
A note on data base integrity

B y A . BENCZÚR a n d A . KRÁMLI

The interest of the authors in the problem of data base integrity came from
a practical task.-. In 1974 we began to build up a new management information
system for the Danube Iron and Steal Works. The data base of this system is placed
at the CDC—3300 computer of the Hungarian Academy of Sciences and the system
can be accessed through a user terminal UT—200. The processing of the data base
is random batch processing with some query capabilities, and the problem of its
integrity is very close to that of the online processing.

Based on this experience we are going to give a model for describing and analys-
ing data bases from the point of view of the integrity.

Different approaches to the data base management problems (e.g. Codd's
relational data base [1], the network data system recommended by the CODASYL
DBTG [2]) first of all give models for describing the structure of data bases, or
give proposals for standardizing languages, structures and procedures used in
data base management systems (DBMS). A very sophisticated DBMS (based on
CODASYL DBTG) is described in the paper of Barbara M. Fossum [3], where
one can find a list of routines maintaining and preserving the integrity of the data
base. The most general problems of integrity are also described there, and we shall
use her terminology like rollback, rerun, recovery, and so on.

In.the sequel we shall give a very simplified — but a completely sufficient to
treat the problem of integrity — model for physical realization of data bases. Using
this model we can investigate the dynamic behaviour of the data base.

Physically the data base is a sequence of elementary data items, (in this paper
the elementary data items are the least adressable units on, the auxiliary memory
devices, i.e., the blocks or pages on the disk).

The physical state S of a data base is given by the sequence {Pj, ...,P„} of
page-adresses and by the sequence {C ls . . . , C„} of their contents. In our definition
the state of a data base, besides the data in traditional sense, includes also the prog-
rams handling them.

Definition 1. We shall say that a state {C¡, . . . , C¿,}}
is a substate of {{A, ...,P„), {C1; . . . , C„}} (S%S) iff there exists a sub-
sequence {/j, ..., im} of indices such that P¡.=Pj and Ci]=C- for every

182 A. Benczur and A. Kramli

Definition 2. A state S is an extension of S iff SQS.
The physical state of a data base has to satisfy some rules, which define the

syntax, accessing and processing capabilities and so on. We need some further
definitions. Let F be a class of "state valued" functions / (5) defined on a set of
physical states. The above mentioned rules can be expressed in terms of class F.

Definition 3. We shall say that a state S is consistent with respect to the class
F iff \/f£F f (S) = S.

(E.g. if / is a function corresponding to a sort procedure, then 5 is consistent
with respect to / iff it is sorted).

Definition 4. A state S' is called preconsistent with respect to class F, iff there
exists a function g£F such that
(0 for each f£F, f(g(S')) = g(S'),
(ii) for every g' satisfying (i),

g'(S') = g(S).

The state g(S') is called the consistent reorganization of the preconsistent
state S'.

Definition 5. A substate S" of a preconsistent state S' is a generator, iff it is
also a preconsistent state, and they have the same consistent reorganization.

Notice that the inclusion S"QS is not necessary.
The above definitions are suitable not only to describe the static state of a data

base, but they give a tool to characterize the dynamic one too. Designing a data
base we have to construct the class of functions F in such a way that it would assure
the following two capabilities.

Assumption 6. (i) The class F must contain functions which carry out the
various update procedures. In terms of our definitions, we consider the state of
the data base, before initiating an update run, to be consistent.

(ii) We need to assure with great probability the recovery of the data base
in the case of loss or failure of some substate of it. For this reason we have to build
up some optimal system of nontrivial generator substates.

Up to this point we have assumed that the preconsistent state becomes con-
sistent in a unique step. But physically it cannot be realized. The real update pro-
cedures work in the core memory and the state of the data base changes page by
page. So, the realization of a function g<EF is a sequence Su ..., S„=g(S0)
of states. (The content of core memory is not included in the notion of a state.)

The defect during an update run, which occurs with a considerable probability,
leads usually to the loss of information in the core memory. This raises a special
safety problem. In our language, to defend the base against this type of information
loss, we have to guarantee the states S l 5 . . . , to be preconsistent. This con-
dition on the state provides the possibility of rerun and in many practical realiza-
tions this possibility is combined with rollback facilities on the quick recovery
level.

For the evaluation of cost function of different update procedures we make
the following assumption: there is a subset of indices i\, . . . , /, and a sequence of
generators

Sh = ^ii» •••' Su Q Sit.

A note on data base integrity 7

The substates .S[v ..., S{t are the rerun generators and the corresponding func-
tions gtj determine the rerun procedure.

„ We
assume, that thé processing cost is a monotonically increasing nonlinear

unction of the run time, so in order to calculate the avarage cost we have to de-
termine the probability distribution function of the run-time.

This can be carried out under some conditions on the failure process and the
process of changing-points of generators by standard methods of reliability theory.

As an illustration we show how to calculate the probability distribution func-
tion of the extra run time caused by random failures occured during the process
Si, ..., S„. We suppose that the following assumptions are fulfilled.

Assumption 7. (i) the failure process {tk}, where tk is the time interval (the
length of the time between two consecutive changes is taken for the time unit) be-
tween the (k— l)-th and k-th failure, is a sequence of independent identically dis-
tributed (i. i. d.) discrete valued random variables with common distribution func-
tion F, ,

(ii) the first two moments of distribution F are finite,
(iii) the differences. 4 — a r e equal to a constant d for every k—\, ...,/,
(iv) the rerun procedure S{s -^g(Si']) = S^ does not need extra time.
Let us introduce the random processes and {ek} as follows:

= max i,,

fc-i
' 0* = (max h) ~ 2 0j>

k - 1 i = l ¡ . ^ f / j + 'x

ek = k2 (0 j 2 0 j = rk-ek.
j -1 7 = 1

The random variable 9k denotes the time interval between two consecutive regener-
ation points of the update run, and ek the extra run time caused by the k-th failure.

The following two properties are consequences of conditions
(i)—(iv) assumption and the definitions of processes {0fc},

(v) {0k} forms a sequence of i. i. d. random variables having finite first and
second moments,

(vi) {et} forms a sequence of i. i. d. random variables bounded by d.
We have to determine the probability distribution function of the random

vn — 1 ™
variable rj„= £ ek, where v„ is the first moment m for which 2 ! 8k—n- The

*=i i
asymptotic behaviour of the distribution function of random variables t]n, when
w — oo, can be expressed by the following theorem:

184 A. Benczur and A. Kramli

Theorem 1. If F (d) ^ 1, then E ^ ^ O and

< X Xz

= - L = f e ~

Proof. It follows from (v) and the weak law of large numbers that for

in probability. Thus taking into account property (vi) we can apply

to {)]„} Anscomb's central limit theorem for the sum of a random number of random
variables (see Renyi [4]).

The difference between the long and quick recovery problems can be summarized
as follows: in the quick recovery we preserve generator substates of preconsistent
states during an update run, while for solving the long recovery problem we have
to preserve (generally duplicate) generator substates of a consistent state before
a sequence of update runs. Between two duplications we collect the changes in
such a way, that the preserved generators of the original state and the changes
together compose a generator of the present state.

So the reliability of the system is the product of the reliability of the preserved
generator and that of the preserved changes. The cost of this recovery system consists
of the cost of the periodical duplications, the cost of collecting the changes (pro-
portional to the update time) and the average cost of the recovery. The proba-
bilistic treatment of this processus analogous to that of the quick recovery.

Finally, we mention some special problems arising in the use of the operat-
ing system MASTER of computer CDC—3300. (See [5]). We must handle the
SCHRATCH-pool as an extension of core memory and not as a part of the physical
state. The only exception is the INP-file for not DIRECT input JOB-s. In this case
the operating system ensures the restart of the JOB using the INP-file as a part
of a generator, when an AUTOLOAD has occured during the run of the JOB.

This facility was exploited only for automatic restart of update processes
by preserving only the control cards. The input data were put into the data base
before initiating the update system in strict sense.

This method can serve to collect the changes for long time recovery and in
some cases to obtain a part of a generator for quick recovery.

The update system of the realized DBMS mentioned at the beginning of our
paper consists of 40 processes corresponding to the various types of data. Each
process is organized in such a way that their repetition, or rollback, or continuation
when it is interrupted would be available. The organization of the correct runs of these
processes is solved by a special program (TASK), which calls the update tasks in
correct sequence, determines the input data, controls their run and, in the case
of a restart calls the necessary rollback procedures and continues the run from
the interrupted task.

The long recovery is based on the File .Back Up system of MASTER.

A note on data base integrity 185

Abstract

The integrity and reliability problems of data base systems arise in computer praxis and theore-
tical investigations too. The authors give a statistical model for the description of data bases, which
is sufficient to treat the integrity problem.

COMPUTER AND AUTOMATIONJINSTITUTE .
HUNGARIAN ACADEMY OF SCIENCES
H-1502 BUDAPEST, HUNGARY

References

[1] CODD, E. F., A relational model of data for large shared data bases, Comm. ACM, v. 13, No. 6,
1970.

[2] COD ASYL committee database task group report. Association for Computing Machinery, April
1971.

[3] FOSSUM, B. M., Data base integrity as provided for by a particular data base management system,
Proceedings of IFIP Working Conference on Data Base Management, Cargese, Corsica France,
1—5 April 1974.

[4] RÉNYI, A., On the central limit theorem for the sum of a random number of independent random
variables, Acta Math. Acad. Sei. Hungar., v. 11, 1960, pp. 97—102. 1

[5] CDC 3170—3300—3500 computer systems MASTER version, 4.0. Reference Manual CDC.
60415100, No. 1973.

(Received March 11, 1976)

