. Rational representation of forests by tree automata

By G. MAROTI ¢

1. Introduction .

In this paper we give a new representation of forests which is more powerful
than the usual one in the followmg sense: for this representation there exists a
proper variety which is complete, i.e., every regular forest can be represented (in
this new sense) by a tree automaton built on a finite algebra belonging to this variety
(Theorem 5). This representation is a generalization of the rational one developed
by F. Gécseg in [1]. Moreover our Theorem 5 yields immediately the result of F.
Gécseg and G. Horvéth [2]: there exists a proper variety over the type G={g, h},
where the arities of g and 4 are 2 and zero, respectively, such that every context-
free language can be recognized by a finite tree-automaton belonging to this
variety.

2. Fr-homomorphism and Fr-embedding

Let F be a nonvoid set and r a mapping of F into the set N of all nonnegative
integers. We call the ordered pair (F, r} a type. The elements of F.are thé opera-
tional symbols. If f¢ F and r(f)=n (n€N) then we say that the arity of fis n'(or f
is an n-ary operational symbol). We will refer to the type (F, r) simply by F. The
subset of all O-ary operational symbols will be denoted by F®.

Take the set X=1{x,, X, ...} and a type .F. The set Ty , of the n-ary polynomial
symbols over F is defined by ' ' :

1) X5 +ees Xp— IETF ns

2)if py, ..., Pu-1€TF, , and f€F is an m-ary operat10nal symbol (m=0) then

f(Po’ coos Pm— I)ETF ns
*3) Tr., is the smallest set satlsfymg 1) and 2).

The set Tp of all polynomial symbols over F is defined as the union of all T,

\

. Every polynomial symbol p€ Ty can be represented by a tree P (by a'loop-free :
connected graph) whose nodes are labelled by the elements of the set FU X in such
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a way that if a node has the label f¢ F then there are exactly r(f) edges leaving it.
We use the terminology that P is the tree belonging to the polynomial symbol p.

Consider the polynomial symbols p€T¢,, and py,...,pP,-1€Tf,. Then
2(py, ---» Pm_1) denotes the following n-ary polynomial symbol over F:

1) if =X (Oéiém_l) then P(p03 "',pm—]_)=pi:

Dif p=f(q,, ..., gi—1), where f€F and r(f)=k, then

P(Po, ---:pm—1)=f(q0(p0a 3pm—1)a ~--v, qk-—l(po’ "'&pm—'l))'

Next we define the mapping fr (frontier): fr is a mapping of Ty into the free
monoid generated by the set X satisfying the following cornditions:

1) fr(xp=x; (1=0,1,..),

2) if heFO, then fr(h) ¢ (e denotes the empty word),

3 if p=f(pgs ... Pm-1), Where fEF and r(f)=m, then

Jr(p) =fr(po) ... fr(Pm-1-

Let us consider now two types F and G. The mapping «:TF—T¢ is called
an fr- homomorplnsm (frontier-homomorphism) if it satisfies the following con-
ditions:

® alx)=x; (i=0,1, - _
(]l) {r(a(f(xi)a ceey Xy 1))) fr(f(x()a LERE xn-l))s where fEF and r(f)=n

(i) a(f(@o, --» Pa=)=0()(@(po); .-, 2(Pn-1)).

Corollary 1. For ‘every polynomial symbol pET F and for every fr- homo-
morphism a: Tr—~T; we have

1

fr(a(p) = fr(p).

Let d(p) dénote'the depht of the polynomial symbol p, i.e., if p is equél to X;
or a 0-ary operational symbol then d(p)=0, and if p is of the form p=f(py, ..., Prn-1)
then d(p)= _max {d(pp}+1. : .

" Corollary 2. Let a: T r—~Tg be an ﬁ-homomorphism, and- assume that for
every f€F, d(a(f(xo, ..-» Xpsy-1))=1. Then. for each peTy

d(x(p)) = d(p)

holds.

Proof. Let pc Ty If d(p)=0 then the assertion is trivial. Assume that Corollary
2 is true for all polynomial symbols whose depht is less than that of p=

_‘f(pOa . :pm 1) ThCIl
B d(a(p)) = d(a(f(POs "'9'pm—1))) = d(a(.f)(a(PO)’ '--:a(pm—l)) =
o2t max {d@@))=1+,_max {d@)}=d().

If the fr-homomorphism a:7y— T is one-to-one then it is called fr-embedding.
Let us denote by T [1] the set of all polynomJaI symbols from F w1th depth

less than orequal to 1 -
TF[l] = {P|P€TF and d(p) = }

\
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For every mapping ¢:Tg[l]—T; satisfying condition (ii) there exists exactly one
Jr-homomorphism «:Tp—~T; such that «tT([l]=0, where atT¢[1] denotes the
restriction of o to T¢[1].

If we take two types F and G then an fr-homomorphism not necessarily exists
between Tp and T;. For example if G consists of unary operational symbols only -
and in F there exists an operational symbol with arity greater than or equal to 2
then, obviously, there is no fr-homomorphism between 7 and 7j.

Consider the type F and denote by S(F) the following set of nonnegatwe
integers

: S(F) = {n|3f€ F with r(f) = n}.

The set._ {0, ..., m—1} will be denoted by s for all natural number m.

Theorem 1. Let F and G be types, S(F):{no,...;n,_l} and S‘(G):
={mg, ..., my_}. If there exists an fr-homomorphism a«: Tp—Tg, then for a-
suitable mapping ¢: F—~3§ we have

(mo_.la cees Mg — 1)'("0_ qu)., rees nr—l_m(r—l)qp)' ‘ R (1)
‘Proof. Let o: TF»TG.be an fr-homomorphism. If G has an operational symbol
with arity zero, then (1) holds for every mapping ¢: F—~§ because of :
(mo—1, ey =1, cocymg_y—1) = 1.
In the opposite case take a p€ T of depth 1, and let g=a(p). Then ‘
fr(@)] = Ifr(@) = n | Wy

for some k¢7. Now consider the tree Q belonging to g. In consequence of (2) Q
has n, leaves. Delete in @ all leaves-belonging to a.given subtree of Q with depth 1.
We ‘get a tree with m,—(m;,—1) leaves, where i;€5. Continue the deletion of
the leaves of-the subtrees from Q with depth 1 as long as we get a tree of depth 1.
At each step the number of leaves of the current tree was reduced by (m; —1) for

.some i,€5. At the end of the process, the tree of depth 1 must have m; leaves where:
j€5. In this way for-suitable nonnegative integers I, ..., /,_, we have

nk_lo(mofl)_---—ls—l(ms—'l_l) =m;. N E)

Hence : ’ _ ) ‘
o k—m; =1 (mo~1)+ et Lo (myy = 1) 4y
Let d be the greatest common lelSOI‘ of my—1,...,my_;—1. Then d divides the

right side of (4). Therefore d divides m~—m; as well.
Take the correspondence k —j, and denote it by ]

W=j R )

Since peTF[l] was arbltrary, while it runs over the set TF[I] in (5), thus k must
run (not necessarily once) over the numbers 0, ..., r—1 and, meanwhile, for every

k€F, ky assigns a subset of §. Let ¢ be a choice function of the system of sets .
{ky | keF}. Because of (4), n,—my, can be divided by d for every k¢r. Therefore
d divides their greatest common divisor, as we stated. = [J
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Unfortunately, condition (1) is not sufficient. Indeed, let F consist of a single
unary operational symbol and let G={g} with r(g)=2. It is clear that condi-
tion (1) holds, but that in T there is no tree with a single leaf.

_ Theorem 2. Using the notations of the previous theorem, the necessary and
sufficient condition of the existence of an fr- homomorphrsm ‘between Tr and Tg
is the validity of the following equalities .

n = m,+lh(mg—D+...+1_(m_—1) (k=0,..,r=1), (6)
where ¢ is a mapping of 7 into § and /; are nonnegative integers for /=0, ..., s—1.

Proof. The necessity of conditions is trivial by the proof of the previous the-
orem,.

Before we are going to prove the sufﬁcrency let us note, that ifa natural number
n is of the form

h = mi+y0(m0—1)+"'+ys—l(ms—1— )s . )
where i€§ and y,, ..., y,_, are nonnegative integers, then there exists a ¢ in 7
such that
- @) =xo Xy 7

We proof this statement by induction on s. For s=1,
n = mo+ yo(me—1).
If gcG with r(g)=m,, then the polynomial symbol

g(g(g(x()’ sees xmo—l)’ xmoa' s x2mo—l)a LR ] xn—l)

is appropriate. Remark, that this choice is possible since n=>0 implies my=0.
Now assume that our statement has been shown for s=v, i.e. for each natural
number #n’ of the form

n’ = m+yome—D+... +y,-1(m, 1 —1)
there exists the desired ¢” in T and let ' '
n=m+y(me—N+...+y,(m,—1) = n’+y,(m,—1).

We distinguish three cases. If m,=>1, then we can choose for ¢ the polynomial
symbol

g(-,--g(q’, Xps ooes xn’+m,,-—1) xn—l):
where g€G and r(g)=m,. If m,=1 then n=n" and, therefore, ¢’ itself is suitable.
Finally, if m,=0 and 4 is O-ary operational symbol in G, then let ¢ be the polynomial -
symbol Wthh can be obtained from ¢” by replacing the variables x,, x,., ..., x,, -1
by A.
i Now assume that conditions (6) hold for the types F and G. In order to show
the sufficiency of our conditions it is enough to define a mapping o: Te[1]-T;

with fr(x (p)) = fr(p) for every pETE[1]. If in F there is no O-ary operational symbol
then for f(x;q, ... _p let

ot(f( Xjo» ++ Jnk—l)) Xjo> ""'xfnk-l),
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. where ¢g€7; the polynomial symbol with . fr(g)=x,...x,,_;, Wwhose existence
was shown above. In the opposite case in. G there must be a 0-ary operational.
symbol as well, say 4. For every f€ F® let o(f)=h. Furthermore if f€ F\F° is
of arity n, (k€F) and g€7T; is the polynomial symbol with - fr(¢)=x,... X, 1, then
for f(¥ip ---» yj"k_l) €Te[1] let :

d(f(yjo, cery yj"k—l)) = q(Zjo, [ Zjnk—l)’
where )
'_ {yfi if yiieX’
#Zh iy, €F0 (=0, ..., n—1).

Z . =
Theorem 2 provides two necessary and sufficient condltlons for the existence of
fr-embedding o:Tz—~T; for every type F.

Theorem 3. The following three condltlons are equxvalent

1) for every type F there exists an fr-homomorphism of T into T,
2) in G there exist a O-ary and an at least binary operational symbols,
3) for every type F there exists an fr-embedding 7 into T§. '

Proof. Because of the previous theorem, 1) is equivalent to 2), and it is clear
that 3) implies 2). Therefore, it is enough to prove the implication 2)=3).

For this let g, h¢G with r(h)=0 and r(g)=2. Consider an arbitrary type
F and take a one-to-one mapping y of F'into T, for which

vl ' : [fr(y (D) = r(f)

holds for every f¢ F. Now we define the mapping f: Tz[l]-T; in the followmg
manner:
) Bex)=x, | |
2) BN =g(h, ... h, y(f) if FEFO,
3) ﬂ(f(y,o, v ) =g(h, . h v(f)(ﬂ(y.o s B(yi,_)))s where y; € XU F°
]—0 n—1) .and fEF ,
Obviously g is one -to-one. Moreover for every p€T,[1] we have

fr(B(p) = fr(p). .
Assume that F={f;, ..., fi-1} and take the following unary polynomial
symbols from T : .
g0 = g(xo, hy ---,h)
_g(qj 1, H h) (.]—0 _1)

Finally, let us denote by o the mappmg of Te[1] into TG for which

o«'(p) = q;(B(p)),

where p=f;(py, ..., Pa—1) € T¢[1]. Obviously, « can be extended to an fr-homo-
morphism «:Tp—~T;. We claim that « is an fr-embedding. Indeed, assume that
for the polynomial symbols p and ¢ in T, a(p)=u(g). We proceed by mductlon
on the depth of p.

If p=x; then a(p)=x;. Moreover

0 =d(x) = d(a(p)) = d(x(q)) = d(q) =0
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implies d(g) = 0, which yields g =x;. If p=f;€F° then dip) =a(f) =
=q;(gCh, ..., b, y(f)) Assume that g has the form Je(tos -5 1,,—1). Then

a(q) - a(fk(tO:v LERR ] m—l)) - qk(g(h’ LA ] h: ')’(fk)(“(to), LR a(tm—l))))'
This and the assumption «(p)=a(g) jointly imply

qj(g(h5 ey h’ y(f]))) = qk(g(hs LA ] hs 'Y(fk)(“(to); ’ tx(tm—l))))'

But this yields j=k.
Finally, assume that p=f;(p,, ..., p,-1) and that the statement has been
shown for every p’ with d(p)<d(p). Let g=f(qo, .-, gm-1)- Then oa(p)=a(q)

implies . .
) q}(g(h’ s ha—'}’(fj)(a(Po): --'za(pn-—l)))) =
= qk(g(hs rees h’ Y(fk)(“(%), “ees a(qm—l)))) . . (7)

- But this holds only if qj'-=q,‘, which i$ equivalent to j=k. Thus (7) yields that -
a(py=alg) (=0, ..., k—1), which makes -the proof complete.

- 3. Fr-representation-

Let F be a finite type and U={4, F) a finite F-algebra .(for terminology,
see [3] and/or [1]). The triple A=(U, g, 4°) is called an n-ary tree automaton over
F, or shortly n-ary F-automaton, where A’S A is the set of final states and a€ A"
is the initial vector. i ,

According to the terminology used in the theory of tree automata the polynom-
ial symbols over F and the subsets of Ty will be called F-trees and F-forests, resp-
ectively.

Consider the n-ary F-automaton. UA=(2, a, A) and let us denote by T(A)
the following subset of T ,

T@) = {p|p€Ts,, and pm(a)E-A}

We say that the forest TS T, can be recognized by U (or U represents the forest
T)if T=T(). ‘

Let Ty, T, & TF,, and 0=i=n—1. The x;product of T and T, is the forest -
which can be obtained by replacing every occurence of x; of some tree from 7,
by a tree in T;. We denote the x;-product of 7, and T, by T3x;T,. Let T%'={x;}
and Thi=Tk-LiYT*Vix, T (k=1,2,..). Finally, let us denote by 7% the union
of all forests T%: ) ‘

T*gi —. G Tk,.-i.

T*i is called the xiteration of the forest T

We say. that the forest TS Ty, is m-regular if it can be obtamed from ﬁmtely
many trees of TF m by finitely many apphcatrons of union, x; rproduct and x,-xtera-
tion. A forest T is called regular if it is m-regylar.for some m..

It is well known that a forest is regular 1f and only if 1t can be recognlzed by
a tree automaton [1]. "
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Take a forest TS Ty, and an n-ary G-automaton A=(2,a, 4"). We say
that W fr-represents the forest T (or T can be fr-recognized by ) if there exists an
fr-embedding a: Tp—Tg such that a(7)=T(A).

Theorem 4. A forest is regular if and only if it can be fr-recognized by a tree
automaton.

Proof. We shall show that the image and the complete inverse image of a regular
forest under an fr-homomorphism are regular as well. This yields for us the
sufficience of our conditions. The necessity is trivial.

Let a: Tg—~T; be fr-homomorphism. From the definition of union and x;-
product of forests immediately follows that for each Ty, T,& Ty, we have

(T UTy) = a(TyUa(Ty), - ®
(T x,T3) = a(TYx;a(T). &)
After this by induction on k it is easy to show that

a(Th) = a(TY* (k=0,1,..).
From this we get

W(TH) = o (D 18] = J artd = § a@p! = e (10)

Consider now the regular forest TS Ty, and assume that it can be obtained
from the trees p,, ..., py—1€ Tr by finitely many application of regular operations
(union, x;-product, x;iteration). Because of (8)—(10), «(7) must be obtained
from a(po),. ., a(py_y) by finitely many applications of the regular operations,
namely in exactly such a manner as T is built up from Pos -+ Pr-1- Therefore,
o{T) is regular as well.

Now take two forests T ETG.n and T’ STy, and assume that 7"=a~1(T)
and that T is regular. Then for some n-ary G-automaton M, T=T(,). Take the
F-algebra B=(B, F) such that B=A and for every f€F, fm o(f)a. Moreover
consider the n-ary F-automaton B=(B, a, 4’). We claim that T(B)=7". Indeed
for every p€Ty ., p€T(B) if and only if py(a@)€4’. But pg(a)=a(p)u (@)€4’ is
equivalent to cx(p)ET( T(W)). Finally, oc(p)eT if and only if p€a="(T) (=T).
. The proof is complete.

Let K be a class of G-algebras. We say that K is fr-complete, if for every regular
forest T (not necessarily over the type G) there exists a finite algebra U=(4, F)
in K, an ga€4" and A"E A4 such that the tree automaton A=(U, g, 4°) fr-repre-
sents the forest T. ‘

Our aim is t6 prove the existence of a nontrivial fr-complete variety. In order
to show this, take the type G in which there exist two operational symbols g and A
with r(g)=2 and r(h)=0. Furthermore consider the equation

glh, ....,h, gh, ..., ) =g(h, ..., h, g(h, ..., h), g(h, ..., b)). an
Theorem S. The variety defined by the equation (11) is fr-complete.
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Proof. Let a: Tg—~T; be an fr-homomorphism such that:

1) a(t)=g(g(h, ..., ), b .., h),

2) a(g(igs - Xp, ) = B(&8Ktgs s K)o B -

3) on the set of all other polynom1a1 symbols of TG with depth less than or
equal to 1 « is the 1dent1ty mapping.

We claim that « is fr-embedding. Indeed, let a(p)= a(q) If p=x; then ob-
viously ¢ must be equal to x;. If p=h then because of a(h)=g(g(h, ..., h), h, ..., h),
g does not contain any operational symbols different from g and h. Therefore, if
d(@)=1, then ¢ must have the form g(p,, ..., pn-). In this way from

g(gh, ... h), by ..., h) = g(g(a(Po), --.» ¥(Pm=1))s b, ..., )

it follows that h=a(p,) which is a contradiction. Therefore, d(g)=0 and thus
g must be equal to A. Finally, if p is O-ary operational symbol different from 4 then
p=gq obviously holds.

Now assume that d(p)=1 and that our statement has been shown for every
polynomial symbol with depth less than that of p. Moreover, let p=g,(pg, ... Px-1)
and g=g,(q,, ---» ¢;—1). Then

a(g)(@(po); ---» 2(Pe-1) = 2 (g (2(o); .- 2(gi-1)) (12)

yields that a(g,) and «(g,) must begin with the same operational symbol, but this
is possible only if g,=g,. Therefore, from (12) we get that k=/ and «a(p)=a(q)
(i=0, ..., k—1). According to our induction hypothesis, this yields that p=gq.

Now take an arbitrary type F and an fr-embedding f: Tp—~T;. Then y=af
is an fr-embedding of Ty into T as well. For the sake of simplicity introduce the

notations
L= g(h, o hgh, ..., h))
and
t, = g(h, woshyg(h, ..., h), g, ..., h)).

Then
. sub(B)Ny(Tp) =0 (=1,2). (13)

Moreover, for every pc€y(Ty)
' tésub(p) (i=1,2). ‘ (14)

Let TSTr, be a regular forest which can be obtained from the trees
Dos ++s Pk-1ETp,m by finitely many applications of regular operations. According
to (14), 7y(po)s -.., y(px-1) can be represented by the m-ary G-automata

s Wy g such that on the algebras U,, ..., ,_, the equation r#,=¢, holds
([1] lemma 2).

Note that the power set of y(TF) is closed under the regular operations, that
“isif Ty, T.S(Tg) then T \UT,, Tyx;T, and T{'C(Ty) as well. Indeed,

T,UT, = (@) URT) € 7(Tp), (15)
Tux, T, = y(F A x7 (1) € ¥(To), (16)
T = y(F @) S 7T, a7
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Therefore, for every forest 7"E T; which can be obtained from y(po), ..., y(Pr-1)
_ by finitely many applications of regular operations we have .

Csub()NT =0 (i=1,2).

By lemmas 3, 4 and 5 of [1] if for the forests 7; and T, -

1) sub (t,)ﬂT =0 @, j=1,2), and

2) T; and T2 can be recognized by the tree automata 2, and ‘l[z, respectl-

vely, such that on the algebras A; and A, 1,=1, holds
then the forests T,UT,, Tyx; T, and 75~ can be represented by the tree automata
B,; B, and B, respectively, such that on the algebras B; (i=1,2,3) t,= t2 holds
as well.

From this and from statements (14)—(17) we get, that every forest Wthh can
be obtained from y(py); ..., 7(Pr—1) by finitely many applications of regular opera-
tions (among them y(T)) can be represented by a G-automaton belonging to the
variety defined by the equation (11). This ends the proof of our theorem.

From the above theorem we can see that the existgnce of a O-ary<and an at
least binary operational symbols in the type G is sufficient for the existence of a
proper fr-complete variety. But, by Theorem 3 it is necessary as well. Therefore,
the simplest types over which there exist fr-complete varieties are those which
consist of exatly one 0-ary and one at least binary operational symbols.

By the languages over the alphabet X={xq, ..., x,—,} accepted by an n-ary

F-automaton A we mean _
LAY = {fr(p)|peTW)}.

In [2] it was shown by F. Gécseg and G. Horvéth that there exists a proper variety

over the type G={g, h} with r(g)=2 and r(h)=0 such-that every context-free ~

language can be accepted by a finite tree automaton belonging to this variety. This
_result directly follows from Theorem. 5.

4. Fr—equivalence of tree automata

In [1] F. Gécseg introduced the concept of rational equivalence of tree automata.
Namely, two tree automata A and B (not necessarily of the same type) are called
rationally equivalent if for every forest T, T can be rationally represented by it
. if and only if T can be rationally represented by B. Now we define the analogous
concept for fr-representation. We call two tree automata W and B fr-equivalent
if the class of forests fr-representable by A is equal to the class of all those forests,
which can be fr-represented by B.

One can naturally raise the following -questions: _

1) Is .the rational equivalence of tree automata decidable? In other words,
does there exist an algorithm to decide for arbitrary two tree automata whether
they are rationally equivalent or not?

2) Is the fr-equivalence of tree automata decidable?

In this section we give positive answers to each of these questions.

L

4 Acta Cybernetica 111/4
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We shall need the following two simple lemmas. |

Lemma 1. Let «: T F;» T: be an fr-embedding and assume that there exists
a forest TS Ty such that a(T)=T. Then for each p€T we have

d(a(p)) = d(p).
Proof. For every natural number #'let
| T, = {plp€T and d(p) = n}.

We shaw that for every n, «(T,)=T,. Indeed, let n, be the least natural number
with T, #=0. If g€T, then a '(q)€T and d(x"'(g))=n, which implies that
a~1(q)€T,,. Therefore, a~Y(T,)ST,,. But a~! is one-to-one and T,, is finite:
Thus the restriction of o~! to T,, is onto, i.e., o~ (7,)=T,,. Hence a(T,)=T,,.
Now take an arbitrary natural number » such that 7,0 and assume that for
every m<n, a(T,)=T,. For each q¢T, we have d(z"(g))=n. If d(«=*(g))<n
then a~1(g)€¢ T, for some m<n implying g€ T,,, which is impossible. Therefore,
d(a'(g))=n, or equivalently a~'(q)€T,. Finally, again from the finiteness of
T, we get that o(7,)=T,.- O

Consider the types F and G. We call the mapping y of F onto G a projection
if y preserves arity. If we have an fr-homomorphism «: Tp—T; such that

1) for every f€F, d(a(f))=1,

2) for every f€F, a(f) has exatly r(f) leaves,

3) for every g€G, g(xo, ..., Xpg-)€x(TF), then we can take the projection
y: F~G for which y(f)=g if and only if a(f(x,, ..., X,(5)-1) =8(Xos ---» Xrery—1)-
For this we use the notation y=u}F.

The next result is obvious.

Lemma 2. Take three fr-embeddings o: Tp—Tg, B: Tg—~Ty and y: Tp—>Ty
such that y=pfo«. Then ytF is a projection if and only if «}F and B:G are projec-
tions as well. . :

Consider an F-automaton U and a G-automaton B. We say that U and B
are equivalent up to the notation of their operational symbols if there exists a one-to-one
projection y of F onto G such that y(T(AW)=T(B).. Moreover, we use the
terminology that F is reduced for N if for every f€ F there is a tree p in T(A) such
that f occurs in p. '

Theorem 6. Take an F-automaton A and a G-automaton B such that F and
G are reduced for A and B, respectively. Then the following three conditions are
equivalent: _

1) A and B are rationally equivalent,

2) A and B are fr-equivalent, » .

3) A and B are equivalent up to the notation of their operational symbols.

Proof. The equivalence of 1) and 3) was proved in [1]. Furthermore, it is obvious
that 3) implies 2). Thus it is enough to show that-3) follows form -2).

First we prove, that if for an fr-embedding «: 7x—Tf there exists a g€ Ty
such that «(g)=g, than for every operational symbol f occuring in g we have
a(f)=f. Indeed, if d(g)=1 then this statement is trivial. Now let g=
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=f(go} ---» gu—,) and assume that for every tree ¢’ with d(¢’)=<d(g) our statement
is true. From «(g)=g we get

() (@(G0)s -, 6(Gmn)) = f Gos > G-

But this yields that «(f)=f and that o(g)=¢g; (i=0,...,k—1). B

" Now take an F-automaton A and a G-automaton B such that F and G are
reduced for A and B, respectively. Assume that A and B are fr-equivalent. Then
there exist two fr-embeddings o: Tp—T; and f: Tg— Ty such that oT(W))=
=T(B) and_ B(T(B))=T(A). Therefore, for the fr-embedding y=pfo we have -
y(T(W)=T(A). Thus, by Lemma [, y preserves the depth of trees in T(A). For
the sake of simplicity let us denote T'(%) by T. :

" Consider the trees pq, ..., p.—1 €T such that for every f€ F there exists a j&m
for which f occurs in p;. Let d(py)=ny, ..., d(py-1) =nw_,. Therefore, p;cT,
(j=0,...,m—1). (We recall that T, is the set of all trees from 7" whose depth is
n;.) Let :

=1, (=0, ..,m=1).

Since T, is finite and y; is one-to-one thus there exist natural numbers K, ..., k,,_1
such that ' ) ‘
vy =idr,  (j=0,..,m=1). (18)
Take d=k, .. k,_;. From (18) it follows that '

P (T,U.. U, ) =idr, u..ur, .

Therefore, for the fr-embedding y¢: Tp— T we have
. Yp)=p; (=0,..,m=1).

Because of the choice of the trees py; ..., p,,—, the first assertion of this proof
yields that y*tF=idp. Thus y% F is a one-to-one projection of F onto F, but by
Lemma 2 this is true if and only if y} F is a projection of F onto F as well. Then
Lemma 2, y=pa and the fact that y} F is a projection jointly imply that a} F is
a projection of F-onto G. The proof is complete.

According to the above theorem in order to decide the rational equivalence
(fr-equivalence) of arbitrary two tree automata U and B it is enough to check
whether there exists a one-to-on€ projection y between the types of & and B such
that p(7(A))=T(B). But the set of all one-to-one projections between two finite
types is finite, and for a given one-to-one projection y the equality y(7())=T(B)
is decidable by taking the minimal tree automata recognizing y(7()) and T(B)..
Thus we have :

Theorem 7. The rational equivalence and the fr-equivalence of tree automata
are decidable.
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