
On the formal definition of VDL-objects 

B y I . FEKETE a n d L . VARGA 

Originally the VDL (Vienna Definition Language) was designed for defining 
programming languages [1], [2], [3], but recently it has been used as a general tech-
nique of defining data structures and algorithms [4]. 

The VDL is a definition system? This system consists of objects, a machine 
operating on objects and a programming language. 

The VDL-objects are abstractions of data structures of a certain type. "In this 
paper we deal with the objects and the basic operators of VDL manipulating on 
objects. * 

The VDL-objects form a set with the elements of which there are associated 
selection and construction operators. The basic properties of the operators are 
taken as axioms and their main properties are proved. A complet formal system 
of VDL-objects is given, -which can be regarded as a detailed elaboration of the 
axiomatic definition of VDL data structures given in [4] and [5]. 

Definition 1. The elements of the non empty set OB are called objects, if there 
exists a finite set S of selectors and a construction function k such that 

s:OB-~OB for all s£S, and 

k:OBXSXOB^OB. 

It is assumed the validity of the following: 
Axiom 1. If teOB, seS, h£OB, then 

s{k(t, s, ?i)) = tt, 
and 

s'(k(i, s, ij)) = s ' ( 0 for all s'£S and s'^ s., 

The "fixed point" of the system, i.e. the null object of the set OB is defined as 
follows: 

Definition 2. A' t£OB is called the null object if and only if 

(Vs€S)(s(/) = / 

Axiom 2. There is exatly one null object. 
In the following we denote the null object by Q. 
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The objects can be classified according to their "distance" from the null object. 
The so called elementary objects are "nearest" to the null object, and they can 
be defined in the following way: 

Definition 3. A t£OB is called elementary object if and only if 

(Vs£S)(s(r) = Q). 

Let EO be the set of elementary objects. 

Definition 4. The elements of the set 

CO = OB\EO 
are called composite objects. 

Axiom 3. If t£OB then there exists an integer N, such that for any sequence 
S ^ S , S2£S, ...,S„£S, (n^Nt) 

sn(...(s2(Sl(t))...) = Q. 

COROLLARY 1. There is no t£OB, t^Q for which 

Axiom 4. Elementary objects are regarded as different, that is if 

EO ={..., U,..., t j , ...} 

then t i ^ t j . 

Definition 5. The objects t^CO and t2£CO are equal if and only if 

= s(t2)). 

Lemma 1. Q is an elementary object. 

Proof. This results from Definitions 2 and 3. 

Theorem 1. If EO has at least two elements, then CO is a non empty set. 

Proof. Let t£OB, t^Q and s£S. Then by Axiom 1. 

s(k(t, s, 0 ) = t, 
and hence 

k(t, s, t)£CO. 

Theorem 2. If CO is a non empty set, then EO has at least two elements. 

Proof. Let us suppose, that EO = {Q}. Let t£CO. Then, by definition, 

O s j e S K s x i O * fi). 
\ 

But the set EO has only one element. Therefore 

* ! • = « ! ( / ) € C O . 



On the formal definition of VDL-objects 241 

Hence 
(Bs i€S)(s2(í1) ^ fl). 

The repeated application of this procedure leads to a contradiction to Axiom 3. 
Now let us consider the "structure" of the objects. First of all we define the 

immediate components of the object. ' 

Definition 6. If. tdOB and s£S, then the object ,v(/) is called the immediate 
component of the object t. 

COROLLARY 2. All immediate components of an elementary object are the null 
object. 

Definition 7. Let t£CO. The immediate characteristic set of t is defined as 

are all non null immediate components of the object t. 

Lemma 2. Any composite object can be uniquely represented with its immediate 
characteristic set. • 

Proof. This follows from Definition 5 immediately. 

Definition8. Let t£CO and let 

will stand for the object t. ' • 
By Lemma 2, this is an unambigouos representation of the object t. 
The composite object can be represented also by a tree as shown in Fig. 1. 

where 
{<«i:Sr(/)>, (s2:s2(t)), ..., <sm:sm(t)>} 

Si(t), (SitS), i = 1, 2, ...", m 

be every non null immediate component of the object / such that 

l 

Fig. 1 
The tree of the object 

* = h), (s2-t2), <s3-%>) ' 
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Theorem 3. If 
t = Vo«Si:h), <s2:t2), . . . , ' (sm : tm)) 

then the.object t can be constructed from the objects t2, ..., tm by applying 
the operation k m times. 

Proof: Let us consider the' following sequence 

yt = k(Q,s1,t1), 

y2 = k(yu s2, t2), 

ym = Kym-i, sm, tm). . 

Then, - by Axiom 1, we have 

sm{ym) = tm, 

s m - i ( y J = « m - l O V - l ) = t m - ! , 

SlCVm) = S i ( y m - i ) = • • • = S l O l ) = h, 

and for every s£S, s^sh i= 1, 2, . . . , m, 

s(.vra) = Q. 

Hence, by Lemma 2, we have the result ym=t. 

Definition 9. The composition 

/ = s m o s m _ 1 o . . . o s 1 , s ; 6 S , i = 1, 2, . . . , m 

is called composite selector. The result of applying a composite selector y to an 
objects t£CO is defined as follows 

Z ( 0 = 5 s » ( v - ( s i ( s i ( 0 ) ) - ) -

Let S* be the set of all the composite selectors constructed by the elements of 
S and all the simple selectors. 

Definition 10: If -/=soy', x'£S*, s£S, t£OB, t^OB then 

k(t,x,t1) = k(t,x',k(/(t),s,t1)). 

Theorem 4. The objects t^CO, t2£CO are equal if and only if 

(Vzes*)^) = zW). 
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Proof. Let 
If t1—t2, then, by Definition 5, we have 

SI (A) = s2(t2) 

S 2 O S i ( ? i ) = S 2 O S i ( i 2 ) 

for every composite selector in 5*. 
On the other hand, if 

(Vxes*)(x(fi) = YXH)) 
then 

(Vs€S)(S(ii-) = s(/2)), 

i.e., the immediate characteristic sets of t1 and t2 are equal. Therefore, t1=t2. 

Theorem 5. For every object t£CO there exists a composite selector /_ such that 

Proof. By Definition 4, we have 

(3si6S)(si(0 * Q). 

If then the assertion follows immediately. Otherwise tydCO and 
as above we have 

( B S 2 € 5 , ) ( S 2 ( ? i ) = t 2 ^ Q ) , . 

and so forth, by virtue of Axiom 3, 

( 3 n £ l H ^ - i K i r o X M ) . 

Therefore, for x = s n 0 - - - 0 J 2 0 i i> 

X ( i ) € £ 0 \ { i 2 } . 

Definition 11. Let 

H1(t) = {(s1:t1),(s2:t2), ...,(sm-.tm)} 

be the immediate characteristic set of t^CO. Let us introduce the notation 
tfiW - {<*1(1): tn, (xP: ..., (xS}: 41}>}, 

where 
Xfv> = sh = ti, i = 1, 2, . . . , m. 

If 

choose the smallest j such that ¿j1* 6 CO and let 

H(id = {<ii•• zi>, (s'2:z2), ..., (s'n:z„)} 

be the immediate characteristic set of th where s'^S, / = 1,2, ..., n. 

5 Acta Cybernetica III/3 



244 I. Fekete and L. Varga 

Substituting H(tj) into H ^ t ) , the following set may be derived 

H2{t) = {<zi1,:*f1>>, ...,(sioy^:Zl), . . . , « o # > : z „ > , . . . , </<»: /«>} = 

Iterating the preceding procedure, we can generate the sequence of sets 

H^t), H2(t), Ha(t), ... 

The elements of this sequence are called characteristic sets of t. 

Definition 12. Let t£CO and let 

HM = { < z i ° : >i(i)>, . - , ( x % : « ' = 1, 2, . . . 

be all the characteristic sets of t. The characteristic set 

. HN(0 = { ( X i ^ : • • • > '• (!iw)} for which 
(Vj, I 

is called the elementary characteristic set of t. 

Theorem 6. Let t£CO, then the sequence of characteristic sets 

H^tlH^t),... 

is finite, and its last element is the elementary characteristic set of t. 
Proof. By Axiom 3, the procedure given in Definition 11 terminates after a 

finite number of steps, and the last element of the sequence obviously satisfies 
the criteria of the elementary characteristic set of t. 

Theorem 7. A composite object t can be uniquely represented with its any 
characteristic set. 

Proof. On the base of the procedure given in Definition 11, by Lemma 2, Theorem 
7 follows for t and H^t). Similarly it is also true for and /?(?,). Hence t can be 
uniquely represented with H2(t). Similarly we may show that t can be uniquely 
represented with Hs(t), T/4(i), ... 

COROLLARY 3. It follows from the Theorems 6 and 7 that any t£CO can be 
unambigouosly represented by an. elementary characteristic set. 

Definition 13. Let t£CO and let 

H(t) = {(Xl:t1), ...,(xm-tm)} 

be a characteristic set of t. Then the object t can be notified by the symbol 

Based on Theorem 6, every composite object can be represented by a tree 
in which there are only elementary objects as terminal nodes. For example the 
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composite object 
t = ju0«Sj: a), (Si • s2: b), <s3 • s 2 : c>) 

where 

{a,b,c}^EO . 

can be represented by the tree shown in Fig. 2. 

/ 
A X 

• .Si s3 / \ 
Fig. 2 

The tree of the object 

t = fi0{(s1:a)i(slos2:b),(s3os2:c)) 

Definition 14. A composite selector x is said to be dependent on a composite 
selector if and only if 

X' = X"°X or x' = X for some x"£S*. 
Definition 15. The selectors Xi and Xj are said to be independent if and only 

if neither Xi is dependent on Xj nor Xj is dependent on yA. 

Theorem 8. Let 

H{t) = {{x1-.h),{x2:t2),...,{xm'.tm)} 

be a characteristic set of t£CO. Then for all l ^ z , j=m, i ^ j implies that yd and 
. Xj a r e independent. 

Proof. The proof is by induction on k in Hk(t). Based on definition 14, every 
pair x f ] is independent in H ^ t ) . 

Assume that Theorem 8 holds for every H^t), l ^ i ^ k and prove it for 
Hk+1(t). Let 

and t P e E O , . . ^ t f l ^ E O , but t ^ e C O . Let 

{{s^Zi), ..., (sN:zN)} 

be the immediate characteristic set of tjk). Then 

ffk+1(t) = {(Xlk) • tik)), - , : < s N o y f : z„>, ... 

• • • • J \Amit • lmk/f 
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Here, by our assumption, every pair xP
k), y^k) is independent. We now have to show 

that 
XP = ( I S p S J V ) 

and 
Xq = sq°Xp (1 ^ q ^ N ) 

( p ^ q ) are also independent. For example, we can easily see, that there exists no 
y such that 

XP = X°Xq> 
because 

sP ^ X°sq. 

Similarly, it is also easy to show that any spoXjk) is not dependent on yjk), i?tj. 

Theorem 9. If y£S*, t^OB, t^OB, then 

x(k(t, X, h)) = h 
and 

X'(k(t, X, td) = x'(t) 

provided that / is not dependent on y', y ' ^S* . 

Proof. We prove the theorem by induction. Consider the selector 

Xm = 5mosm_1o.. .os1 (s.-eS). 

If X = Xi and x'=Xi t h e n the Theorem is true by Axiom 1. 
The principle of the induction states: 
If our Theorem holds for any x = Xk and x' = Xj with 1 ^ k , m then it 

a l s o h o l d s f o r a n y x=Xk a Q d x'=lj w i t h l^k, j^m+1. 
Assume the Theorem is true for all 

X^Xk and x' = Xj with 1 k,j^m 

and prove it for all 1 = k, j=m-\-1. By Definition 10, 

k 0, Xm +1, h) = k(t, Xm, k (xm(t), s, Q), 

where ym+1=soym. Furthermore, by our assumption, 

soXm(k(t, ym, k(xm(t), s, O)) = s(k(xm(t), s, t j ) , 

and, by Axiom 1, 
s(k(xm(t),s, t1)) = t1. 

Consider the second equation in the Theorem. If y is not dependent on y' then 

X' = x'os', x = xos, where s ^ s' 
or ' 

X' = X\°Xi, X = X\°X2 
where 

Xi-= sios'io...os't, ' . 

Xi = s1os2o...os7-
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and 
s'i^sj. 

Hence 
y' os'(/c(i, x, t j ) = x'ds'(k(t, s, k ( s ( t ) , x, h))) = f o s ' ( r ) 

or 

xi°X2(k(t, X»'1)) = xi°xz(k(t, Xz> k(Xz(0, Xi, h))) = 

Xi{k(X2(t), Xi, k)) = -/i°Xi(t)-

This completes the proof. 

Theorem 10. Let t = flo((Xl-tl), (Xm-Q)-

Then the object t can be constructed from the objects f2 , . . . , tm by applying 
the operation k m times. 

Proof. The proof is analogous to that of Theorem 3. 
Due to this Theorem, every composite object can be constructed from elementary 

objects too. Hence each composite object is a structure of elementary objects. 

Definition 16. 

Xi> X2> •••> Xn> O = k(k(t, Xi> t1), X2> '2; •••> Xn> 

Theorem 11. If Xi and y2 are independent, then for arbitrary objects t1 and t2 

k(t,Xl,t1,X2,t2)=k(t,X2,t2,XlKtl)-

Proof. Consider the right side of the equation. It follows from Theorem 9 that 

Xi{k(k(t, x2, h), Xi, h)) = h, 

and for every y' which is not dependent on yx, 
X! (k (k (t, X2, (h), Xi.) = z'k (i, X2 ' 

Hence for x'=X2, 

X2(k(k(t, X2, h), Xi> h)) = X2, t2)) = t2, 

and for every x" which is not, dependent on y2, 

X"{k(k(t, X2, t2), Xi, t d ) = X"{k(t, X2, i2)) = X"{t). 

Similarly, it can be shown that 

Xi(Ht,Xi, h>X2, Q ) = t i , 

Xi(k(t, Xi, h, x2, t2)) = t2, 

and for every % which is not dependent on Xi and y2 

l{k{t, Xi, h, X2, = x(t). 
This completes the proof. 

In the VDL the following notation is used: 

Hr> (Xi-h), •••, (Xn• O) = k(t> Xi, h> Xn, Q. 
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О формальном определении VDL-объектов 

Первоначально VDL был предназначен для определения языков программирования 
[1,2, 3], но в последнее время применяется и как общий метод определения структуры данных 
и алгоритмов [4]. 

VDL является системой определения. Эта система состоит из объектов, машины десйт-
вуюшей над объектами, и из языка программирования. 

VDL-объекты представляют собой структуры данных определенного типа. В данной 
работе изучаются объекты и основные VDL-операторы, действующие над объектами. 

С элементами множества VDL-объектов связаны операторы выбора и конструирования. 
Основные свойства этих операторов излошены в виде аксиом, а дальнейшие свойства дока-
заны. Таким образом, задана польная формальная система VDL-объектов, которую можно 
рассматривать как подробную разработку аксиоматического определения структуры дан-
ных VDL, предложенного в [4] и [5]. 
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