
INTERCELLAS
an interactive cellular space simulation language

B y T . LEGENDI

Abstract

Intercellas is an integral member of a family of languages for cellular space
simulation and programming. It has been designed for interactive use on mini-
computers and gives possibilities for simulation of heterogeneus spaces, too.

I. Design goals

The main goals of the research and the reasons to define a new family of cellular
space simulation and programming languages [8, 10, 12] rather than using the
existing ones [1, 2, 3, 4] — are described in detail in [11].

The CELLAS cellular space simulation and programming language family has
been designed for medium size computers and mainly for use under batch operating
systems. In many cases it seems more favourable and economic to use a smaller
but interactive system.

The instruction set of INTERCELLAS is compatible with CELLAS except dinamic
program editing and interrupt possibilities.

It is natural that after detecting syntactic or semantic errors control is passed
to the programmer.

Some instructions of the language are more simple, than their equivalents
in CELLAS, but combined with interactive facilities. For example: instruction ON,
that monitors continuosly the space, in the original language has wider condition
description part and has action part, too. In INTERCELLAS it has no action part,
preprogrammed automatic reaction is inpossible, the only action is that control
is passed to the programmer at the consol (display).

The instructions of the language are command-type. They are interpreted
and executed as they enter the processor. The structure of the language is very
simple and natural : :
a) to begin a simulation the programmer first needs tools to define topology, neigh-

bourhood, transition function(s), size of the space and initial configuration should
be formed ;

262 T. Legendi

b) control of the simulation steps is the central goal of the language;
c) the display of the results should be flexible to support obtaining as much in-

formation as possible but in compact form through controlling the time, mode,
origin and destination of the results to display;

d) interactive intervention into the simulation process;
e) other utilities ;
f) as minicomputer configurations are very different (peripherals, mass storage,

core memory) and the structure of the language is simple, it is very natural to
associate a system generation feature (actual peripherals, instructions, limits
for tables — including transition function table, the maximum size of the cellular
space and other internal tables, etc — may determine actual processors).

In the following the instruction set of the language will be briefly discussed
and shown that it meets the above basic requirements.

The instruction format is simple, assembly type. The instructions begin with
instruction code (may be abbreviated or full) which is followed by parameters.
The instructions may be labeled in the usual way.

1. Definition of the space. The topology of the space may be defined through
assigning to each cell its neighbours' relative coordinates.

Transition functions may be defined by a list of terms, by tables, by definition
of terms in a tree form, or by feature definition and new state assignment instructions.

Examples: Table form 1 0110 1001 1001 0110.. . (table of summa mod 2).
Here w0 + 2«1+4«2 + . . . defines an address in the table where the new state should
be found (T?0, «2 ••• are the current states of the cell and its neighbours).

Table form 2 (Summa mod 4)

II. Groups of the instruction set

T 0 1 2 3
0 0 1 2 3
1 1 2 3. 0
2 2 3 0 1
3 3 0 1 2

Here т(т(т(т(п 0 ,п 1) ,п 2) ,пз) ,п^) assigns the next state.

List of terms
old state neighbours states new state

0
0
0
0
0
0
0
0

1234
1334
2234
2334
3456
3457
3464
3465

5
6
5
6
7
6
5
4

INTERCELLAS an interactive cellular space simulation language 263

Tree form (for the above terms)

N0 = 0
N1 = 1,2

' 234*5

334*6

jVl = 3

jV2=4

N3 = 5

6 * 7

7 * 6

N3 = 6

4 * 5

5 * 4

Another term form:

No

N,

N2

AU'

0
old state

- 0 + 1 + 2 - 3 - 4
neighbourhood
description

new state

where in the simplest case+means there is at least one neighbour in the state follow-
ing the plus sign, and — means that there is no neighbour in the state following
the minus sign.

A more sophisticated interpretation may be used by feature definition instruc-
tions, their execution assigns a feature to i and after i t ,+ i means that the neighbour-
hood has the ith feature, — i means the opposite.

Examples for possible features:
a) the third neighbour is in state 3 or

the third neighbour is in state 4 or
the second neighbour is in state 3

b) there are no neighbours in state 2
c) the number of neighbours in state 2 and state 4 is even

or the number of neighbours in state 3 is 2 ^
Transtion functions may be read from files or libraries, too. (See I/O .instructions).
Dimension and actual size of the space may be directly defined, a space may

have dummy cells on the boundary or may be closed in form of a circle in one di-
mension (or torus in two dimension).

To different parts of the space different (predefined) transition functions may
be assigned.

264 T. Legendi

Initial configuration. Initial configurations may be defined by a set of simple
geometrical instructions: rectangles may be filled with the same value (state), lines
(of the same value) may be specified, configurations may be copied from parts
of the space to other parts of it and configurations may be shifted from outside
of the space. I/O instructions (see below) may also define configurations in the space.

2. Input-output. Under I/O we mean here the flow of main (characteristic)
data structures e.g. transition functions and configurations.

The instructions control the flow (and implicitly the conversion) of data among
files, core memory and libraries.

On a file data are in a usual line form and may be accessed only sequentially.
In the memory data are in internal representation.
In a library data are in compressed formats, they may be accessed in asso- /

ciative way.
Simple library handling instructions are also included (library initiation/purge,

listing, deleting objects from the library etc.).

3. Simulation. The central instruction of the language effects execution of
n steps of simulation (the cellular space should be defined prior to the execution
of the simulation). As the simulation is sequential and therefore slow a look ahead
algorithm is applied to speed up processing. Cells are grouped in two classes:
a) closed cells (neither the cell nor its neighbour cells had changed their previous

states during the last step of simulation).
b) open cells (either the cell itself or any of its neighbour cells had changed its

state during the last step of simulation)
Naturally, the transition function is computed only for open cells. The cells

are made open or closed during each simulation step. The presumed status is closed
and it is made open only if a change occurs in the state of the cell or in the states
of its neighbours. The status is stored in two independent flag-bits (open/closed,
next open/next closed) which alternate during the consecutive simulation steps.
The main characteristic of the algorithm is that no operation is performed on the
closed cells—neither on their states nor on their flag—bits.

4. Display of the results. It is possible to define
a) when — in which steps of the simulation
b) from where — from what parts of the cellular space
c) how — which characters correspond to the states of the cells (conversion)
to display the results. Steps for display are indicated by a set of stored display/do
not display instructions. (They are stored in the order of execution.) They effect
in parallel — each of them defines. a set of. steps (non-negative integers) in form
a+bx+cy x, y—1, 2, 3, ... If an actual simulation step does not fall in any set
or it is a member of at least one do not display set — no display will take place. The
result will be displayed if the actual step occurs (only) in a display set. •

For example
a b c

DISPLAY 1 0 0
DISPLAY 2 0 0
DISPLAY 0 0 3
DO NOT DISPLAY 27

/

INTERCELLAS an interactive cellular space simulation language 265

Results will be displayed in the first, second and each 3n, n = 1, 2, 3, ... steps
excluding 27. (1,2, 3 ,9,81, ...)

DISPLAY 0 1 . 0
DO NOT DISPLAY 0 3 0

Results will be displayed in each step excluding each third step. (1, 2, 4, 5, 7, 8, 10, ...)

Destination of the results may also be programmed, this is treated in the next
section.

5. Flow of information. It is possible to designate files (including peripherial
equipments) for
a) the program input file,
b) program output files, •
c) result output files.

The program input file should contain an INTERCELLAS program or part of it.
The program output file(s) will contain the executed and (during execution)

skipped instructions. This file will contain only syntactically correct instructions.
" The result output file(s) will contain the result of the run.

All these files may be dinamically designated. (For example the source program
may be read from two or more files).

Files may be designated for more than one purpose (in a meaningful way).
A natural way is to read program from the card reader or the console and

to print the program and the results in an intermixed form e.g. each instruction
is followed by its result (if any).

Another possibility is to make selective output: for example
a) to print results and send them to a mass storage^file, not to print program;
b) to read piogram from console, to punch program, to print results and program
and so forth.

6. Flow of control. Normally instructions are executed sequentially. It is possible
to skip instructions conditionally or unconditionally with an optional input file
change.

(There are two main reasons to combine skipping with input file change:
a) skip instructions typed in at the main periphery have no meaning without a
change of the input file;
b) in some situations at the time of a change of the input file skipping may be needed.
For example a prepared program on cards or tape during its run passes control
to the programmer. After executing the needed intervention the programmer
wants to pass control back to the program — but may be not to the point where
it was interrupted).

It is possible to stop the work of the processor finally, or to begin a new si-
mulation.

Continuos monitoring of the cellular space against simple conditions (whether .
the state of the (i, j) cell is S) may be programmed. When the condition is met.
control is passed to the programmer. Conditions may be cleared, too.

7. Interactivity. There is a simple editing possibility: characters are specified
for deleting consecutive characters or parameters or a whole line typed in pre-
viously. (The read process is character oriented rather then line oriented.)

266 T. Legendi

A longer (many steps) simulation process may be interrupted by sending a
special interrupt character. The actual simulation step is finished and control is
passed to the main periphery. After the execution of arbitrary instructions it is
possible to return to the previous activity and input periphery. Two special characters
ensure the return. One of them selects to continue the interrupted simulation, while
the other skips the remaining steps and execution continues by interpreting the
next instruction on the previous input periphery.

Interrupt may be used in case of any problem with an actual (when it is not
the main) periphery — the change to the input periphery ensures intervention pre-
serving the previous state of the system.

8. System generation instructions. The list of actual peripherals defines the
needed/unneeded handlers and tables.

The main peripheral (which should be a read/write peripheral, it has priority
and interrupt may me initiated only from it) may be designated. The actual set of
instructions may be defined including the definition of the names of the instruc-
tions. In connection with this there is an implicit possibility for selecting transition
function evaluating table search procedures and this selection may be done expli-
citly, too.

There is a possibility to limit some explicit and implicit data structures namely
the maximum size of the cellular space, and transition function tables; the maximum
number of parallel ON conditions, DISPLAY ¡DO NOT DISPLAY conditions etc.

Error messages may be defined too.
An automatic user's manual generation and autotest generation will also be

incorporated into this group of instructions which is implemented in F O R T R A N
IV as cross-software for the simulator.

III. Implementation, emulators

I N T E R C E L L A S has been implemented on minicomputers C I I — 1 0 0 1 0 (subset
- only), T P A (equivalent to P D P — 8) and R — 1 0 (equivalent to M I T R A — 1 5) . The pro-

cessors are coded in assembly and F O R T R A N — I V languages.
For speeding up the simulation special firmware (cellular space emulator)

has been designed for 2 state and 16 state spaces.

The main goal of the project is to design cellular processors: emulators will
serve partly as their working models. INTERCELLAS has been designed as a software
tool for simulation, which may be interpreted as machine code level programming
of cellular processors (with added utilities which are important and useful but
do not increase the machine code level). In this way INTERCELLAS may be used for
testing cellular processors and developing higher level languages for them.

RESEARCH GROUP ON MATHEMATICAL LOGIC
N AND THEORY OF AUTOMATA OF THE

HUNGARIAN ACADEMY OF SCIENCES
H-6720 SZEGED, HUNGARY
SOMOGYI U. 7.

INTERCELLAS an interactive cellular space simulation language 267

References

[1] CODD, E. F., Cellular automata. Academic Press, Inc. New York, London, 1968.
[2] VOLLMAR, R . , Übsr einsn Intsrpretierer zur Simulation Zslluraren Automaten, Angewandte

Informatik, v. 6, 1973, pp. 249—256.
[3] BRENDER, R. F., A programming system for the simulation of cellular spaces, Ph. D. Thesis, The

University of Michigan, Ann Arbor, 1970.
[4] BAKER, R., G . T . HERMAN, C E L I A — a cellular linear iterative array simulator, Proceedings of

the Fourth Conference on Applications of Simulation, 1970 , pp. 6 4 — 7 3 .
[5] W U - H U N G Liu, CELIA, Users manual, Dspt. of Computer Science, State University of New

York at Buffalo, October, 1972.
[6] Cellular spaces, homigeneous structures, Institute of Mathematical Machines, Warsaw, 1973

(in Russian).
[7] LEGENDI, T . , Simulation and synthssis of cellular automata, Conference on Programming

Systems'75, Szeged, 1 9 7 5 , pp. 2 1 0 — 2 1 7 (in Hungarian).
[8] LEGENDI, T . , Simulation of cellular automata, ths simulation language C E L L AS, Conference

on Simulation in medical, technical and economy sciences, Pécs, 1975 , pp. 1 0 0 — 1 0 6 (in Hun-
garian).

[9] CZIBIK, I . , T . LEGENDI, User's manual C E L L A S 1.0, 1 9 7 6 (in Hungárián).
[10] LEGENDI, T . , G Y . HEGEDŰS, L. PÁLVÖLGYI, U s e r ' s m a n u a l I N T E R C E L L A S , 1976 (i n H u n -

garian).
[11] LEGENDI, T., Cellprocessors in computer.architecture, Computational Linguistics and Computer

Languages XL, 1976, pp. 147—167.
[12] LEGENDI, T . , T R A N S C E L L — - a cellular space transition function definition and minimization

language, to appear in Computational Linguistics and Computer Languages XII.

(Received Oct. 13, 1976)

