On the formal definition of VDL-objects
By I. FeketE and L. VARGA 4

Originally the VDL (Vienna Definition Language) was designed for defining .
programming languages [1], [2], [3], but recently it has been used as a general tech-
nique of deﬁmng data structures and algorithms [4].

The VDL is a definition system. This system consists of objects a machine
operating on objects and a programming language.

The VDL-objects are abstractions of data structures of a certain type ‘In this
.- paper we deal with the objects and the basic operators of VDL mampulatmg on -
objects. -

The VDL-objects form a set with the elements of which there are associated
selection. and construction operators. The basic properties of the operators are
taken as axioms and their main properties are proved. A complet formal system
of VDL-objects is given, -which can be regarded as a detailed elaboration of the
axiomatic definition of VDL data structures given in [4] and [5].

Definition 1. The elements of the non empty set OB are called objects, if there
exists a finite set S of selectors and a construction function k such that

- §:0B—-0B forall s¢S, and
k:OBXSXOB—-0B.

It is assumed the validity of the following:
Axiom 1. If t€O0B, scS, 1,€0B, then

vs(k(t: 5:‘t1))‘ =1,
. s'(k(t, s, 1)) = 5'(t) for all s’€S and s #s.,
The “fixed point” of the system i.e. the null object of the set OB is defined as
follows:
Definition 2. A’ tEOB is called the null object if and only if
(VseS)(s(t) =r

Axnom 2. There is exatly one null object.
In the following we denote the null object by Q.

and
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The objects can be classified according to their “distance” from the null object.-
The so called elementary objects are ‘“nearest” to the null object and they can
be defined in the following way:

Definition 3. A t€¢ OB is called elementary object if and only if
(Vs€S)(s(r) = Q).

Let EO be the set of elementary objects.

Definition 4. The elements of the set

CO = OB\ EO
are called composite objects.

Axiom 3. If 1€ OB then there exists an integer N, such that for any sequence
$1€S, 5€ S, ..., €S8, (n=N,)

‘ Su(--- (2(s:(1)...) = Q.
COROLLARY 1. There is no t€OB, t=Q for which
' Sl (52(5,(2))...) = 2.
Axiom 4. Elementary objects are regarded as different, that is if
4 EO={.,t; ..t ..}
then ti¥tj. ,
Definition 5. The objects 1,€CO and .tzAE co afe equal if and only if -
' (VseS)(s(t) = s(2).
Lemma 1. Q is an elementary object. :
Proof. This results fr(;m Definitions 2 and 3.
Theorem 1. If FO has ét least two elexﬁents, then CO is a non empty set.
Proof. Let t€OB, 1% and scS. Then by Axiom 1.

s(k(t, s, 1) =1,
k(t, s, t)€CO.

and hence

Theorem 2. If CO is a non empty set, then FO has at least two elements.
Proof. Let us suppose, that EO={Q}. Let t€¢CO. Then, by definition,

(35165)(51(1) # Q)-
But the set EO has only one element. Therefore

t-= 5,(1)€CO.
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Hence .
- (35;,€8)(s2(1) = Q).

The repeated application of this procedure leads to a contradiction to Axiom 3.
Now let us consider the “structure” of the objects First of all we define the
‘immediate components of the object. 4 :

Deﬁmtzon 6. If t€OB and s€S, then the object s(t) is called the zmmedtate
component of the object ¢.

COROLLARY 2. All immediate components of an elementary object are the null
object.

Definition 7. Let t€CO. The immediate characteristic set of t is defined as

{(51:50(2)), (52:52(2))s -5 (S i 8 (2))}

where ) .
5:(), (s:€8), i=1,2,..,m

are all non null immediate components-.of the object #.

Lemma 2. Any composite object can be umque]y represented with its immediate
characterlstlc set.

Proof. This follows from Definition 5 immediately.
Definition 8. Let t€CO and let B
| o Bstas oes bt
be eVery non null immediate componen_t of the object‘ t,éﬁch that
A 5 () = ti,‘. i= 1., 2,...,m,
T (CHA RO S N (s,,,: b))

will stand for the object L. -
By Lemma 2, this is an unambigouos representatlon of the object ¢.
The composite object can be represented also by a tree as shown in Fig. 1.

PR N

“then the symbol

I 15

Fig. 1
The tree of the object’

t =.ﬂ0(<515 1), (Sz:8), (S31tg)) *
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Theorem 3. If _
1= po({s1: 1), {Saita)s vvy (S lmy)

then the object ¢ can be constructed from the objects ¢, 7, ..., t, by applying
the operatlon k m times. :

Proof. Let us consider the: following sequence
yl. = k(Q? S, tl):

ye = k(yy, $25 1),

. ym = k(ym—l, sms tm)' .4
Then, by Axiom 1, we have ' '
Sm(Vm) = tms

sm—l(ym) = sm-—l(ym'—l) = tin—b

: $10m) = $1(Ym-1D) =--.=5:(y) = 1,
_aﬁd for every séS, s#Es, i=1,2,...,m
| 5(m) = @
. Hence, by Lemma 2, we have fhe result y,=t.

Definition 9. The composition
Y = $308,_10...08;, §€S, i=12,...,m "’

is called 'éomposite selector. The result of applying a composite selector y to an -
objects 1€ CO is defined as follows -

1(8) = 55 (2(s2 (O))--.).

Let S* be the set of all the comp051te selectors constructed’ by the elements of
~ § and all the simple selectors.

Definition 10 If y=soy’, y'€S*, s€S, t€OB, ,¢OB then
. k(t, y. ) = k(t, 1, k(X' (1), s, 1,)).
Theorem 4. The obj'ects L€CO, t,€CO are equal if and oniy if

(Vx €8 (x(2) = x1(t).
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Proof. Let y=5,0...05,05;.
If t,=t,, then, by Definition 5, we have
5,(t) = 85(82)

5208, (¢) = 5205, (25)

X(tl) = x(t2)

for every composite selector in S*.
On the other hand, if

(V2ESM(x(t) = 2(2)
(Vs€8)(s(t9) = s(1),

i.e., the immediate characteristic sets of #; and ¢, are equal. Therefore, t,=1,.

then

Theorem 5. For every object 1€ CO there exists a composite selector y such that .
' ' ,‘ 1 ()EEON{2}.
Proof. By Definition 4, we have 4
| (3s,€8)(s,(¢) = Q). -

If t1=.s1(t)EE0, then the assertion follows immediately. Otherwis¢ ,€ CO and
as above we have '
(35265)(5'201) =1, # Q), .

‘and so forth, .‘by virtue of Axiom 3,
(3n = 1)(s,(t.- YEEON{2}).

Therefore, for x:s,,o...észosl, .
g r(®EEON{Q}. .
Definition 11. Let- _

Hy(t) = {(s1: 1), (atte) ovns (Smi )}

be the immediate characteristic set of 1€ CO. Let us introduce the notation
Hy(t) = {(dV:0), (8P 1), o, i 06300}

WO =5 t® =t =12, m.

where

If
@i, 1=j=m@EPeCo)

‘choose the smallest j such that t?€CO and let
H(t) = {{s1:2y), (s5:20), v s {SniZp}
be the immediate characteristic set of 7, where s}€ S, i=1,2,...,n

5 Acta Cybernetica II1/3
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Substituting H(r;) into H,(t), the following set may be derived
- Hy(D) = {P e, o (s100 @0 zy), oo, (SnoxP i z,), .. (,(“) I =
| = {2 1), - R0
Iterating the preceding procedure, we can generate the sequence of sets
" Hy (1), Hy(2), Hy (D), ...
The elements of this sequence are called characteristic sets of t.
Definition 12. Let t€ CO é.nd let _
H;(0) = {1, ..., (9 t"’>} i=12, ..
be all the characteristic sets of 7. The characteristic set
Hy (@) = AV 1Y), s (e 10D}
(Vs 1 = j = my) ¢V €EO)

is called the elementary cha'zracteristic‘ set of t.

for which

Theorem 6. Let t€CO, then the sequence of characteristic sets
Hl(t)a H2(t)’
is finite, and its last element is the elementary characteristic set of r.

Proof. By Axiom 3, the procedure given in Definition 11 terminates after a
finite number of steps, and the last element of the sequence obviously satisfies
the criteria of the elementary characteristic set of ¢.

Theorem 7. A composite object ¢ can be unlquely represented with its any -
characteristic set.

Proof. On the base of the procedure given in Definition 11, by Lemma 2, Theorem
7 follows for ¢ and' H,(¢). Similarly it is also true for ¢, and H(z;). Hence ¢ can-be
uniquely represented with H,(r). Similarly we may show that ¢ can be umquely
represented with H,(¢), H,(¢), ...

CoRrOLLARY 3. It follows from the Theorems 6 and 7 that any t€CO can be
unambigouosly represented by an. elementary characteristic set.

Definition 13. Let t€ CO and let
CHE) = {00t s S )}
“be a characteristic set of ¢. Then the object # can be notified by the symbol
po((ait)s oo <x,,,: t))-

-Based on Theorem 6, every composite object can be représented_ by a tree
in which there are only elementary objects as terminal nodes. For example the
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composite object : S :
t = pto((s1:a), (51 82:b), (s3+52:¢))
{a, b, ¢} S EO

can ‘be represented by the tree shown in Fig. 2.

where

1
N\,
S $>
e >\
a )
-5 Sy
b/. \C
Fig. 2

The tree of the object

t = po((s1: ads (slosz'b). (8308,:¢€))

. Deﬁmtton 14. A composite selector y is said to be dependent on a comp051te
selector x’ if and only if.

¥ =y"ox or ¥ = for some x”ES*

Deﬁmtzon 15. The selectors y; and X; are said to be independent if and only
if neither x; is dependent on’ x, nor y; 1s dependent on_y;.

Theorem 8. Let
H(t) = {<X1 ), Xaite)s s (lmt m>}

" be a characteristic set of 1€ CO. Then for all 1=i, j=m, 1#] implies that zi and
. X; are independent. i

Pioof. The proof is by induction on k in H,(¢). Based on definition 14 every
pair x®, x{ is independent in H,(?). ,
Assume that Theorem 8 holds for every H; (t), 1<l<k and prove it for

Hy11(). Let '
Hi(r) = {00, ..., (a0 190},
and . - t™cEO, .., 1M, EEO0, but tWeCO. Let
{(sl: 21y, ooos (SniZyy} »

be the immediate characteristic set of .t}"’,. Then-
H. ()= {(X{"):t{")> s (s10x P 2y, o, (sNoAx](-"):z-N%-
- D) |

5%
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Here, by our assumption, every pair 3P, ¥ is independent. We now have to show
that _
, =S o,((") (1=p=N)
and
ta =501 (1=g=N)

(p#q) are also independent. For example, we can easily see, that there exists no
# such that .

Xp = XOXq>
because
' S, # £0S,.
Slmllar]y, it is also easy to show that any s,0%{® is not dependent on- x®, i#j.
Theorem 9. If 7€ S*, 1€OB, 1,cOB, then ‘
K(k(t’ X t])) = tl

. , x,(k(ts X tl)) = x’(t)
" provided that y is not dependent on y’, ¥'€S*

and

- Proof. We prbve'the theorem by induction. Consider the selector
A = § O.S;,,, 10...08; (s €S).

If y=y3 and x'=y, then the Theorem is true by Axiom 1.
The principle of the induction states:
If our Theorem holds for any x=x and y'=yx; with 1=k, ]<m then it
also holds for any y= by and y'=y; with 1=k, j<m—l-1
Assume the Theorem i is true for all’ _
_ t=x and Y =y with 1=kj=m
and prove it for all 1=k, j=m+1. By Definition 10,

k(t’ Zm+1’ tl) = k(t, Xm9 k(Xm-(t)’ S, tl))’
where  yp,41=50),. Furthermore, by our assumption,

© 50 Lm(KU, Ly KGln (1), 5, 1) = s (kGtm()s's, 1),

» and, by Axiom 1, : '
s(kGm (@), s, ) = 1.
Consider the second equation in the Theorem. If x is not dependent on y’ then

X =708, y=70s, where ss

or - _ .

. 4

A = J1%K2s X = X1OKe

where .
7’ ’ 7 ’

’ A1 = $10520...05;,

X1 = $10520...05;
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and
s # S;
" Hence ’ )
708" (kt, 1)) = 7’08 (k(t, 5, k(s(t), X, 1)) = ¥'os'(t)
or

X{°X2(k(t, X tl)) = X{Ox2(k(ta X2» K((1), Zh'tl))) =
: Xi(k(lz(t), s t-l)) = 110%2(2).
This completes the proof. :

Theorem 10. Let
t= ,llo(</1 t1> <Xm m>)

Then the object ¢t can be constructed from the objects #, ty, ..., t,, by applying
the operation k m times. A

Proof. The proof is analogdus to that of Theorem 3.
Due to this Theorem, every composite object can be constructed from elementary
objects too. Hence each composite object is a structure of elementary objects.

Deﬁnmon 16. _ _
k(t, x1s tys Xo» 25 - x,,,’ 1) = k(k(t, X1 1), Xz» Tas -ves Xns n)
Theorem 11. If y;, and y, are independent, then for arbitrary objects #, and ¢,
k(1 x1> ths Ko ) = k(8 Xas B2y X1s 1) |
Proof. Consider the right side of the equation. It follows from Theorem 9 that
| 1 (ke (1, e 1), 21, 1)) = a, ‘
. and for every x” which is not dependent on y,

X,(k(k (ts.x2, (tz), Xl)) (tl): X,k(t3 Xz, t2)' '
Hence for ¥ =y,

Xz(k(k(t Xo» B2)s X1, tl)) = Xz(k(t X2 fz)) =1y,
and for every x which is not, dependent on y,,
X”(k(k(t Xas 12)s X1, t1)) = X”(k(t Xes tz)) = X”(t)
Similarly, it can be shown that
Xl(k(t X1 t1: Xo» 1)) = 10,
' Xz(k(t, X1, t].y X2 t2)) _ t2’
~and for every 7 which is not dependent on y; and ¥,
Z(k(t: X1, tla Xz,‘tz)) = Z(t)

This completes-the proof.
In the VDL the following notation is used:

(85 ity oo Qi ) = K 2as trs ooos Xns B)-
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O dopmanbHom onpenesiennn VDL-06bexToB

TlepsoHavansno VDL Obil mpenmasmaveH Ml ONpeleieHAsl A3LIKOB NPOTrPaMMHPOBAHHSA
[1, 2, 3], HO B nocneanee BpeMs MPAMEHAETCS U KaK OOIIHIT MeTON onpeuene}mﬂ CTPYKTYPb! NAHHBIX
W anroputmos [4].

VDL siBJIsi€TCsl CHCTEMOIL OTpeneerns. DTa CHCTEMa COCTOHT H3 OGBEKTOB, MAanIHHBI AecHT-
BylOLLEH Hal OOBbEKTaMH, M U3 A3BIKA NIPOrpaMMHPOBAHMS.

VDL-06bekTh! NPeACcTaBASIOT cOBOM CTPYKTYpb! HAaHHBIX OMNPENENEHHOro THna. B mauuoi
paboTte HayyaroTca OOBEKTHI U-OCHOBHBIE VDL-onepaTopthl, neicTBYIOUINE HAN OO BEKTAMH.

C aneMeHTaMu MHOXeCTBa VDL-06b€KkTOB CBA3aHLI ONepaTOpPhl BLIGOPa H KOHCTPYHPOBAHHA.
OcHOBHBIE CBOMCTBA 3THX ONEPAaTOPOB HM3JIOLIEHH B BHIAE aKCHOM, a JajJbHEHINHE CBOWCTBA MOKAa-
3aHbl. TakuM o6pa3oM, 3anaHa noawHas ¢opManbHas cucrema VDL-06BEKTOB, KOTOPYIO MOXHO
paccMarpuBaTh Kak nmoApobHyIo pa3paboTKy akCMOMATHYECKOro ONpeAesieHHs CTPYKTYPHl JAaH-
ueix VDL, mpennoxenH#oro B [4] u [5).
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