A represented by a(€4).
4

Lemma 4. If the quasi-autoinaton A=(A, F, 0) is characteristically free then
the quasi-automaton A= (A, F, 6) is characteristically free as well.

"Proof. Let G be a characteristically free generating system of A. It is clear that
the set G={(a,la,€G) is a generating system of 4. Let '

5(‘_‘0,]’):5([’0’ g) (aq, by€G; f, g€ F),
v _h[o(ay, fh) = 6(by, gh)].
he€F . ,

that is,

Since G is characteristically free thus

N | ap="b, and vV h[f =gh),
“ hEF

thus, 50=E and f=7. This means that G is characteristically free.

Theorem 9. If the quadsi- “automaton A (A F, 6) is characteristically free then
E(A)=E(4).

Proof. Let G be a characteristically free .genera_tiﬁg system of A. It is evident
that all mappings ¢.5 of type (5) are endomorphisms of A (#: G—~G; w: G—~F). -
- K —~ . 3
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Take the mapping ¥: E(A)~E(A4) for which

Y (Pro) = @iz & ¥ aoli(d@,) = n(ag) and @(do) = w(ay)).

4, €G

Since the mapping a@,—~d, (a,€G) is one-to-one, thus the # and @ are well-defined.

Pro = Pww (EE(4)) = \ZG ao [fEVF f[8(n(ao), w(ap)f) = 8(n’(a0), @ (a)f)]] =

= . ‘ga aop[8((ag), w(ay) = 6(n’(ay), 0’ (ay))] =

= a\an"[S(ﬁ(a")’ 5(‘70))] = 5(7—5'(50): 6,(50))] = Pz = Pzg -
Conversely, ’
%wm%w:‘v%gifwﬁ@@w@aﬂzﬁww@aﬁmﬁﬂ=

3,€G

= V@l F13(n(ap), 3@p) f) = 3(x' (ap), & @o) f)]]-

B,EG
. Since n(a,), n’(a,)€G and G is a characteristically free generating system of A thus

v ao[m = 7' (a,)],

that is, e
)Y a[ Y fI8(n(ay), £) = 8(n (ao), F)]]-
ay€G fEF

But n(a,), n’(dO)EG and G is a characteristically free generating system of A. Thus
’ YV ap[rn(ap) = 7' (ap)],
@ €G
that is, z =n". From this, using ®(d,)=w(a,) and &’ (d,) =w’(a,), we get that ¢, =
=@, .. Lhis meansthat ¥ is one-to-one. It is clear that ¥ is onto.

Let @p0, Praws€E(A) and 3(ay, ) (a,€G, f€F) an arbitrary state of A. If
mi=m 71, and o(dg):=w,(n2(ap)) w2(ay) then

(pﬂlwl (Dﬂzﬂlg (6 (a()’f)) = (Drrltol (5 (77:2 (ao);' w2 (ao)f)) =
= 5(7[1 3 (ag), @1(75(ao)) wz(ao)f) = Oro (5 (ag, f)),

that iS, (Pm (3% (01:2 ws = Prer- BUt 7—I1 ﬁz (C_lo) = ﬁl (752 (ao)) =TT ((10) = ﬁ(ao) and 51 (ﬁz (ao)) A
- 05(@g) =0, (”2 (ao)) @z (dg)= ‘01(”2 (ao)) w,(ap). Therefore,

P&y Przn (5 (@ f )) = Oz a (5( To(@p), @2(ag) f )) =
= 5(7—‘1 Ty (@), 61(ﬁ2(50))5_02(‘70)f) = Osn (5(‘70, f)),
that is, @z g, Pz =Pzs- Lhus ¥ is an isomorphism of E(A4) onto E(A).

We note that if nn" then ¢,,=¢,, . Furthermore,

Pro = Pror = ¥ ao[w(ao) = w’(a,)].
.ay
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Corollary 8. If the quasi-automaton A=(A, F, d) is characteristically free, then
the characteristic semigroup F of A can be embedded isomorphically into the endo-
morphism semigroup E(A) of A. :

Proof. Let G be a characteristically free generating system of A and n the
identity mapping on G. Denote the mapping ¢, by ¢, if

i aolw(ag) = h].

It can clearly be seen that the mapping h—»(p,, (h€ F) is one-to-one. Let A, k, f€ F
and aOEG Then

s 0x(6(a0, 1)) = 4(8(ag, k) = d(ao, hkf) = @ (0 (a0, 1)),
that is, @;@,=@,. Thus the mapping —¢, (A€ F) is an isomorphism of F into
E(A). : |

We note that the characteristic semigroup F of the characteristically free quasi-
automaton A=(4, F, §) can be embedded homomorphically into E(4). If O(F)=1
then every element of Fis its left identity element. In this case H={1}.

Corollary 9. If the cyclic quasi-automaton A=(A, F, 8) is characteristically
- free then E(A)=F.

Proof By Theorem 6, E(4)=Feé. Since ¢ is a left identity element of F, thus
the mapping fé—f (f€ F) is an isomorphism of Fé onto F.

Corollary 10. The characteristically free quasi-automaton A=(A, F, ) is
reduced if and only if its characteristic semigroup is a monoid.

Proof. By Lemma 2, there exists a left identity element & of F, that is,

v a[ v f[3(a,f) = 3(a,¢ef) = 6(5(as e), f)]]

acAd

If A is reduced then
Y ala = 5(a, ),
acA

i.e. @is the identity element of F. It is evident that if F is a monoid then A reduced.
The next result follows from Theorem 6 and Corollary 10.

Corollary 11. The characteristically free cyclic quasi-automaton A is reduced
if and only if F= E(A).

Lemma 5. Let the quasi-automaton A=(A, F, 0) be characteristically free and
L the set of left identity elements of F. Then

. Y aelay = <5(a0=e)|e€L>]:

€

and for arbitrary pair ao,bo(EG) |Gy =|by), where G is a characterlstlcally free
generating system of A



156 1. Babcsanyi

7

PIOOf Let @,=b (a,¢G, b€ A). Then there ex1st h€F and bycG for which
0 (by, H)="b, thus,
‘f f[5(ﬂo,f) = 6(b,f) = 6(b,, k)],

that is, ay=b, and Vv f [f=hf]. Therefore, EEL 1t is evident that if e€L then

JEF
O(ap, €)€a,. If 5(ag, e))=0(ay, €2) (2,€G; &), &€ L) then & =8&,, thus the mapping
0 (ay; €)—é (ec L) is one-to-one; therefore, |a,|= 0 (L) (a,€G).

We note that for every state a(€ 4):
a2{d(a, e)lecL)
and aZ A,,, where a,€G and a=4b(a,, 1) (h€ F).

Corollary 12. (I. BaBCsANYI [4].) If the quasi-automaton A=(A, F,d) is
reversible and state-mdependent then a={d(a, e)lecL) (acA) and for every pair

Corollary 13. (I. BABCSANYI [4].) If the reversible state—zndependent quasi-
automaton A=(A, F, 5) is A-finite and there exists an a (€ Ay such that |4,| is a prime
number, then the characteristic semigroup F of A is a group or every element of F is
its left identity element.

- Proof. By Corollary 12, [a| is a divisor of |4,] (a€A). If |4,| is a prime number .
then |a|=1 or |a|=|4,]. If [al—l then, also by Corollary 12, |b|=1 for every b(€ A4).
This implies that F isa group. If |a|— |4,] then for every state b(€ A4,),

v flo(a,f)=4(b,f)l.
f€F

~ Since for every h(€F), d(a, )€ A, thus
fyF- Jlo(a,f) = d(a, hf)], .

that is, o
v fIf=hf]. .
fEF

Therefore, I is a left identity element of F.

Let the characteristically free quasi-automaton A=(4, F,5) be cyclic and
a, a characteristically free generating element of A. d(ay, /) (hEF) is a charac-
teristically free generating element of A if and only if the mapping g, b (see (3))
is an automorphism of A. This means that the cardinal number of the set of charac-
teristically free generating elements equals O(G (4)).

In Example 2 G, D=(GD); (:2=(2; G9); G 25+D=, Z+D);
G, 2/+4) (,j=1,2,3,...). F={K 9% xy; y'xik, 1=1,2,3,..). E(4)=F and
G(A)=1{}. . _

Theorem 10. If the c/zdracteristically free quasi-automaton A=(A, F, o) is
cyclic then the quasi-automaton E(A)=(E(4), F, &’) is well-defined, where -

_ y(“ag,lnf)»: Ao, by (fé F)
and E(A)=A. :
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Proof. Since .

Yoy = Oag.x < ¥ S18(a0, Bf) = 6(a, kF)],
SfEF )

thus - N .
Ogg, b = Oag,x = ¥V f[‘xao,hf ='aao,kf]-
fEF -

Furthermore,
5’(“ao,hafg) = %ag,nfg = 5’(aao,lif g) = 5,(5,(aao hsf) g)

(h, K ,[,8€F; ayis a characterlstlcally free generatmg element of A.), that is, E(A)
is well defined. The mapping ¥: E (A)—»A for which

T Otaoh—>5(a0,h) (hEF)

is one-to-one and onto. Finally, we shall show that ¥ is a homomorphism. Take
arbitrary elements a,, ,€E(4) and f€ F. Then

V(0 (%ag, 1)) = ¥ (G, 1) = d(ag, hf) =
= 5(5(610, h):f) = 5(5(00’h)’f) - S(T(“ao,h):f)

Theorem 11. If the characteristically free quasi-automaton A=(A4, F, ) is
cyclic, then E(E(A)) is the semigroup of left translations of E(A) and E(E (A)) = E(A).

Proof. Note that E(E(4)) denote the endomorphism semlgroup of E(A).
Let oy, 1, %qy, (€ E(A)) be arbitrary endomorphisms and ‘ucE (E(A)) Then

”(aao,haao,k) - ﬂ(aao,hk) - ((S (aao,ha k)) - 5 (#(aao,h)a k) -
= 5’(“!10,9’ k) = Otan,gk - aao,gaao,k = H(aao,h)aagib

where i, k, g€ F and p(e,, ,)=0,,,,. This means that p is a left translation of E(4).
Conversely, if pis a left trans]atlon of E(A), then

#(5 (dao,h’f)) - Au(aag,hf) /l(O(ao haao f) - #(aao,h)aao f -
- Otﬂo 9%ayq,r = %ag,qr = =0 (aao g’f) =0 (ﬂ(aao h) f)

where f¢€ F and u(oz,,0 W=, 4, 1.€. jL1s an endomorphlsm of E(A). It is well-known
that every monoid is 1somorphlc to the semigroup of its left translations.

. We note that if the quasi-automaton A=(4, F, §) is cyclic and characteristically
free a, is a characteristically free generating element of A, 6(ay, €)=a,(e€ F) and
.-<5 (ap, fo)|f€ F), then the quasi-automaton A,=(4,, Fe, 5,) is well- deﬁned

A, is a reduced sub-quasi-automaton of A and Fede=F.

Theorem 12. If the endomorphism semigroup E(A) of the charactertstlcally
free cyclic quasi-automaton A=(A, F, 6) is isomorphic to the direct product of semi-

groups E; (i=1,2, ...,n) then A is isomorphic to the A-direct product of reduced
characteristically free cyclic quasi-automata A;=(4;, F, 6,-) and E(A)=FE;.

Proof. Tt is sufficient to prove this theorem for n=2. Let E(4)~E,QF,.
We can assume that E(4)=E; @ E,. By Theorem 10, E(A)NA Leto,, pi=1(0t,p,02,5)

e
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(oz,-,,,EEi,-i=l,2). Since
(o1, n5s %2,0f) = Oay, by = %ag,1%sq, 5 = (1,5 %2,0) (1, 55 %2, ) = (A1, 4%, 55 %o 4%z, )
thus o; ,y=o; ya; ;. This means that the mappings 6;: ;X F—E; given by
6; (%, ns f) = % s
are well-defined. Furthermore, the quasi-automata E;=(E;, F, §;) are also well-

defined.
5’((051,1.: a2,h):f) = 5’(aao.h9f) = lag,nf =

= (01, ny» Uy, pp) = (51(“1,!” ) 52(°‘2,h:f))a‘

that is, E(A)=E,®E,. Thus A=~E,;®E,. It is evident that «,, . is a charac-
teristically free generating element of E(A), where a, is a characteristically free
generating element of A and J(ay, e)=q, (e€ F). Prove that «; . (=1, 2) is a charac-
teristically free generating element of E;. Let

%, r=0:(% & f) = 0:(ti e, 8) = ;4 (f, g€ F).
Thgn for every h¢F,

5i(ai,h’f) = O hy = % 5%, p = 04w %, g = i pg = 0:(¢% n» 8),

that is fE:= gE:. Therefore, the quasi-automata E; are cyclic and characteristically free.
From Theorem 6 it follows that ,: a; ;—a; ,, (f€F) is an endomorphism of E,,
and for arbitrary endomorphism f§ of E; there exists an 4¢ F such that f=4,.

B, = By(h, ke F) Qfevp Sl hy = 0 5] © X e = U g
But ocl,,,=‘cx,-,,,e and o; ,=u; ;.. Therefore, the mapping f,—~a; , (h€ F) is a one-to-one

mapping of E(E;) onto E;. Sigc_e BrB,=Bs (f, g€ F), thus the mapping fB,—a; ,
(h€ F) is an isomorphism. Let o; ,=0; ;, that is,

Vo fI8:(as, 5, ) = 0i(eti k> I
f€F

Thus &; ,=o; po=0; ye=0; ;. Therefore, the quasi-automata E; are reduced.

Corollary 14. The reduced characteristically free cyclic quasi-automaton A is
isomorphic to the A-direct product of reduced characteristically free cyclic quasi-
automata A; (i=1,2,...,n) if E(A)=E(4,)QE(4)Q...® E(4,).

Example 5.
ALl 2 A2| 34 A1®3A2| (L,3) (1,49 (2,3) (2,9
x|{12 x| 4-3 x 1,9 (1,3) 24 (2,3)
yizz2 T yl43 y 124 23) 24 23).

1 is characteristically free generating element of A,. 3 and 4 are characteristically
free generating element of A,. A, and A, are reduced. E(4,)={o, B,), where

(12 (12 _ _34] _{34]
=1 3) and p=( 3] EC=(a b, where w=(] %) and po=(] %),

E(A,X Ap)=E(A4) ® E(4,).
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4. Homomorphism

Let A=(A4, F, 6) be a quasi-automaton and I (§ F) an arbitrary symbol. Define
the semigroup F*! to be FU {I}, multiplication in F is unchanged and I acts as an
identity for FU{I}. Furthermore, let ¢ be a mapping of A4 into itself and

0,: AXF'—4 such that
6(a,f) if feF ,
Lemma 6. (I. BABCSANYI [4].) The quasi-automaton” A,:=(A, F',$,) is well-
defined if and only if ¢ is an idempotent endomorphism of the quasi-automaton

A =(A, F, 6) and the restriction of @ to the kernel of A is the identity mappmg In this
case A is sub-quasi-automaton of A,,.

Proof. Necessity: Assume that the qua51-automaton A, is well-defined. Let
a(€ A) be an arbitrary state. Then

: (p(a) = 6(4)("3 I) = 5¢(G, 12) = 5(1)(5(/;(0’ I)’ I) = q)z(a)s
that is, p2=¢. Furthermore, if f€ F then

5¢(a’ If) = 5¢(a,f1) = 5(p(asf) =d(a,f),
5¢(5¢(a’f)’ I) = 5¢(5(a3f)= I) = qo(&(a,f)),

_ 60(85(a, ). f) = 6,(0(a),f) = 8(¢(a), f).
Since A, is well-defined, thus

8(a, 1) = 9(3(a, ) = 6(¢(a). f)-

This means that ¢ is an idempotent endomorphism of A and ¢|4;=1 (4, is the
state set of the kernel of A (see (1))). The proof of sufﬁcwncy is similar. Since F is
a subsemigroup of F! and & coincides with the restriction of 0, to-AXF, thus A is
sub-quasi-automaton of A,,.

Theorem 13. (I. BABCSANY! [4].) Every homomorphism of the quasi-automaton

A,=(4, F1, 6,) is a homomorphism of the quasi-automaton A=(4, F, §). Conversely,

If VYisa homomorplnsm of A onto the quasi-automaton B=(B, F, 8%}, then ¥ is a homo-
morphism of A, onto B, if and only if Yo=9¢'¥. :

Proof. Since A is the state set of A and A, furthermore, A is a sub-quasi-
automaton of A,, thus every homomorphism of A, is a homomorphism if A.
Conversely, let ¥ be a homomorphism of A onto B. ¢ and ¢’ are mappings of
type (7). It is clear that ¥ is a homomorphism of A, onto B,,, if and only if

aYA a[‘I’/(p(a) =Y¥(5,(a, 1)) = 6,,(¥(a), I) = ¢’ ¥(a)].

thatis, Pp=¢'?.

We note that if ¢ is the identity mapping of A4, then the homomorphisms of
A and A, coincide. In this case denote A, by A;=(4, F?, é)).
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Theorem 14. Let A=(A, F, 6) be an arbitrary quasi-automaton. There exists
" a characteristically free quasi-automaton B=(B, F, 6") such thar A, is the homo-
morphic image of B-andthe characteristic semigroups of Apand B are equal.

Proof. Take the quasi-automaton A,=(4, F1,8;). Let G be a generating
system of A4;. Define the following relation 7 on GX F':

(b.f)1(c,g)»b=c and j4=g4u(b,ceG; f,geF)).

1t is clear that 7 is an equivalence relation. Let C, be the partition on G X F' induced
by 1. C.(4) is the set of the classes C,(b,f) (b€G, fE FY). ConSJder the mapping
8" C,(AyX F'=C,(A) for which.

) 6’ (C,(b,f), h) = C,(b, fh).
. Let g, h¢ F. Then '

&' (Cu(b, 1), gh) = C(b, fgh) = &' (C.(b, fg), h) = &' (6" (€.(b. f), &), ), C-

that is, the quasi-automaton C.(4)=(C.(4), F’, §") is well-defined. We prove that
F! is the characteristic semigroup of C (4): ~

fAI: Ay &5 Y h[hAIfAI _-hAIg 1]<:> ~
heF!
< ¥ h[ Y bIC.b,1f) = C.(b. he)l]
heFT beG

o % CAb,W[F(C.b,1).f) = & (C.lb, h), g)] & JO = gCa,

C.(b, WEC, () ] .
The set G;:=(C,(b, T)|b€G) is a generating'system of C,(4). Let
C.(6, 1) = &(Cb, 1), f) = & (Culc, 1), )= Culc, 8)
(b, c€G; f, g€ F'). Then b=c and fAr=g4r. Thus C.(b, D=C.(c,]) and fC-AW=
=gC:M je., C,(A)is characterlstlca]ly free The mapping
¥: C(b,f) ~ 51(17 f)(bEG feFD

is a homomorphlsm of C,(A) onto A;.
Example 6. Take again the quasi-automaton A given in the Example 3.

Ajf123 G=(2
I|123 Fl=(%,x%, 7,58 1)
x[(212

yl232

C CRD CRY CRx) CRN Co

I | G2, 1) C(2,x) C2,x) C(2,y) C(2,)7)
x | C(2,x) C(2,x%) C(2,x) C.(2,x) C(2,x)
y G2y C2,p) C(2,y) C(2,¥) C(2,y)

[Cr(2, N C(2,%) C(2,x) CQ2,y) CL2, yz)]
2 1 2 3 2

o
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Corollary 15. Let the quasi-automaton A=(A, F,5) be well-generated and
F4 a monoid. There exists a characteristically free quasi-automaton B=(B, F,J’)
such that A is a homomorphic image of B and FE=F*,

By Theorem 14 the proof is evident. (The identity.element of F4 acts -as [.)

XapaxkTepHcTHUHO CBOOOAHbIE KBA3HABTOMATHI

B

AY
A-nonksasuaBToMaT A,=(d4, F,5,) keasuaBromata A=(A, F,5) Ha3bIBaercs Az2pom as-
ToMaTa A, eciii A, ={0(a, f)lac A, feF). A Ha3bIBaeTCS 6epHO-HOPOJNCOEHHbBIM ecrE A=A,. .
BepHO-NOPOXKAEHHEIM KBAa3MABTOMAT A HA3bIBAETCS XAPAKMEPUCMUNHO €80000HbimM ecau (2) BBHI-
nougeTces. (G eCTh HEMPUBOANMAS CYCTEMA o6pa3ywumx B KBA3MABTOMATE A) F4 (un F) ssnsetcs
XapaKTePUCTUYECKOR MOArpynmoil KBa3uaBToMaTa A.
KpasuaBromar A=(A, F, §) XapakTepUCTHYHO CBOOOAMBI TOra M TONBKO TOrda, KOraa’
OH MmpAMas cymMma néoMop(mex XapaKTEPUCTUYHO CBOOOIHBIX HUKIMYECKHX KBa3uaBToMaToB (Teo-
pema 1.). Ecny upk/Iv4eckuil KBa3naBTOMaT A XapaKTEPHCTHHHO CBOGOmHBIA, Torma |A|=0(F).
"(Teopema 3.). Ecmu A em¢é A-kOHeuHbli, TOrZa Teopema 3. MOXHO HOBEpHYTh. (Ciencraue 1.).
XapakTepHCTHYHO CBOGOAHEIE A OT COCTOSHHMHM HE3aBHCHMEIA TOTIA M TOJBKO TOr[A, KOIAA €ro
XapaKTepUCTHYECKAs TOIYyIPYINa aBiseTcs ¢ jiesbiM cokpanienueM (Teopema 5.).
Bo BTOpOM IIyHKTE MMOJIy4acM BCe eHIIOMOp(bPBMLI XapakTEPUCTHYHO CBOOOMIHBIX KBA3HABTO-
matos (Teopema 6. u 7.)
B TpeTeM IIyHKTE MPOBOANM OTHOUIEHHUE ¢ (B. emé [2]) Ha MHOMKECTBE COCTOSIHME A KBa3MaBTO-
mata A=(A4, F, ). OTHOIICHHE ¢ KOHTPYEHUUs. A HA3BIBAETCA O2panuyernbIM, €CTH aoh (a, bc A=

=>a=>b. Ecnu A XxapaxkTepucTHiHO cBOOOIHBIA, Torma dakropksa3uaBroMat A:=A/g KBa3MaBTO-
maTa A Toxke xapaktepucruuno ceobommblit (Jlemma 4.) u E(4)= E(A') (TeopeMa 9). (‘{epe3
E(A) o6o3nayaeM moyrpymmy BeeX €HAOMOPOU3MEIX A.)

Ecmu A XxapakTepuCTHYHO CBOOONHBIA IMKIMYECKHiA KBa3uaBTOMAT u E(A)=E,QF,®
®...QFE,, Torma A=A;®A,Q...QA,, tae A, (i=1,2, ..., n) XapaKTepHUCTUYHO caoGom{bIe K-
JIMYECKHE OrpaHIYeHHble KBa3HaBTOMATHI U F (A Y= E; (TeopeMa 12).

Ecmu A=(A4, F,5) BepHO — MOpOXINEHHKIN KBasMaBTOMaT M F4 o6majgaer OBYCTOPOHHOM
eIUHWLICH, TOrga CyLIeCTBYCT TAKOW XapaKTEPUCTHYHO CBOOONHBINA KBasmaBTOMAT B (B, F, o),
4T0 A ecTh roMoMopduslii 06pa3 ksasmasroMata B u F4=F? (Cnencraue 15.).
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