On α_i -products of automata

By B. Imreh

The purpose of this paper is to study the α_i -products (see [1]) from the point of view of isomorphic completeness. Namely, we give necessary and sufficient conditions for a system of automata to be isomorphically complete with respect to the α_i -product. It will turn out that there exists no minimal isomorphically complete system of automata with respect to α_i -product and if $i \ge 1$ then isomorphically complete systems coincide with each other with respect to different α_i -products. Moreover, we prove that if i < j then the α_j -product is isomorphically more general than the α_i -product.

By an automaton we mean a finite automaton without output. Let $A_t = =(x_t, A_t, \delta_t)$ (t=1, ..., n) be a system of automata. Moreover, let X be a finite nonvoid set and φ a mapping of $A_1 \times ... \times A_n \times X$ into $X_1 \times ... \times X_n$ such that $\varphi(a_1, ..., a_n, x) = (\varphi_1(a_1, ..., a_n, x), ..., \varphi_n(a_1, ..., a_n, x))$, and each φ_j $(1 \le j \le n)$ is independent of states having indices greater than or equal to j+i, where *i* is a fixed nonnegative integer. We say that the automaton $A = (X, A, \delta)$ with $A = A_1 \times ... \times A_n$ and

$$\delta((a_1,\ldots,a_n),x) = (\delta_1(a_1,\varphi_1(a_1,\ldots,a_n,x)),\ldots,\delta_n(a_n,\varphi_n(a_1,\ldots,a_n,x)))$$

is the α_i -product of \mathbf{A}_i (t=1, ..., n) with respect to X and φ . For this product we use the shorter notation $\mathbf{A} = \prod_{t=1}^n \mathbf{A}_t(X, \varphi)$.

Let Σ be a system of automata. Σ is called *isomorphically complete* with respect to the α_i -product if any automaton can be embedded isomorphically into an α_i product of automata from Σ . Furthermore, Σ is called *minimal* isomorphically complete system if Σ is isomorphically complete and for arbitrary $A \in \Sigma$ the system $\Sigma \setminus \{A\}$ is not isomorphically complete.

Take a set M of automata, and let i be an arbitrary nonnegative integer. Let $\alpha_i(M)$ denote the class of all automata which can be embedded isomorphically into an α_i -product of automata from M. It is said that the α_i -product is isomorphically more general than the α_j -product if for any set M of automata $\alpha_j(M) \subseteq \alpha_i(M)$ and there exists at least one set \overline{M} such that $\alpha_j(\overline{M})$ is a proper subclass of $\alpha_i(\overline{M})$.

The following statement is obvious for arbitrary natural number $i \ge 0$.

3 Acta Cybernetica III/4

B. Imreh

Lemma. If A can be embedded isomorphically into an α_i -product B with a single factor and B can be embedded isomorphically into an α_i -product C with a single factor, then A can be embedded isomorphically into an α_i -product C with a single factor.

For any natural number $n \ge 1$ denote by $\mathbf{T}_n = (T_n, N, \delta_N)$ the automaton for which $N = \{1, ..., n\}$, T_n is the set of all transformations t of N, and $\delta_N(j, t) = = t(j)$ for all $j \in N$ and $t \in T_n$.

The next Theorem gives necessary and sufficient conditions for a system of automata to be isomorphically complete with respect to α_0 -product.

Theorem 1. A system Σ of automata is isomorphically complete with respect to α_0 -product if and only if for any natural number $n \ge 1$, there exists an automaton $\mathbf{A} \in \Sigma$ such that \mathbf{T}_n can be embedded isomorphically into an α_0 -product of \mathbf{A} with a single factor.

Proof. The necessity and sufficiency of these conditions will be proved in a similar way as that of the corresponding statement for generalized α_0 -product in [2].

In order to prove the necessity assume that Σ is isomorphically complete with respect to the α_0 -product. Let n>1 be a natural number and take \mathbf{T}_n . By our assumption, \mathbf{T}_n can be embedded isomorphically into an α_0 -product $\mathbf{B} = (T_n, B, \delta_{\mathbf{B}}) =$

= $\prod A_t(T_n, \varphi)$ of automata from Σ . Assume that m > 1, and let μ denote a suitable isomorphism. Define partitions π'_j $(j=1,\ldots,m)$ on B in the following way: $(a_1, ..., a_m) \equiv (a'_1, ..., a'_m)(\pi'_j) \ (a_1, ..., a_m), \ (a'_1, ..., a'_m) \in B$ if and only if $a_1 =$ $=a'_1, \ldots, a_i = a'_i$. Now let π_i $(j=1, \ldots, m)$ be partitions on N given as follows: for any $(a_1, ..., a_m), (a'_1, ..., a'_m) \in B$ we have $\mu^{-1}(a_1, ..., a_m) \equiv \mu^{-1}(a'_1, ..., a'_m)(\pi_j)$ if and only if $(a_1, \ldots, a_m) \equiv (a'_1, \ldots, a'_m)$ (π'_j) . It is easy to prove that π_j $(j=1,\ldots,m)$ have the Substitution Property (SP). On the other hand, for T_n only the two trivial partitions have SP. Thus, we get that each π_i has one-element blocks only, or it has one block only. Among these partitions there should be at least one which has more than one block, since n > 1. Let l be the least index for which π_i has at least two bloks. Then the blocks of π_l consist of single elements. Therefore, the number of all blocks of π_l is *n*. We show that \mathbf{T}_n can be embedded isomorphically into an α_0 -product \mathbf{A}_i with a single factor. Let (a_{i1}, \ldots, a_{im}) denote the image of i (i=1,...,n) under μ . From our assumption and the definition of π_i it follows that $a_{ks} = a_{1s}$ if $1 \le k \le n$ and $1 \le s \le l-1$. Take the α_0 -product $\mathbf{C} = (T_n, A_l, \delta_{\mathbf{C}}) =$ $=\Pi A_{l}(T_{n}, \Psi)$ where $\Psi(t) = \varphi_{l}(a_{11}, \dots, a_{1l-1}, t)$ for all $t \in T_{n}$. It is easy to prove that mapping $v: i \rightarrow a_{il}$ (i=1, ..., n) is an isomorphism of \mathbf{T}_n into $\mathbf{C} = \prod \mathbf{A}_l(T_n, \Psi)$.

The case n=1 is obvious.

To prove the sufficiency take an automaton $\mathbf{A} = (X, A, \delta_A)$ with *n* states. Let μ be an arbitrary 1-1 mapping of *A* onto *N*. Take the α_0 -product $\mathbf{C} = \Pi \mathbf{T}_n(X, \varphi)$ with a single factor, where $\varphi(x) = t$ if and only if $\mu(\delta_A(a, x)) = t(\mu(a))$ for any $a \in A$. Then μ is an isomorphism of **A** into **C**. On the other hand, by our assumption, there exists an automaton **B** in Σ such, that \mathbf{T}_n can be embedded isomorphically into an α_0 -product of **B** with a single factor. Therefore, by our Lemma, **A** can be embedded isomorphically into an α_0 -product of **B**, which completes the proof of Theorem 1.

Corollary. There exists no system of automata which is isomorphically complete with respect to α_0 -product and minimal.

Proof. Take a system Σ of automata which is isomorphically complete with respect to α_0 -product, and let $\mathbf{A} \in \Sigma$ be an automaton with *n* states. It is obvious that A can be embedded isomorphically into an α_0 -product of T_m with a single factor if $m \ge n$. Take a natural number m > n. By Theorem 1, there exists a $\mathbf{B} \in \Sigma$ such that \mathbf{T}_m can be embedded isomorphically into an α_0 -product of **B** with a single factor. Therefore, by our Lemma, A can be embedded isomorphically into an α_0 -product of **B** with a single factor. Thus, $\Sigma \setminus \{A\}$ is isomorphically complete with respect to α_0 -product, showing that Σ is not minimal.

For any natural number $n \ge 1$ denote by $\mathbf{D}_n = (\{x_{pq}\}_{1 \le p \le n}, \{1, ..., n\}, \delta_n)$ the $1 \leq q \leq n$

automaton for which for any $l \in \{1, ..., n\}$ and $x_{sk} \in \{x_{pq}\}$

$$\delta_n(l, x_{sk}) = \begin{cases} k & \text{if } l = s \\ l & \text{otherwise} \end{cases}$$

The following Theorem holds for α_i -products with $i \ge 1$.

Theorem 2. A system Σ of automata is isomorphically complete with respect to α_i -product $(i \ge 1)$ if and only if for any natural number $n \ge 1$, there exists an automaton $\mathbf{A} \in \Sigma$ such that \mathbf{D}_n can be embedded isomorphically into an α_i -product of A with a single factor.

Proof. First we prove that D_n (n > 1) can be embedded isomorphically into an α_i -product of automata from Σ with at most *i* factors if \mathbf{D}_n can be embedded isomorphically into an α_i -product of automata from Σ . Indeed, assume that \mathbf{D}_n can be embedded isomorphically into the α_i -product $\mathbf{B} = \prod_{t=1}^{\kappa} \mathbf{A}_t(\{x_{pq}\}, \varphi)$ of automata from Σ with k > i, and let μ denote the isomorphism. For any $l \in \{1, ..., n\}$ denote by (a_{l1}, \ldots, a_{lk}) the image of l under μ . We may suppose that there exist natural numbers $r \neq s$ $(1 \leq r, s \leq n)$ such that $a_{r1} \neq a_{s1}$ since otherwise \mathbf{D}_n can be embedded isomorphically into an α_i -product of automata from Σ with k-1 factors. Now assume that there exist natural numbers $u \neq v$ $(1 \leq u, v \leq n)$ such that $a_{ut} = a_{vt}$ (t=1, ..., i). Then $\varphi_1(a_{u1}, ..., a_{ui}, x_{lr}) = \varphi_1(a_{v1}, ..., a_{vi}, x_{lr})$ for any $x_{lr} \in \{x_{pq}\}$. Thus in the α_i -product **B** the automaton A_1 obtains the same input signal in the states a_{u1} and a_{v1} for any $x_{lr} \in \{x_{pq}\}$. On the other hand since μ is an isomorphism and $u \neq v$, thus the automaton \mathbf{A}_1 from the state a_{u1} goes into the state a_{r1} and from the state a_{v1} it goes into the state a_{v1} for any input signal x_{ur} $(1 \le r \le n)$. This implies $a_{v1} = a_{r1}$ ($1 \le r \le n$), which contradicts our assumption. Thus we get that the elements (a_{i1}, \ldots, a_{ii}) $(1 \le t \le n)$ are pairwise different. Take the following α_i -product $\mathbf{C} = (\{x_{pq}\}, C, \delta_c) = \prod_{i=1}^{i} \mathbf{A}_i(\{x_{pq}\}, \psi) \text{ where for any } j=1, \dots, i, (a_1, \dots, a_i) \in A_1 \times \dots \times A_i \text{ and } x \in \{x_{pq}\}$ $\psi_{j}(a_{1}, ..., a_{i}, x) = \begin{cases} \varphi_{j}(a_{t1}, ..., a_{tj+i-1}, x) & \text{if } j+i-1 \leq k \text{ and there exists} \\ 1 \leq t \leq n \text{ such that } a_{s} = a_{ts} \ (s=1, ..., i), \\ \varphi_{j}(a_{t1}, ..., a_{tk}, x) & \text{if } j+i-1 > k \text{ and there exists} \\ 1 \leq t \leq n \text{ such that } a_{s} = a_{ts} \ (s=1, ..., i), \end{cases}$

If
$$j+i-1 > k$$
 and there exists

larbitrary input signal from X_j otherwise.

3*

It is clear that the correspondence $v: l \rightarrow (a_{l1}, ..., a_{li})$ is an isomorphism of D_n into C.

Now we show that if \mathbf{D}_n (n>1) can be embedded isomorphically into an α_i -product of automata from Σ with at most *i* factors then there exists an automaton $\mathbf{A} \in \Sigma$ such that $\mathbf{D}_{[\sqrt[t]{n}]}$ can be embedded isomorphically into an α_i -product of \mathbf{A} with a single factor, where $[\sqrt[t]{n}]$ denotes the largest integer less than or equal to $\sqrt[t]{n}$. Indeed, assume that \mathbf{D}_n can be embedded isomorphically into the α_i -product $\mathbf{B} = \prod_{i=1}^k \mathbf{A}_i(\{x_{pq}\}, \varphi)$ of automata from Σ with $k \leq i$ factors. Let μ denote a suitable isomorphism, and for any $l \in \{1, ..., n\}$ let $(a_{i1}, ..., a_{ik})$ be the image of l under μ . Since μ is a 1-1 mapping, thus the elements $(a_{i1}, ..., a_{ik})$ (t=1, ..., n) are pairwise different. Therefore, there exists an s $(1 \leq s \leq k)$ such that the number of pairwise different elements among $a_{1s}, a_{2s}, ..., a_{ns}$ is greater than or equal to $[\sqrt[t]{n}]$. Let $a_{j_1s}, ..., a_{j_rs}$ denote pairwise different elements, where $r \geq [\sqrt[t]{n}]$, and denote by \overline{X} the set of input signals x_{pq} $(1 \leq p, q \leq [\sqrt[t]{n}])$. Take the following α_i -product $C = \prod A_s(\overline{X}, \Psi)$ with single factor, where for any $a_{j_ts} \in A_s$ and $x_{uv} \in \overline{X}$

$$\psi(a_{j_{t}s}, x_{uv}) = \begin{cases} \varphi_s(a_{j_t1}, ..., a_{j_tk}, x_{j_tjv}) & \text{if } u = t \\ \varphi_s(a_{j_t1}, ..., a_{j_tk}, x_{j_tjc}) & \text{otherwise.} \end{cases}$$

It can be proved easily that the correspondence $v: t \to a_{j_t s}$ $(t=1, ..., \lfloor \sqrt[l]{n} \rfloor)$ is an isomorphism of $\mathbf{D}_{\lfloor \sqrt[l]{n} \rfloor}$ into C.

The case n=1 is again obvious. To prove the sufficiency by our Lemma, it is enough to show that arbitrary automaton with *n* states can be embedded isomorphically into an α_i -product of \mathbf{D}_n with a single factor. This is trivial.

Corollary. There exists no system of automata which is isomorphically complete with respect to α_i -product $(i \ge 1)$ and minimal.

In the sequel we shall study general properties of α_i -products (*i*=0, 1, ...). For this we need some preparation.

Take a set A and a system $\pi_0, ..., \pi_n$ of partitions on A. We say that this system of partitions is *regular* if the following conditions are satisfied:

(1) π_0 has one block only,

(2) π_n has one-element blocks only,

(3) $\pi_0 \geq \pi_1 \geq \ldots \geq \pi_n$.

Let π be a partition of A. For any $a \in A$, denote by $\pi(a)$ the block of π containing a. Moreover, set $M_{j,a} = \{\pi_{j+1}(b): b \in A \text{ and } b \equiv a(\pi_j)\}$, where $a \in A$ and $j=0, \ldots, n-1$. Finally, let $\pi_j/\pi_{j+1} = \max\{|M_{j,a}|: a \in A\}$.

It holds the following.

Theorem 3. Let l>2 be a natural number and $i \ge 1$. An automaton $\mathbf{A} = (X, A, \delta_{\mathbf{A}})$ can be embedded isomorphically into an α_i -product of automata having fewer states than l, if and only if there exists a regular system π_0, \ldots, π_n of partitions of A such that

(I) $\pi_i / \pi_{i+1} < l$ for all j = 0, ..., n-1,

(II) $a \equiv b(\pi_j)$ implies $\delta_A(a, x) = \delta_A(b, x) (\pi_{j-i+1})$ for all $i-1 \leq j \leq n, x \in X$ and $a, b \in A$.

Proof. Theorem 3 will be proved in a similar way as the corresponding statement for generalized α_i -products in [2].

In order to prove necessity assume that the automaton A can be embedded isomorphically into an α_i -product $\prod_{i=1}^n A_i(X, \varphi)$ of automata with $|A_i| < l$ (t=1, ..., n) and l>2. Let μ denote a suitable isomorphism. Define partitions π_j (j=0, 1, ..., n) on A in the following way: π_0 has one block only, and $a \equiv a'(\pi_j)$ $(1 \le j \le n)$ if and only if $\mu(a) = (a_1, ..., a_n)$, $\mu(a') = (a'_1, ..., a'_n)$ and $a_1 = a'_1, ..., a_j = a'_j$. It is obvious that $\pi_0, \pi_1, ..., \pi_n$ is a regular system of partitions and conditions (I) and (II) are satisfied by this system.

Conversely, assume that for an $\mathbf{A} = (X, A, \delta)$ there exists a regular system $\pi_0, ..., \pi_n$ of partitions satisfying conditions (I) and (II). We construct automata $\mathbf{A}_j = (X_j, A_j, \delta_j)$ (j=1, ..., n) with $|A_j| = \pi_{j-1}/\pi_j (< l)$ such that the automaton A can be embedded isomorphically into an α_i -product of automata \mathbf{A}_i (j=1, ..., n).

Let A_j be arbitrary abstract sets with $|A_j| = \pi_{j-1}/\pi_j$ and $X_j = A_1 \times ... \times A_{j+i-1} \times X$ if $j+i-1 \le n$ and $X_j = A_1 \times ... \times A_n \times X$ otherwise. Now let μ_j be a mapping of $M_j = \{\pi_j(a) : a \in A\}$ onto A_j such that the restriction of μ_j to any $M_{j-1,a}$ is 1-1. Define the transition function δ_j in the following way:

(1) if $j+i-1 \le n$ then for any $a_j \in A_j$ and $(b_1, \dots, b_{j+i-1}, x) \in X_j$

$$\delta_j(a_j, (b_1, \dots, b_{j+i-1}, x)) = \begin{cases} \mu_j(\pi_j(\delta(a, x))) & \text{if } a_j = b_j \text{ and there exists an } a \in A \\ & \text{such that } \mu_t(\pi_t(a)) = b_t \text{ for all } t = 1, \dots, i+j-1, \\ & \text{arbitrary element from } A_j \text{ otherwise,} \end{cases}$$

(2) if j+i-1>n then for any $a_i \in A_i$ and $(b_1, \ldots, b_n, x) \in X_i$

$$\delta_j(a_j, (b_1, \dots, b_n, x)) = \begin{cases} \mu_j(\pi_j(\delta(a, x))) \text{ if } a_j = b_j \text{ and there exists an } a \in A \\ \text{ such that } \mu_t(\pi_t(a)) = b_t \text{ for all } t = 1, \dots, n, \\ \text{ arbitrary element from } A_j \text{ otherwise.} \end{cases}$$

First we prove that δ_j is well defined. Assume that in case (1) there exists a $b \in A$ such that $\mu_t(\pi_t(b)) = b_t$ $(t=1, \ldots, j+i-1)$. It is enough to show that $b \equiv a(\pi_{j+i-1})$ since this by (II), implies that $\delta(b, x) \equiv \delta(a, x)$ for any $x \in X$. We proceed by induction on t. $b \equiv a(\pi_1)$ obviously holds since μ_1 is a 1-1 mapping of M_1 onto A_1 . Assume that our statement has been proved for t-1 $(1 \le t-1 < j+i-1)$ that is $b \equiv a(\pi_{t-1})$. Therefore, since μ_t is 1-1 on $M_{t-1,a}$ and $\mu_t(\pi_t(a)) = \mu_t(\pi_t(b))$ thus $\pi_t(b) = \pi_t(a)$. Case (2) can be proved by a similar argument.

Take the α_i -product $\mathbf{B} = \prod_{i=1}^n \mathbf{A}_i(X, \varphi)$ where the mapping φ_j is defined in the following way:

(1) if $j+i-1 \le n$ then for any $(a_1, \ldots, a_{j+i-1}) \in A_1 \times \ldots \times A_{j+i-1}$ and $x \in X$

$$\varphi_i(a_1, \ldots, a_{i+i-1}, x) = (a_1, \ldots, a_{i+i-1}, x)$$

(2) if j+i-1>n then for any $(a_1, \ldots, a_n) \in A_1 \times \ldots \times A_n$ and $x \in X$

$$\varphi_i(a_1,\ldots,a_n,x)=(a_1,\ldots,a_n,x).$$

It is easy to prove that the mapping $v:a \rightarrow (\mu_1(\pi_1(a)), \dots, \mu_n(\pi_n(a)))$ is an isomorphism of A into B, which completes the proof of Theorem 3.

Let us denote by $A_2 = (\{x, y\}, \{0, 1\}, \delta_2)$ the automaton for which $\delta_2(0, x) = = \delta_2(1, y) = 1$ and $\delta_2(1, x) = \delta_2(0, y) = 0$.

Now we prove

Theorem 4. Automaton D_n can be embedded isomorphically into an α_i -product of A_2 $(i \ge 1)$ if and only if $1 \le n \le 2^i$.

Proof. The necessity follows from Theorem 3. Indeed, if D_n can be embedded isomorphically into an α_i -product of A_2 , then by Theorem 3, there exists a regular system $\pi_0, \pi_1, \ldots, \pi_k$ of partitions of the set $\{1, \ldots, n\}$ such that (I) and (II) are satisfied. If $n > 2^i$ then there exists a subsystem $\pi_{t_1} > \pi_{t_2} > \ldots > \pi_{t_i}$ of π_0, \ldots, π_k such that $\pi_0 > \pi_{t_1}$ and $\pi_{t_i} > \pi_k$. Since $\pi_{t_i} > \pi_k$ thus there exists at least one block of π_{t_i} which has more than one element, that is there exist *l* and r ($1 \le l, r \le n$) with $l \ne r$ and $l \equiv r(\pi_{t_i})$. From this, by condition (II), we get that for all $x_{sv} \in \{x_{pq}\}_{\substack{1 \le p \le n \\ 1 \le q \le n}}$ $\delta_n(l, x_{sv}) \equiv \delta_n(r, x_{sv})(\pi_{t_1})$. This implies $\pi_0 = \pi_{t_1}$, which contradicts the assumption that $\pi_0 > \pi_{t_1}$.

To prove the sufficiency let *n* be an arbitrary natural number with $1 \le n \le 2^i$. We take the α_i -product $\mathbf{B} = \prod_{i=1}^i \mathbf{A}_2(\{x_{pq}\}, \varphi)$ of \mathbf{A}_2 , where the mapping φ_j is defined in the following way: for any

$$(a_{1}, ..., a_{i}, x_{sr}) \in \{0, 1\} \times \{0, 1\} \times ... \times \{0, 1\} \times \{x_{pq}\}$$

$$\varphi_{j}(a_{1}, ..., a_{i}, x_{sr}) = \begin{cases} x \text{ if } \sum_{i=1}^{i} a_{i} 2^{i-i} + 1 = s \text{ and } r = \sum_{i=1}^{i} b_{i} 2^{i-i} + 1 \text{ and } a_{j} \neq b_{j}, \\ y \text{ otherwise.} \end{cases}$$

It is not difficult to prove that \mathbf{D}_n can be embedded isomorphically into the automaton **B** under the isomorphism μ defined as follows: if $k = \sum_{i=1}^{i} a_i 2^{i-i} + 1$ then $\mu(k) = (a_1, \dots, a_i)$ for all $k = 1, \dots, n$. This ends the proof of Theorem 4.

Let C_n denote the automaton $(\{x\}, \{1, ..., n\}, \delta_n)$ where for all $1 \le k < n$ $\delta_n(k, x) = k+1$ and $\delta_n(n, x) = n$.

It can easily be seen that for any natural number $n \ge 1$ C_n can be embedded isomorphically into an α_1 -product of A_2 . On the other hand it is not difficult to prove that if n>1 then C_n cannot be embedded isomorphically into an α_0 -product of A_2 . From this we obtain that the α_1 -product is isomorphically more general than the α_0 -product.

In [3] V. M. Gluskov introduced the concept of the general product and proved that system $\{A_2\}$ is isomorphically complete with respect to the general product. This, by Theorem 4, implies that for any natural number *i* the general product is isomorphically more general than the α_i -product.

Our results can be summarized by

Theorem 5. The general product is isomorphically more general than any α_j -product (j=0, 1, 2, ...) and any i, j $(i, j \in \{0, 1, 2, ...\})$ if i < j then the α_j -product is isomorphically more general than the α_i -product.

Finally we consider that what kind automata can be embedded isomorphically into an α_i -product (*i*=0, 1, 2, ...) of automata from the given finite set of automata. For this the following is valid.

Theorem 6. For any natural number $i (\geq 0)$, automaton A and finite set M of automata it can be decided whether or not $A \in \alpha_i(M)$.

Proof. Assume that automaton $\mathbf{A} = (X, A, \delta_{\mathbf{A}})$ with *m* states can be embedded isomorphically into an α_i -product $\mathbf{B} = \prod_{t=1}^{s} \mathbf{A}_t(X, \varphi)$ of automata from *M* under the isomorphism μ . Let $V = \max\{|A_t|: \mathbf{A}_t \in M\}$, and for all $a_i \in A$ (i=1, ..., m)denote by $(a_{i1}, ..., a_{is})$ the image of a_i under μ . We define partition π on the set of indices of the α_i -product **B**. Any k, l $(1 \le k, l \le s)$ $k \equiv l(\pi)$ if and only if $\mathbf{A}_k = \mathbf{A}_l$ and $a_{ik} = a_{il}$ for all t=1, ..., m. It can easily be seen that the partition π has at most $|M| \cdot V^m$ blocks. Since μ is an isomorphism, thus if $a_{ik} = a_{il}$ (t=1, ..., m)then the k-th component of $\mu(\delta_A(a_i, x))$ is equal to the *l*-th component of $\mu(\delta_A(a_i, x))$ for all t=1, ..., m and $x \in X$. By this it is not difficult to prove, that the automaton **A** can be embedded isomorphically into an α_i -product of automata from the set *M* with at most $|M| \cdot V^m$ factors.

DEPT. OF COMPUTER SCIENCE A. JÓZSEF UNIVERSITY H-6720 SZEGED, HUNGARY SOMOGYI U. 7.

References

- GÉCSEG, F., Composition of automata, Proceedings of the 2nd Colloquium on Automata, Languages and Programming, Saarbrücken, 1974, Springer Lecture Notes in Computer Science, v. 14, pp. 351-363.
- [2] GÉCSEG, F., On products of abstract automata, Acta Sci. Math., v. 38, 1976, pp. 21-43.
- [3] GLUSKOV, V. M., Абстрактная теория автоматов, Успехи матем. наук, 16:5 (101), 1961, pp. 3-62.

(Received Nov. 22, 1977)

307