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Abstract 
N 

The aim of this paper is to raise some questions —* and partly, also to answer 
them — i n connection with two important problem groups of fuzzy mathematics: 
«-fuzzy objects and the sigma-properties of different interactive fuzzy structures. 
These questions are suggested by the analysis of natural languages, the common 
sense thinking — which are typical fields where the most adequate mathematical 
model is a fuzzy one —, especially by complex adjectival structures and subjective 
"verifying" processes, respectively. They have, however, a real practical significance 
also in the field of engineering, as e.g. in learning machine problems. 

In the first part we try to point to the practical importance of the concept of 
fuzzy objects of type « (or «-fuzzy objects), from the aspect of modelling natural 
languages. A useful way to define n-fuzzy algebras, i.e., generalizing ordinary fuzzy 
algebras for «-fuzzy objects, is also given, with introducing an isomorphism mapping 
from the fuzzy object space to the «-fuzzy object space. As an example, an R-n-
fuzzy algebra is defined. Because of the isomorphic property of the above mapping 
the later studies can be restricted to ordinary fuzzy objects. 

In the second part some very basic concepts in connection with the sigma-
properties of fuzzy algebras are given and some simple theorems are proved. These 
are quite important from the aspect of fuzzy learning processes, as their probability 
theoretic interpretation leads to several convergence theorems — which are not 
dealt with here, however. 

In this part we introduce the concept of the quantified algebra of a fuzzy al-
gebra, and by means of this concept a close relation between interactive fuzzy and 
Boolean algebras is proved different from the relation between non-interactive 
system and Boolean algebra given by Zadeh. % 

Although any presentation of complete application examples . is not at all 
intended in this paper, some aspects of the application of the above results, especially 
in learning control algorithms, are given, the statements backed up by the experience 
of a simulation experiment going on at present. 
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1. Introduction 

In the invention of fuzzy mathematics, one of the most important aspects 
was the intention of obtaining an effective way for modelling badly defined pheno-
mena appearing over and over in the everyday life and many fields of sciences. 
Modelling by traditional methods proved to be often very coarse. The first problems 
of this type were raised in pattern recognition by L. A. Zadeh [1, 2]. However, this 
field turned out soon not to be the one where the application of his new concept 
made the quickest advance. In disciplines having an even more human factor as 
linguistics, economics, etc. results could be produced easier. Nevertheless, it did 
not mean that fuzzy concepts played no part in engineering; rather, that engineering 
had had its own well-worked-up mathematical background, and to replace it — if 
only partly — by a new model necessarily met resistance and obstacles. We have 
to admit it, too, that the bases of fuzzy mathematics have been laid often inexactly 
which fact resulted, as a matter of course, in the increase of resistance. 

As many other, we were suggested by such failures of exactness to look for 
a correct formulation of fuzziness, by finding and observing real objects and pheno-
mena corresponding to the basic concept of fuzzy objects and operations on them. 
For this purpose, some phenomena in the common sense thinking and the natural 
languages turned out to be very suitable. On the basis of these considerations we 
established a group of fuzzy algebras, among them the most important one was 
.R-fuzzy algebra [3, 4]. 

Some inference methods used in the medical science gave the basic aspects 
in our constructing these systems; they also pointed to the fact, that the fuzzy oper-
ations used formerly (max—min or non-interactive ones) were in accordance only 
with a restricted part of fuzzy objects. The new type of operations turned out to 
be much more adequate and applicable as it had been proved by some simple ex-
periments in cluster analysis and learning control carried out by the author and 
his colleagues. 

We now introduce some notions and notations. 

I. Pre-R-fuzzy algebra 
' J 

1. a) There exists a nonempty set 

X={x}, 

which is named universe or basé set. 

b) There exists a nonempty set . ^ 

® = {A} 

the elements of which are named fuzzy objects. c) There exists a mapping M, so that 

where S?={n}n:X-~0>}, 
where 3P is an ordered nonempty set. 
(In the practice, the usual representation of & is the closed interval [0, 1]. 
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then the functions fi and the single values n(x) are named membership 
functions and membership grades, respectively.) 

.Definition. We define A=B (A equal to B) such that it is the abbrevi-
ation for 

M(A) = M(B). 

(In the practice it means that 
Va(x) = nB(x), 

for all x£X.) 
2. a) There exist A and B in <g> such that A^B, 

b) <8». is closed under the binary operation V, named disjunction, 
c) (8> is closed under the binary operation A, named conjunction, 
d) ® is closed under the unary operation "1, named negation. 

3. a ) ASB=B\IA, f o r a l l A,BT®. 
b) (A\fB)\/C=AV(B\/C), for all A,B,Ct®. 
c) ~\~]A=A, f o r a l l At®. 

d) There exists an element 06 0, named zero, such that for all A t ®, 

dl) A\'Q = A, 

d2) AM) = 0. 

e) 1(AVB) = 1AA1B, for all A, Bt<g>. 

4. a) M((AAB)\/(AAC))>-M(AA(B\/ C), for all A, B, C6®,"if 

(AAB)V(AAC)I£0 a n d AA(BVC) * 1 0. 

b) M({AMB)A(AyC))<M{AM(BAC)), for all A,B,Ct®, if 

(A\J B) A(AV C) a n d A\J(BAC)^&. 
c) M(AVB)>M(A), f o r a l l A, B T i f A^LQ a n d B^0. 
d) M(AAB)<M{A), for all A,Bt®, if A^Q and B^ 10 . 
e) M{A)-M{B)=MOB)-M{LA), f o r a l l / t , 

'5. a) If the equation A\]U=B (A, Be®, A^10) has a solution Ut®, 
than U is unique. 

b) If the equation AAU=B (A, Bf <g>, A9*0) has a solution Ut®, than 
U is unique. 

6. a) M(AVB) is a continuously differentiable function in terms of M(A) 
and M(B). 

b) M(AAB) is a continuously differentiable function in terms of M(A) 
and M(B). , 

c) M{~\A) is a continuously differentiable function in terms of M(A). 

II. R-fuzzy. algebra 

1. Like in System I. (Here the usual representation of SP is R1.) 
2—4). Like in System I. 
5. a) Equation AV U=B (A, B£®, A^10) can be solved for U,t® and 

V is unique. 

4 Acta Cybernetica III/3 
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b) Equation At\ U=B (A,Bi®, can be solved for £/£<8> and U is 
unique. 

6. Like in System I. 

III. S-fuzzy algebra 

1—3. Like in System I. 
4. a) M(A\JA)>M(A), for all A£®, A^0, A^10. . 

b) M(AAA)<M(A), for all A£®, A^0, A¿¿10. 
c) M(AVA)>M(BVB) iff M(A)>M(B); A,B£®. 
d) M(AAA)>M(B/SB) iff M(A)>M(B); A, B£®. 

5. Like condition 6 in System I. 

At the end of the presentation of our axiomatic systems we should like t o ' 
stress the fact, that all three systems are symmetrical for the operations conjunction 
and disjunction, that is, they are dual structures — in spite of their asymmetrical 
appearance. 

Although the above systems were constructed merely on the basis of theoretic 
speculations and passive observations of the rules of common sense inference, 
after they having been established in a more or less exact form, they would be backed 
up by some independent, objective, experimental facts discovered by another author 
[5 and 6, respectively]. Also some independent theoretical considerations pointed 
to the fact that adequate fuzzy axiomatics must be constructed similarly to I. (Al-
though no dual systems were introduced.) [7]. On the basis of these results we were 
able to extend the group of representative operation trebles to a very general class 
(rational functions) [8]. As we are not concerned now with the problem of rep-
resentatives, we omit a detailed presentation of it. 

2. N-fuzzy objects 

. When fuzzy sets, fuzzy objects were introduced by L. A. Zadeh, they seemed 
general enough for modelling "all fuzzy-type phenomena of the world" [2]. Later 
analyses of natural languages etc., however, resulted in the perception of the fact, 
that a more general concept — modelling twofold, «-fold fuzziness — must be 
introduced: this has been done also by Zadeh, and has been named "fuzzy object 
of type «" or more simply "n-fuzzy object" [9]. Although this first formulation 
was not at all exact, the general idea can be preserved, however, formulating its 
definition in an entirely different way. As we see it now, this concept is the most 
general one (having also a practical importance), so we are very much interested 
in it. In this section we shall present a way, how handling of n-fuzzy objects can 
be simplified considerably, restricting the field of interest again to ordinary fuzzy 
systems (as I, II, and III). 

According to the axiomatics an ordinary fuzzy object can be given in the 
following way: 
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Let X be the given universe, then Ax is as follows: 

<X,qA(x)>, 
where 

qA:X^0> (2? is [0,1] in the most simple case.) 

Let us consider now an example from the natural language: 
"Peter is tall." 
and 
"Peter is rather tall." 
are both fuzzy statements. We are interested now in the predicative part of 

them. If we define X as 

X— {possible values of the height of a man}, 

"tall" is a fuzzy set of X (Ax). What is "rather"? It is also a fuzzy expression, but 
a fuzzy set of grades. Let now P be the universe of abstract truth grades mapped 
on the interval [0, 1]. Then "rather" is a fuzzy set BP, a double consisting of P and 
a function qB(p). We must become aware of the fact, that taking a singular x in 
X, qA maps it" on the ordered set of truth values SP, which is identical to P. Thus 
if we consider an object gained by "modulating" qA(x) by qB(p), we get a mapping 
(qA2(x)) which maps X on the set of fuzzy subsets of This is named 2-fuzzy 
membership function of the expression "rather tall". A 2-fuzzy object is now the 
system • 

A\ = {X,qA\x)). 

After this example we can give the exact definition of an «-fuzzy object: 

Definition. 'Given a universe X= {x}. Then S"x — {X, qS"), is an «-fuzzy ob-
ject of X where 

i y 

S r 1 = qS"-1), 

= S? = qS), 

A much greater problem is the proper way of defining operations over «-fuzzy 
objects. It has been done by Zadeh, we must state, however, that his definition 
is not correct, as the set of «-fuzzy objects is not closed under his disjunction (and 
conjunction either.) Another way has been taken by Mizumoto et al. [10], where 
no failure of correctness appeared, nevertheless, the properties of «-fuzzy operations 
contradicted the simplest natural properties of normal operations. We mention 
only the fact, that in Mizumoto's disjunction, e.g., it is possible that the membership 
function of the result (taken over one single x) is less that both functions of the 
arguments. 
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Here, we are going to present a way for defining an arbitrary operation over 
«-fuzzy objects, which has been introduced over fuzzy objects, in such a way that 
this definition is always consistent and in accordance with the original one. -

Definition. Let be an arbitrary m-ary operation over fuzzy objects such that 

* (Alt A„, ...., AJ = qAl), (X, qA2), ..., (X, qAm)) = 

= i. qA2, qAJ>, 

where F:Mm-~M, M ~{q), 

and F(qAit qA2. ..., qAJx = /(qA^x), qA2(x)„..., qAm(x)), 

where f 0>. 

Let now Cx be an «-fuzzy object of X such that 

Q = (X, qC"), 
where > 

qC"(x) = (P1,qC"x-1), 

qcxtpltp2 P(„-2)(p„-i) = qC(x, Pl, p2,,:.., Pn-i); 1 

Let C be the fuzzy "equivalent" of Q : 

C = (Xx0>"~\ qC) = (Y, qC>, and Y = {y} = {(.*, Pl, ..,, Pm)}. 

Now, * is to be extended in the following way: 
Let E be a one-to-one mapping from the set of «-fuzzy objects of X to the set 

of fuzzy objects of Y such that 

E{Cx) = C. 
Then 

*(Aix,Alx,.~,A"mX)=*((X, qAf), {X, qAl),..., {X, qA"m)) = 

= (X,q*(A1,A2,...,AJ") 

means, that 

...,Amr(y)=f(qE(A"lx)(y), qE(A"2X)(y), ..,, q£(A"mX)(y)). 

This is equivalent to 
* Wx ,A"2X,..., A"mX) = (E(A"2X), E(A"2X), ..., E(An

mX))). 

Although the above definition might seem to be quite complicated at first 
sight, in reality it is very simple: the operations must be computed point by point 
in «-fuzzy cases. 

On the basis of .the above formulae, a very important fact can be proved in a 
most simple way: 
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Theorem (of isomorphism).. Let <g>" be an algebra with r operations of the 
n-fuzzy objects of X. Moreover;, let these r operations be extensions of r similar opera-
tions of the algebra <g> of the fuzzy objects of Xx0>n~1 = Y. If 

£(S2) = SV for all S y € ® then 

® and are isomorphic. 
We close this part with a simple example which shows that, using this theorem, 

the computation in the field of «-fuzzy objects becomes quite simple, proving also 
that no separate examinations or considerations are necessary when dealing with 
«-fuzzy problems: All results concerning ordinary fuzzy algebras are also valid for 
their, «-fuzzy equivalents. We shall utilize this fact in the second part. 

Example. Let us define disjunction over fuzzy objects as follows: 

/ 
qA\JB = qA + qB-qA-qB. 

We represent the interval [0, 1] by 6 points only: 0.0, 0.2, 0.4, 0.6, 0.8, 1.0. 

X = {a, b, c, d}. 

In the table we give the membership functions of two objects of X:A\ and B\. 

\ P 0.0 0.2 0.4 0.6 0.8 1.0 
• 

42 . a Ax• , 
0.0 0.0 0.1 0.3 0.7 0.9 
0.0 0.1 0.2 0.6 1.0 0.6 
0.0 0.2 0.6 1.0 0.9 0.4 
0.2 0.7 1.0 0.9 0.3 0.0 

qAHa) 
qA*(b) 
qAHc) 
qA2(d) 

Bh 

\ P 0.0 0.2 0.4 0.6 0.8 1.0 

a 
b 
c 
d 

0.0 0.3 0.9 1.0 0.7 0.5 
0.2 0.5 0.9 0.9 0.8 0.7 
0.4 0.7 0.9 0.9 0.9 0.9 
0.6 0.9 0.9 0.9 0.9 1.0 

Using the given definition of the disjunction, — 
the following way 

qBHa) 
qB\b) 
qB2(c) 
qB*{d) 

yV B\ can be given in 

0.0 0.2 0.4 0.6 0.8 1.0 

a 
b 
c 
d 

0.0 0.3 0.91 1.0 0.910.95 
0.2 0.55 0.92 0.96 1.0 0.88 
0.4 0.76 0.96 1.0 0.990.94 
0.68 0.97 1.0 0.99 0.93 1.0 

qC\a) 
qC\b) 
qCKt) 
qC*{d) 
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3. Basic concepts of fuzzy sigma-algebras 

In this section we introduce somé very basic ideas in connection with fuzzy 
sigma-algebras and related problems. Then, we are able to deal with an interesting 
transformation of algebras named "quantification" which leads to the concept of a 
special type of convergent algebras. 

First we give some definitions. 

Definition. G is a fuzzy sigma-algebra, if G is a fuzzy algebra (in either sensés 
of the Introduction, or in the sense, as it has been defined by Zadeh, etc.) and the 
infinite conjunction and disjunction are defined in G, i.e., 

v AiiG, and A ^i€G, where \H\ = V i. 
it H i€H 

Thus, e.g., I l l and the sigma-properties together form an S-sigma-algebra. 

Definition. Let At be a sequence of fuzzy objects 

At = {X,qi) (A^G). 

Then the limit value of A, is A = (X, q) (AÇ.G), 

if q — lim qi J—oo 

in the ordinary sense. Thus At is convergent iff qi is convergent. 
Using this notion, the infinite conjunction or disjunction can be computed: 

v Ai = lim Bj, where Bj = V A, 
¡= i >=i 

Definition. 3H is named the existential quantifier over the well-ordered set of 
indices H 

ÎHA,= VA, (MG)-
UH 

Similarly, the universal quantifier over H, M H is defined as 

vHAi = a A; (A^G). 
ÍÍH 

Although this way of generalizing the notion of quantifiers of predicate calculus 
is not the only (and not at all the most logical) one. However, we shall need this 
special concept in our further examinations. Since it has a vague resemblance to 
quantifiers, thus it will not cause any ambiguity. 

We mention also, that we will not deal with general case since we are interested 
only in the special case where 

Ai = Aj , for all i,j. 

Definition. Let Q be the algebra defined in the following way: 
The elements of Q are gained from a fuzzy algebra G 

ô'= {3A\AtG}\J {VA\AÇ.G}, 
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w h e r e 3A a n d V A a r e u s e d f o r 3HAi (Ai=A, V / ) a n d VHAi (Ai=A, Vi), r e s p e c -
tively. 

Since G is a fuzzy sigma-algebra thus the elements of Q are in G. 
The operations in Q' are the same as in G, and are defined in the same way. 

If Q' is not closed then, it must be completed until it becomes closed. Thus, Q is 
the minimal closed subalgebra in G containing Q'. In the cases interesting for us we 
shall see that Q = Q'. 

Q -is named the quantified algebra of G. 

4. Quantified algebras 

In this section we give some statements concerning the quantified algebras of 
different fuzzy algebras. 

Theorem. Let G be an ii-fuzzy sigma-algebra. Then its quantified algebra Q is 
a Boolean algebra. 

Proof. For proving the statement, let us assume, that X= {x0} has only one 
element. Let K and L be elements of G such that 

. L = \ / K = A K. 
i = l 

L = KA A K = KAVK = KAL. 
i = 2 

L = KAL. 

Thus, because of axiom 4 in II, either K=T=~\9 or L = 0, (And then 
K=0 too.) In the first case, if K=T, then L=T. Therefore, taking an arbitrary 
K, L can be only 0 or T. 

Similarly, if M=3K, M is 0 or T. 
In the case when X= {x0}, it can be easily proved now, that Q containes only 

two elements T and 0, since 

TVT= T, TV0 = r , 0V0 = 0: TAT = T, TA0.= 0, 0A0 = 0; 

i r = 0, n 0 = r . 

Let us consider now the general case, where X is an arbitrary set. Then for an 
arbitrary x£X, • 

qL(x) = qQ(x0) or qT{x) and qM(x0) = q0(xo) or qT(x0). 

Considering now the ordinary sets and their characteristic functions over X, 
an isomorphism to the set of all possible functions qL(x) and qM(x), i.e., all mem-
bership functions of the elements can be found. The isomorphism mapping orders 
to one characteristic function the membership function which has the value qT 
where it is 1, and q& where it is 0. 

Then 

Thus 



234 L. T. Kôczy 

Finally, Q has not to be completed, which fact can be proved from the ideas 
concerning the connection between K and L, and K and M, used in the above part 
of the proof. 

As the characteristic functions of the subsets of a set X form a Boolean algebra, 
the isomorphic Q is Boolean, too. 

Theorem. Let G be an S-algebra, such that cardinality of S is finite. Then the 
quantified algebra Q of G, is Boolean. 

Proof can be found in [8]. 
For the further examination we introduce some more definitions: 

Definition. Let G be a fuzzy sigma-algebra. Then G is named (weakly) sigma-
associative, if 

v (AiWBd = V AtM v Bi, 
i=l i=l ¡=1 

> and 

A (AiAB,) = A -A,A A Bi, for all A„B^G. 
i=l i=l i=l 

Definition. If G is an S-algebra which is sigma-algebra and sigma-associative 
then we call it an -algebra. 

Theorem. Let G be an -algebra. Then the quantified algebra Q of G is 
Boolean. 

First, we prove two dual lemmata. 

Lemma. If qA>qB, then q3A^q3B. 

Proof. Because of axiom group 4 in III, 
qA\jA > qBMB. 

Similarly, 
q{A\lA)\J\A\J A) > q{BVB)\J (ByB), 

etc. etc. 

q\JA^q\!B, 
¡= i ¡ = i 

i.e. 
q3A £ q3B, 

which had to be proved. 

Lemma. If qA^-qB, then q\/A^q\/B. 
The proof is the dual of the above one. 
Now, we return to the proof of the original statement. 

.Let be an arbitrary element different from 0 and T, and B—AMA, C=3A. 
(Since G is a sigma-algebra thus C£G.) 

Then, obviously, 

qB ^ qC, and, since 3 3 A = 3A = C, 
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using the first lemma, we obtain 

q3B = q V BS qC. 
¡=1 

Using the property of sigma-associativity, this can be written in the following form 

q V A\J V A = qCy C S qC. 
i = 1 ¡ = 1 

Because of axiom group 4 in III, qCM C^qC, which means, that 

c= c;yc. 

Restricting our considerations to sets X with one single element, similarly as 
in the former proof, it can be seen, that C can be only T or 0. That means, that if 
allowing arbitrary sets X, the elements of Q are in isomorphism with the ordinary 
subsets of X (the dual proof for D= VA must, as a matter of course, added to the 
above one), thus Q is a Boolean algebra. 

Without going into details, we mention, that some related definitions (strong 
sigma-associativity and sigma-continuity) are dealt with in [8], on the basis of them 
different theorems can be proved, which give some practical conditions for a fuzzy 
algebra to be sigma-associâtive, etc. 

Here we give only one statement yet, referring to Zadeh's so-called non-inter-
active algebra. 

Theorem. If G is a non-interactive fuzzy sigma-algebra, (i.e. a distributive 
lattice),, the quantified algebra g of G is identical to G. (The very simple proof can 
also be found in [8].) 

Finally, we should stress again the fact, that — because of the examinations 
in Section 2 — all the above theorems hold for arbitrary n-fuzzy structures, as well. 

5. On the application possibilities 

Here, we do not intend to deal with application possibilities in detail, only 
some very general aspects will be given. 

Let us assume, that we have a concrete représentant of an — e.g. R-fuzzy — 
algebra, as an example, we present here the most simple and well-known one: the 
so-named "soft definitions", as follows 

qA\JB= qA + qB-qAqB, 

qAt\B = qAqB, 

. qlA = 1-qA. 

(A much more general discussion of représentants can be found in [8].) 
We intend to use this fuzzy calculus for realizing learning algorithms. A very 

obvious way for this is. the formulation of a learning fuzzy automaton which acts 
on behalf of a membership function (or more than one functions) representing a 
present strategy for the automaton. The membership function-itself is gained by a 
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learning generative process, where fuzzy calculus has a basic role. We have a system 
that we want to control by our automaton. In a particular situation (element of X, 
now the situation space) the automaton produces a particular output. (Let lis assume 
now, that the automaton is the fuzzy generalization of a bang-bang type controller, 
i.e., it has two possible outputs, 1 and 0, and — being a fuzzy one — something 
like "meanthings" between this two, the values of the interval [0, 1].) 

It can be proved in the.case of some special optimality criteria, that the best 
output is the maximal possible value (or the minimal) in a particular situation. 
Then a given output of the automaton can be more or less near to this or, in contrary, 
more or less far from it. In the first case a little "quantum" of membership function 
will be "added" (i.e. disjoined) to the given function such that it converges to the 
maximal value, and in the second case, it is added in such a way that it converges 
to the other extremum. Then, if the learning process is going on, it can be hoped, 
that the values of the membership function(s) over all x-es will be near to the optimal 
extremum. 

Now, we do not intend to deal with the problem, how a fuzzy automaton 
executes a fuzzy instruction. Let us assume, that both possible outputs have one 
membership function, that we hope to converge to 1 over such x's where an output 
1 or 0 is needed, respectively; and to 0, where 0 or 1, respectively. (Thus two func-
tions belong to the outputs "1" and "0", respectively.) 

The real mathematical problem is here: Whether this algorithm converges in. 
the exact mathematical sense? 

Theorem. If C is a calculus representing G, an JR-fuzzy algebra, the disjunction 
in C is V, and the inverse operation of it (which can be defined on the basis of axiom 
group 5 in II) is denoted by V / is an indicator taking the value 1, if a strategy 
S is "good" (in any sense), and 0, if it is "bad", then the following algorithm gen-
erating the membership function qS(x) of the strategy S is convergent over all x, 
where the expected value o f / i s greater than 0 

qS(x) O = 0 , 

qS'(x)n+1 = i / / = 1 then qS'(x)Vq(x) else qS'(x)V~ q(x), 

qS(x)„+1= if qS'(x)„ ^ 0 then qS'(x)n else 0. 

q(x) is chosen such that q(x) is greater than a positive £ and less than 1 over x, 
and 0 elsewhere. 

Here, we do not prove this statement. . 
Using other types of <7 (x), similar theorems can be proved (however, in the 

case of not so general conditions). The same is the case, when G is not 2?-fuzzy, 
but SVi-algebra. Then, however, the algorithm must slightly be changed. 

Finally, we mention, that we have always some experimental results using an 
algorithm similar to the above one (controlled is a stochastic, double integrating 
system). 

DEPT. OF COMMUNICATION ELECTRONICS, 
TECHNICAL UNIVERSITY OF BUDAPEST 
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