On α_{i}-products of automata

By B. Imreh

The purpose of this paper is to study the α_{i}-products (see [1]) from the point of view of isomorphic completeness. Namely, we give necessary and sufficient conditions for a system of automata to be isomorphically complete with respect to the α_{i}-product. It will turn out that there exists no minimal isomorphically complete system of automata with respect to α_{i}-product and if $i \geqq 1$ then isomorphically complete systems coincide with each other with respect to different α_{i}-products. Moreover, we prove that if $i<j$ then the α_{j}-product is isomorphically more general than the α_{i}-product.

By an automaton we mean a finite automaton without output. Let $\mathbf{A}_{t}=$ $=\left(x_{t}, A_{t}, \delta_{t}\right)(t=1, \ldots, n)$ be a system of automata. Moreover, let X be a finite nonvoid set and φ a mapping of $A_{1} \times \ldots \times A_{n} \times X$ into $X_{1} \times \ldots \times X_{n}$ such that $\varphi\left(a_{1}, \ldots, a_{n}, x\right)=\left(\varphi_{1}\left(a_{1}, \ldots, a_{n}, x\right), \ldots, \varphi_{n}\left(a_{1}, \ldots, a_{n}, x\right)\right)$, and each $\varphi_{j}(1 \leqq j \leqq n)$ is independent of states having indices greater than or equal to $j+i$, where i is a fixed nonnegative integer. We say that the automaton $\mathbf{A}=(X, A, \delta)$ with $A=A_{1} \times \ldots \times A_{n}$ and

$$
\delta\left(\left(a_{1}, \ldots, a_{n}\right), x\right)=\left(\delta_{1}\left(a_{1}, \varphi_{1}\left(a_{1}, \ldots, a_{n}, x\right)\right), \ldots, \delta_{n}\left(a_{n}, \varphi_{n}\left(a_{1}, \ldots, a_{n}, x\right)\right)\right)
$$

is the α_{i}-product of $\mathbf{A}_{t}(t=1, \ldots, n)$ with respect to X and φ. For this product we use the shorter notation $\mathbf{A}=\prod_{t=1}^{n} \mathbf{A}_{t}(X, \varphi)$.

Let Σ be a system of automata. Σ is called isomorphically complete with respect to the α_{i}-product if any automaton can be embedded isomorphically into an α_{i} product of automata from Σ. Furthermore, Σ is called minimal isomorphically complete system if Σ is isomorphically complete and for arbitrary $\mathbf{A} \in \Sigma$ the system $\Sigma \backslash\{\mathbf{A}\}$ is not isomorphically complete.

Take a set M of automata, and let i be an arbitrary nonnegative integer. Let $\alpha_{i}(M)$ denote the class of all automata which can be embedded isomorphically into an α_{i}-product of automata from M. It is said that the α_{i}-product is isomorphically more general than the α_{j}-product if for any set M of automata $\alpha_{j}(M) \subseteq \alpha_{i}(M)$ and there exists at least one set \bar{M} such that $\alpha_{j}(\bar{M})$ is a proper subclass of $\alpha_{i}(\bar{M})$.

The following statement is obvious for arbitrary natural number $i \geqq 0$.

[^0]Lemma. If \mathbf{A} can be embedded isomorphically into an α_{i}-product \mathbf{B} with a single factor and \mathbf{B} can be embedded isomorphically into an α_{i}-product \mathbf{C} with a single factor, then \mathbf{A} can be embedded isomorphically into an α_{i}-product \mathbf{C} with a single factor.

For any natural number $n \geqq 1$ denote by $\mathbf{T}_{n}=\left(T_{n}, N, \delta_{N}\right)$ the automaton for which $N=\{1, \ldots, n\}, T_{n}$ is the set of all transformations t of N, and $\delta_{N}(j, t)=$ $=t(j)$ for all $j \in N$ and $t \in T_{n}$.

The next Theorem gives necessary and sufficient conditions for a system of automata to be isomorphically complete with respect to α_{0}-product.

Theorem 1. A system Σ of automata is isomorphically complete with respect to α_{0}-product if and only if for any natural number $n \geqq 1$, there exists an automaton $\mathbf{A} \in \Sigma$ such that \mathbf{T}_{n} can be embedded isomorphically into an α_{0}-product of \mathbf{A} with a single factor.

Proof. The necessity and sufficiency of these conditions will be proved in a similar way as that of the corresponding statement for generalized α_{0}-product in [2].

In order to prove the necessity assume that Σ is isomorphically complete with respect to the α_{0}-product. Let $n>1$ be a natural number and take T_{n}. By our assumption, \mathbf{T}_{n} can be embedded isomorphically into an α_{0}-product $\mathbf{B}=\left(T_{n}, B, \delta_{\mathbf{B}}\right)=$ $=\prod_{t=1}^{m} \mathbf{A}_{t}\left(T_{n}, \varphi\right)$ of automata from Σ. Assume that $m>1$, and let μ denote a suitable isomorphism. Define parcitions $\pi_{j}^{\prime}(j=1, \ldots, m)$ on B in the following way: $\left(a_{1}, \ldots, a_{m}\right) \equiv\left(a_{1}^{\prime}, \ldots, a_{m}^{\prime}\right)\left(\pi_{j}^{\prime}\right) \quad\left(a_{1}, \ldots, a_{m}\right),\left(a_{1}^{\prime}, \ldots, a_{m}^{\prime}\right) \in B$ if and only if $a_{1}=$ $=a_{1}^{\prime}, \ldots, a_{j}=a_{j}^{\prime}$. Now let $\pi_{j}(j=1, \ldots, m)$ be partitions on N given as follows: for any $\left(a_{1}, \ldots, a_{m}\right),\left(a_{1}^{\prime}, \ldots, a_{\mathrm{m}}^{\prime}\right) \in B$ we have $\mu^{-1}\left(a_{1}, \ldots, a_{m}\right) \equiv \mu^{-1}\left(a_{1}^{\prime}, \ldots, a_{m}^{\prime}\right)\left(\pi_{j}\right)$ if and only if $\left(a_{1}, \ldots, a_{m}\right) \equiv\left(a_{1}^{\prime}, \ldots, a_{m}^{\prime}\right)\left(\pi_{j}^{\prime}\right)$. It is easy to prove that $\pi_{j}(j=1, \ldots, m)$ have the Substitution Property (SP). On the other hand, for T_{n} only the two trivial partitions have SP. Thus, we get that each π_{j} has one-element blocks only, or it has one block only. Among these partitions there should be at least one which has more than one block, since $n>1$. Let l be the least index for which π_{l} has at least two bloks. Then the blocks of π_{l} consist of single elements. Therefore, the number of all blocks of π_{1} is n. We show that T_{n} can be embedded isomorphically into an α_{0}-product \mathbf{A}_{i} with a single factor. Let ($a_{i 1}, \ldots, a_{i m}$) denote the image of $i(i=1, \ldots, n)$ under μ. From our assumption and the definition of π_{j} it follows that $a_{k s}=a_{1 s}$ if $\mathrm{I} \leqq k \leqq n$ and $1 \leqq s \leqq l-1$. Take the α_{0}-product $\mathbf{C}=\left(T_{n}, A_{l}, \delta_{\mathrm{C}}\right)=$ $=\Pi \mathbf{A}_{l}\left(T_{n}, \Psi\right)$ where $\Psi(t)=\varphi_{l}\left(a_{11}, \ldots, a_{11-1}, t\right)$ for all $t \in T_{n}$. It is easy to prove that mapping $v: i \rightarrow a_{i l}(i=1, \ldots, n)$ is an isomorphism of. \mathbf{T}_{n} into $\mathbf{C}=\Pi \mathbf{A}_{l}\left(T_{n}, \Psi\right)$. The case $n=1$ is obvious.
To prove the sufficiency take an automaton $\mathbf{A}=\left(X, A, \delta_{\mathrm{A}}\right)$ with n states. Let μ be an arbitrary $1-1$ mapping of A onto N. Take the α_{0}-product $\mathbf{C}=\Pi \mathbf{T}_{n}(X, \varphi)$ with a single factor, where $\varphi(x)=t$ if and only if $\mu\left(\delta_{\mathrm{A}}(a, x)\right)=t(\mu(a))$ for any $a \in A$. Then μ is an isomorphism of \mathbf{A} into \mathbf{C}. On the other hand, by our assumption, there exists an automaton \mathbf{B} in Σ such, that \mathbf{T}_{n} can be embedded isomorphically into an x_{0}-product of \mathbf{B} with a single factor. Therefore, by our Lemma, \mathbf{A} can be embedded isomorphically into an α_{0}-product of B, which completes the proof of Theorem 1.

Corollary. There exists no system of automata which is isomorphically complete with respect to α_{0}-product and minimal.

Proof. Take a system Σ of automata which is isomorphically complete with respect to α_{0}-product, and let $\mathbf{A} \in \Sigma$ be an automaton with n states. It is obvious that \mathbf{A} can be embedded isomorphically into an α_{0}-product of \mathbf{T}_{m} with a single factor if $m \geqq n$. Take a natural number $m>n$. By Theorem 1 , there exists a $\mathbf{B} \in \Sigma$ such that \mathbf{T}_{m} can be embedded isomorphically into an α_{0}-product of \mathbf{B} with a single factor. Therefore, by our Lemma, A can be embedded isomorphically into an α_{0}-product of \mathbf{B} with a single factor. Thus, $\Sigma \backslash\{\mathbf{A}\}$ is isomorphically complete with respect to α_{0}-product, showing that Σ is not minimal.

For any natural number $n \geqq 1$ denote by $\mathbf{D}_{n}=\left(\left\{x_{p q}\right\}_{\substack{1 \leqq p \leqq n \\ 1 \leqq q \leqq n}},\{1, \ldots, n\}, \delta_{n}\right)$ the automaton for which for any $l \in\{1, \ldots, n\}$ and $x_{s k} \in\left\{x_{p q}\right\}$.

$$
\delta_{n}\left(l, x_{s k}\right)= \begin{cases}k & \text { if } \quad l=s \\ l & \text { otherwise }\end{cases}
$$

The following Theorem holds for α_{i}-products with $i \geqq 1$.
Theorem 2. A system Σ of automata is isomorphically complete with respect to α_{i}-product ($i \geqq 1$) if and only if for any natural number $n \geqq 1$, there exists an automaton $\mathbf{A} \in \Sigma$ such that \mathbf{D}_{n} can be embedded isomorphically into an α_{i}-product of \mathbf{A} with a single factor.

Proof. First we prove that $\mathbf{D}_{n}(n>1)$ can be embedded isomorphically into an α_{i}-product of automata from Σ with at most i factors if \mathbf{D}_{n} can be embedded isomorphically into an α_{i}-product of automata from Σ. Indeed, assume that \mathbf{D}_{n} can be embedded isomorphically into the α_{i}-product $\mathbf{B}=\prod_{t=1}^{k} \mathbf{A}_{t}\left(\left\{x_{p q}\right\} ; \varphi\right)$ of automata from Σ with $k>i$, and let μ denote the isomorphism. For any $l \in\{1, \ldots, n\}$ denote by ($a_{11}, \ldots, a_{l k}$) the image of l under μ. We may suppose that there exist natural numbers $r \neq s(1 \leqq r, s \leqq n)$ such that $a_{r 1} \neq a_{s 1}$ since otherwise \mathbf{D}_{n} can be embedded isomorphically into an α_{i}-product of automata from Σ with $k-1$ factors. Now assume that there exist natural numbers $u \neq v(1 \leqq u, v \leqq n)$ such that $a_{u t}=a_{v t}$ $(t=1, \ldots, i)$. Then $\varphi_{1}\left(a_{u 1}, \ldots, a_{u i}, x_{l r}\right)=\varphi_{1}\left(a_{v 1}, \ldots, a_{v i}, x_{l r}\right)$ for any $x_{l r} \in\left\{x_{p q}\right\}$. Thus in the α_{i}-product \mathbf{B} the automaton \mathbf{A}_{1} obtains the same input signal in the states $a_{u 1}$ and $a_{v 1}$ for any $x_{i r} \in\left\{x_{p q}\right\}$. On the other hand since μ is an isomorphism and $u \neq v$, thus the automaton \mathbf{A}_{1} from the state $a_{u 1}$ goes into the state $a_{r 1}$ and from the state $a_{v 1}$ it goes into the state $a_{v 1}$ for`any input signal $x_{u r}(1 \leqq r \leqq n)$. This implies $a_{v 1}=a_{r 1}(1 \leqq r \leqq n)$, which contradicts our assumption. Thus we get that the elements $\left(a_{t 1}, \ldots, a_{i i}\right) \quad(1 \leqq t \leqq n)$ are pairwise different. Take the following α_{i}-product $\mathbf{C}=\left(\left\{x_{p q}\right\}, C, \delta_{\mathrm{c}}\right)=\prod_{i=1}^{i} \mathbf{A}_{t}\left(\left\{x_{p q}\right\}, \psi\right)$ where for any $j=1, \ldots, i,\left(a_{1}, \ldots, a_{i}\right) \in A_{1} \times \ldots \times A_{i}$
and $x \in\left\{x_{p q}\right\}$ $\psi_{j}\left(a_{1}, \ldots, a_{i}, x\right)= \begin{cases}\varphi_{j}\left(a_{t 1}, \ldots, a_{t j+i-1}, x\right) & \text { if } j+i-1 \leqq k \text { and there exists } \\ \varphi_{j}\left(a_{t 1}, \ldots, a_{t k}, x\right) & 1 \leqq t \leqq n \text { such that } a_{s}=a_{t s}(s=1, \ldots, i,) \\ \text { if } j+i-1>k \text { and there exists } \\ & 1 \leqq t \leqq n \text { such that } a_{s}=a_{t s}(s=1, \ldots, i),\end{cases}$

It is clear that the correspondence $v: l \rightarrow\left(a_{l 1}, \ldots, a_{l i}\right)$ is an isomorphism of \mathbf{D}_{n} into \mathbf{C}.

Now we show that if $\mathbf{D}_{n}(n>1)$ can be embedded isomorphically into an α_{i}-product of automata from Σ with at most i factors then there exists an automaton $\mathbf{A} \in \Sigma$ such that $\mathbf{D}_{[\sqrt{n}]}$ can be embedded isomorphically into an α_{i}-product of \mathbf{A} with a single factor, where $[\sqrt[1]{n}]$ denotes the largest integer less than or equal to $\sqrt[1]{n}$. Indeed, assume that \mathbf{D}_{n} can be embedded isomorphically into the α_{i}-product $\mathbf{B}=\prod_{t=1}^{k} \mathbf{A}_{t}\left(\left\{x_{p q}\right\}, \varphi\right)$ of automata from Σ with $k \leqq i$ factors. Let μ denote a suitable isomorphism, and for any $l \in\{1, \ldots, n\}$ let $\left(a_{l 1}, \ldots, a_{l k}\right)$ be the image of l under μ. Since μ is a $1-1$ mapping, thus the elements $\left(a_{t 1}, \ldots, a_{t k}\right)(t=1, \ldots, n)$ are pairwise different. Therefore, there exists an $s(1 \leqq s \leqq k)$ such that the number of pairwise different elements among $a_{1 s}, a_{2 s}, \ldots, a_{n s}$ is greater than or equal to $[\sqrt[k]{n}$. Let $a_{j_{1} s}, \ldots, a_{j_{r} s}$ denote pairwise different elements, where $r \geqq[\sqrt[l]{n}]$, and denote by \bar{X} the set of input signals $x_{p q}(1 \leqq p, q \leqq[\sqrt[i]{n}])$. Take the following α_{i}-product $\mathbf{C}=\Pi \mathbf{A}_{\mathbf{s}}(\bar{X}, \Psi)$ with single factor, where for any $a_{j_{t}} \in \mathrm{~A}_{s}$ and $x_{u v} \in \bar{X}$

$$
\psi\left(a_{j_{t} s}, x_{u v}\right)= \begin{cases}\varphi_{s}\left(a_{j_{t} 1}, \ldots, a_{j_{t} k}, x_{j_{t} j_{v}}\right) & \text { if } u=t \\ \varphi_{s}\left(a_{j_{t} 1}, \ldots, a_{j_{t} k}, x_{j_{t} j_{t}}\right) & \text { otherwise }\end{cases}
$$

It can be proved easily that the correspondence $v: t \rightarrow a_{j_{2} s}(t=1, \ldots,[\sqrt[i]{n}])$ is an isomorphism of $\mathbf{D}_{[i / n]}$ into \mathbf{C}.

The case $n=1$ is again obvious. To prove the sufficiency by our Lemma, it is enough to show that arbitrary automaton with n states can be embedded isomorphically into an α_{i}-product of \mathbf{D}_{n} with a single factor. This is trivial.

Corollary. There exists no system of automata which is isomorphically complete with respect to α_{i}-product ($i \geqq 1$) and minimal.

In the sequel we shall study general properties of α_{i}-products $(i=0,1, \ldots)$. For this we need some preparation.

Take a set A and a system π_{0}, \ldots, π_{n} of partitions on A. We say that this system of partitions is regular if the following conditions are satisfied:
(1) π_{0} has one block only,
(2) π_{n} has one-element blocks only,
(3) $\pi_{0} \geqq \pi_{1} \geqq \ldots \geqq \pi_{n}$.

Let π be a partition of A. For any $a \in A$, denote by $\pi(a)$ the block of π containing a. Moreover, set $M_{j, a}=\left\{\pi_{j+1}(b): b \in A\right.$ and $\left.b \equiv a\left(\pi_{j}\right)\right\}$, where $a \in A$ and $j=0, \ldots, n-1$. Finally, let $\pi_{j} / \pi_{j+1}=\max \left\{\left|M_{j, a}\right|: a \in A\right\}$.

It holds the following.
Theorem 3. Let $l>2$ be a natural number and $i \geqq 1$. An automaton $\mathbf{A}=\left(X, A, \delta_{\mathrm{A}}\right)$ can be embedded isomorphically into an α_{i}-product of automata having fewer states than l, if and only if there exists a regular system π_{0}, \ldots, π_{n} of partitions of A such that
(I) $\pi_{j} / \pi_{j+1}<l$ for all $j=0, \ldots, n-1$,
(II) $a \equiv b\left(\pi_{j}\right)$ implies $\delta_{\mathrm{A}}(a, x)=\delta_{\mathrm{A}}(b, x)\left(\pi_{j-i+1}\right)$ for all $i-1 \leqq j \leqq n, x \in X$ and $a, b \in A$.

Proof. Theorem 3 will be proved in a similar way as the corresponding statement for generalized α_{i}-products in [2].

In order to prove necessity assume that the automaton \mathbf{A} can be embedded isomorphically into an α_{i}-product $\prod_{t=1}^{n} \mathbf{A}_{t}(X, \varphi)$ of automata with $\left|A_{t}\right|<l$ ($t=1, \ldots, n$) and $l>2$. Let μ denote a suitable isomorphism. Define partitions $\pi_{j}(j=0,1, \ldots, n)$ on A in the following way: π_{0} has one block only, and $a \equiv a^{\prime}\left(\pi_{j}\right) \quad(1 \leqq j \leqq n) \quad$ if and only if $\mu(a)=\left(a_{1}, \ldots, a_{n}\right), \mu\left(a^{\prime}\right)=\left(a_{1}^{\prime}, \ldots, a_{n}^{\prime}\right)$ and $a_{1}=a_{1}^{\prime}, \ldots, a_{j}=a_{j}^{\prime}$. It is obvious that $\pi_{0}, \pi_{1}, \ldots, \pi_{n}$ is a regular system of partitions and conditions (I) and (II) are satisfied by this system.

Conversely, assume that for an $\mathbf{A}=(X, A, \delta)$ there exists a regular system π_{0}, \ldots, π_{n} of partitions satisfying conditions (I) and (II). We construct automata $\mathbf{A}_{j}=\left(X_{j}, A_{j}, \delta_{j}\right)(j=1, \ldots, n)$ with $\left|A_{j}\right|=\pi_{j-1} / \pi_{j}(<l)$ such that the automaton A can be embedded isomorphically into an α_{i}-product of automata $\mathbf{A}_{j}(j=1, \ldots, n)$.

Let A_{j} be arbitrary abstract sets with $\left|A_{j}\right|=\pi_{j-1} / \pi_{j}$ and $X_{j}=A_{1} \times \ldots$ $\ldots \times A_{j+i-1} \times X$ if $j+i-1 \leqq n$ and $X_{j}=A_{1} \times \ldots \times A_{n} \times X$ otherwise. Now let μ_{j} be a mapping of $M_{j}=\left\{\pi_{j}(a): a \in A\right\}$ onto A_{j} such that the restriction of μ_{j} to any $M_{j-1, a}$ is $1-1$. Define the transition function δ_{j} in the following way:
(1) if $j+i-1 \leqq n$ then for any $a_{j} \in A_{j}$ and $\left(b_{1}, \ldots, b_{j+i-1}, x\right) \in X_{j}$
$\delta_{j}\left(a_{j},\left(b_{1}, \ldots, b_{j+i-1}, x\right)\right)=\left\{\begin{array}{c}\mu_{j}\left(\pi_{j}(\delta(a, x))\right) \text { if } a_{j}=b_{j} \text { and there exists an } a \in A \\ \text { such that } \mu_{t}\left(\pi_{t}(a)\right)=b_{t} \text { for all } t=1, \ldots, i+j-1, \\ \text { arbitrary element from } A_{j} \text { otherwise, }\end{array}\right.$
(2) if $j+i-1>n$ then for any $a_{j} \in A_{j}$ and $\left(b_{1}, \ldots, b_{n}, x\right) \in X_{j}$

$$
\delta_{j}\left(a_{j},\left(b_{1}, \ldots, b_{n}, x\right)\right)=\left\{\begin{array}{c}
\mu_{j}\left(\pi_{j}(\delta(a, x))\right) \text { if } a_{j}=b_{j} \text { and there exists an } a \in A \\
\text { such that } \mu_{t}\left(\pi_{t}(a)\right)=b_{t} \text { for all } t=1, \ldots, n, \\
\text { arbitrary element from } A_{j} \text { otherwise. }
\end{array}\right.
$$

First we prove that δ_{j} is well defined. Assume that in case (1) there exists a $b \in A$ such that $\mu_{t}\left(\pi_{t}(b)\right)=b_{t}(t=1, \ldots, j+i-1)$. It is enough to show that $b \equiv a\left(\pi_{j+i-1}\right)$ since this by (II), implies that $\delta(b, x) \equiv \delta(a, x)$ for any $x \in X$. We proceed by induction on t. $b \equiv a\left(\pi_{1}\right)$ obviously holds since μ_{1} is a $1-1$ mapping of M_{1} onto A_{1}. Assume that our statement has been proved for $t-1(1 \leqq t-1<j+i-1)$ that is $b \equiv a\left(\pi_{t-1}\right)$. Therefore, since μ_{t} is $1-1$ on $M_{t-1, a}$ and $\mu_{t}\left(\pi_{t}(a)\right)=\mu_{t}\left(\pi_{t}(b)\right)$ thus $\pi_{t}(b)=\pi_{t}(a)$. Case (2) can be proved by a similar argument.

Take the α_{i}-product $\mathbf{B}=\prod_{t=1}^{n} \mathbf{A}_{t}(X, \varphi)$ where the mapping φ_{j} is defined in the following way:
(1) if $j+i-1 \leqq n$ then for any $\left(a_{1}, \ldots, a_{j+i-1}\right) \in A_{1} \times \ldots \times A_{j+i-1}$ and $x \in X$

$$
\varphi_{j}\left(a_{1}, \ldots, a_{j+i-1}, x\right)=\left(a_{1}, \ldots, a_{j+i-1}, x\right)
$$

(2) if $j+i-1>n$ then for any $\left(a_{1}, \ldots, a_{n}\right) \in A_{1} \times \ldots \times A_{n}$ and $x \in X$

$$
\varphi_{j}\left(a_{1}, \ldots, a_{n}, x\right)=\left(a_{1}, \ldots, a_{n}, x\right)
$$

It is easy to prove that the mapping $v: a \rightarrow\left(\mu_{1}\left(\pi_{1}(a)\right), \ldots, \mu_{n}\left(\pi_{n}(a)\right)\right)$ is an isomorphism of \mathbf{A} into \mathbf{B}, which completes the proof of Theorem 3.

Let us denote by $\mathbf{A}_{2}=\left(\{x, y\},\{0,1\}, \delta_{2}\right)$ the automaton for which $\delta_{2}(0, x)=$ $=\delta_{2}(1, y)=1$ and $\delta_{2}(1, x)=\delta_{2}(0, y)=0$.

Now we prove
Theorem 4. Automaton D_{n} can be embedded isomorphically into an α_{i}-product of $\mathbf{A}_{2}(i \geqq 1)$ if and only if $1 \leqq n \leqq 2^{i}$.

Proof. The necessity follows from Theorem 3. Indeed, if \mathbf{D}_{n} can be embedded isomorphically into an α_{i}-product of \mathbf{A}_{2}, then by Theorem 3, there exists a regular system $\pi_{0}, \pi_{1}, \ldots, \pi_{k}$ of partitions of the set $\{1, \ldots, n\}$ such that (I) and (II) are satisfied. If $n>2^{i}$ then there exists a subsystem $\pi_{t_{1}}>\pi_{t_{2}}>\ldots>\pi_{t_{1}}$ of π_{0}, \ldots, π_{k} such that $\pi_{0}>\pi_{t_{1}}$ and $\pi_{t_{i}}>\pi_{k}$. Since $\pi_{t_{1}}>\pi_{k}$ thus there exists at least one block of $\pi_{t_{l}}$ which has more than one element, that is there exist l and $r(l \leqq l, r \leqq n)$ with $l \neq r$ and $l \equiv r\left(\pi_{t_{i}}\right)$. From this, by condition (II), we get that for all $x_{s v} \in\left\{x_{p q}\right\}_{\substack{\leqq \leqq p \leqq n \\ 1 \leqq q \leqq n}}$ $\delta_{n}\left(l, x_{s v}\right) \equiv \delta_{n}\left(r, x_{s v}\right)\left(\pi_{t_{1}}\right)$. This implies $\pi_{0}=\pi_{t_{2}}$, which contradicts the assumption that $\pi_{0}>\pi_{t_{1}}$.

To prove the sufficiency let n be an arbitrary natural number with $1 \leqq n \leqq 2^{i}$. We take the α_{i}-product $\mathbf{B}=\prod_{t=1}^{i} \mathbf{A}_{2}\left(\left\{x_{p q}\right\}, \varphi\right)$ of \mathbf{A}_{2}, where the mapping φ_{J} is defined in the following way: for any

$$
\begin{aligned}
& \quad\left(a_{1}, \ldots, a_{i}, x_{s r}\right) \in\{0,1\} \times\{0,1\} \times \ldots \times\{0,1\} \times\left\{x_{p q}\right\} \\
& \varphi_{j}\left(a_{1}, \ldots, a_{i}, x_{s r}\right)=\left\{\begin{array}{l}
x \text { if } \sum_{t=1}^{i} a_{t} 2^{i-t}+1=s \text { and } r=\sum_{r=1}^{i} b_{t} 2^{i-t}+1 \text { and } a_{j} \neq b_{j}, \\
y \text { otherwise. }
\end{array}\right.
\end{aligned}
$$

It is not difficult to prove that $\mathbf{D}_{\boldsymbol{n}}$ can be embedded isomorphically into the automaton B under the isomorphism μ defined as follows: if $k=\sum_{t=1}^{i} a_{t} 2^{i-t}+1$ then $\mu(k)=\left(a_{1}, \ldots, a_{i}\right)$ for all $k=1, \ldots, n$. This ends the proof of Theorem 4.

Let \mathbf{C}_{n} denote the automaton $\left(\{x\},\{1, \ldots, n\}, \delta_{n}\right.$) where for all $1 \leqq k<n$ $\delta_{n}(k, x)=k+1$ and $\delta_{n}(n, x)=n$.

It can easily be seen that for any natural number $n \geqq 1 \quad \mathbf{C}_{n}$ can be embedded isomorphically into an α_{1}-product of \mathbf{A}_{2}. On the other hand it is not difficult to prove that if $n>1$ then C_{n} cannot be embedded isomorphically into an α_{0}-product of \mathbf{A}_{2}. From this we obtain that the α_{1}-product is isomorphically more general than the α_{0}-product.

In [3] V. M. Gluskov introduced the concept of the general product and proved that system $\left\{\mathbf{A}_{2}\right\}$ is isomorphically complete with respect to the general product. This, by Theorem 4, implies that for any natural number i the general product is isomorphically more general than the α_{i}-product.

Our results can be summarized by
Theorem 5. The general product is isomorphically more general than any α_{j}-product $(j=0,1,2, \ldots)$ and any $i, j(i, j \in\{0,1,2, \ldots\})$ if $i<j$ then the α_{j} product is isomorphically more general than the α_{i}-product.

Finally we consider that what kind automata can be embedded isomorphically into an α_{i}-product ($i=0,1,2, \ldots$) of automata from the given finite set of automata. For this the following is valid.

Theorem 6. For any natural number $i(\geqq 0)$, automaton A and finite set M of . automata it can be decided whether or not $\mathbf{A} \in \alpha_{i}(M)$.

Proof. Assume that automaton $\mathbf{A}=\left(X, A, \delta_{\mathrm{A}}\right)$ with m states can be embedded isomorphically into an α_{i}-product $\mathbf{B}=\prod_{t=1}^{s} \mathbf{A}_{t}(X, \varphi)$ of automata from M under the isomorphism μ. Let $V=\max \left\{\left|A_{t}\right|: \mathbf{A}_{t} \in M\right\}$, and for all $a_{i} \in A(i=1, \ldots, m)$ denote by ($a_{i 1}, \ldots, a_{i s}$) the image of a_{i} under μ. We define partition π on the set of indices of the α_{i}-product B. Any $k, l(\mathrm{I} \leqq k, l \leqq s) k \equiv l(\pi)$. if and only if $\mathbf{A}_{k}=\mathbf{A}_{l}$ and $a_{t k}=a_{t l}$ for all $t=1, \ldots, m$. It can easily be seen that the partition π has at most $|M| \cdot V^{m}$ blocks. Since μ is an isomorphism, thus if $a_{t k}=a_{t l}(t=1, \ldots, m)$ then the k-th component of $\mu\left(\delta_{\mathrm{A}}\left(a_{t}, x\right)\right)$ is equal to the l-th component of $\mu\left(\delta_{\mathrm{A}}\left(a_{t}, x\right)\right)$ for all $t=1, \ldots, m$ and $x \in X$. By this it is not difficult to prove, that the automaton \mathbf{A} can be embedded isomorphically into an α_{i}-product of automata from the set M with at most $|M| \cdot V^{m}$ factors.

DEPT. OF COMPUTER SCIENCE
A. JÓZSEF UNIVERSITY

H-6720 SZEGED, HUNGARY
SOMOGYI U. 7.

References

[1] GÉcseg, F., Composition of automata, Proceedings of the 2nd Colloquium on Automata, Languages and Programming, Saarbrücken, 1974, Springer Lecture Notes in Computer Science, v. 14, pp. 351-363.
[2] Gécseg, F., On products of abstract automata, Acta Sci. Math., v. 38, 1976, pp. 21-43.
[3] Gluskov, V. М., Абстрактная теория автоматов, Успехи матем. наук, 16:5 (101), 1961, pp. 3-62.

[^0]: 3 Acta Cybernetica III/4

