
Rational representation of forests by tree automata 
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1. Introduction 

In this paper we give a new representation of forests which is more powerful 
than the usual one in the following sense: for this representation there exists a 
proper variety which is complete, i.e., every regular forest can be represented (in 
this new sense) by a tree automaton built on a finite algebra belonging to this variety 
(Theorem 5). This representation is a generalization of the rational one developed 
by F. Gécseg in [1]. Moreover our Theorem 5 yields immediately the result of F. 
Gécseg and G. Horváth [2]: there exists a proper variety over the type G={g, h), 
where the arities of g and h are 2 and zero, respectively, such that every context-
free language can be recognized by a finite tree-automaton belonging to this 
variety. 

2. F/-homomorphism and F/--embedding 

Let F be a nonvoid set and r a mapping of F into the set N of all nonnegative 
integers. We call the ordered pair (F, r) a type. The elements of F are the opera-
tional symbols. If / £ F and r ( f ) = n (n£N) then we say that the arity of / i s n (or / 
is an n-ary operational symbol). We will refer to the type (F, r) simply by F. The 
subset of all 0-ary operational symbols will be denoted by F°. 

Take the set X= {x0, xx, ...} and a type F. The set Tr„ of the n-ary polynomial 
symbols over F is defined by 

1) x 0 , . . . , x„_ i£T F n , 
2) if p0, ...,pm-i£ TFn and / € F is an m-ary operational symbol 0) then 

f(p0,...,pm-1)£TFi„, 
3) TF<n is the smallest set satisfying 1) and 2). • 

The set TF of all polynomial symbols over F is defined as the union of all TFt„ 

TF = Ü TF„. • . 
n = 0 

Every polynomial symbol p£TF can be represented by a tree P (by a loop-free 
connected graph) whose nodes are labelled by the elements of the set FUX in such 
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a way that if a node has the label / 6 F then there, are exactly r ( f ) edges leaving it. 
We use the terminology that P is the tree belonging to the polynomial symbol p. 

Consider the polynomial symbols p£Tr>m and p0, •••,pm-i£TF n. Then 
p(p0, ...,pm_j) denotes the following w-ary polynomial symbol over F: 

1) if P=xt ( O ^ n S w - l ) then p(p0, ...,pm-d=Pi, 
2) if p=f(q0,---,<lk-i), where f£F and r ( f ) = k , then 

P(Po, •••,Pm-l)=f{<Io(P<» •••,Pm-l)> •••> 1k-l(.Po, ' 

Next we define the mapping fr (frontier): fr is a mapping of TF into the free 
monoid generated by the set X satisfying the following conditions: 

1) M x d = x, (i = 0 ,T, ...), 
2) if h£F°, then fr(h)—e (e denotes the empty word), 
3) if P—f(Po, • ••>Pm-i)> where f£F and r ( f ) — m, then 

fr(p) =fr(Po)~fr(j>m-i)-

Let us consider now two types F and G. The mapping a:7^— TG is called 
an fr-homomorphism (frontier-homomorphism) if it satisfies the following con-
ditions : 

(i) a{xd=x, ( i = 0 , 1 , ...) 
(ii) fr(a(f(x0, ...,xn.j)) =fr(f(xQ, ...,x„.i)), where f£F and r ( f ) = n 

( » S O ) , . 
(in) a(f(p0, . . . ,p„_ 1 ) ) = a ( / ) (a (p 0 ) , ..., a(pn-J). 

Corollary 1. Fo r every polynomial symbol p£TF and for every / r -homo-
morphism a :TF-*TG we have 

fr(ct(p))=fr(p). 

Let d(p) denote the depht of the polynomial symbol p, i.e., if p is equal to xt 
or a 0-ary operational symbol then d(p)=0, and if p is of the form p =f(p0, • • •, -1) 
then d(p)= max {£/(/?;)}+1. 

i= 0 m — 1 

Corollary 2. Let a : TF— TG be an / r -homomorphism, and assume tha t for 
every f£F, d(a(f(x0, ..., xr(n_1)))^l. Then, fo r each p£TF 

d(x(p))^d(p)' 
holds. 

Proof Let p£ TF. If d(p)=0 then the assertion is trivial. Assume that Corollary 
2 is true for all polynomial symbols whose depht is less than that of p= 
=f{Po'i •••>/>m-i)-' Then' 

d(*(p)) = d(a(f(p0, ...,pm-1))) = d(a{f)(*(p0), ...J«(pm.1)) S5 

+ . max { d ( a ( p , . ) ) } s l + max {d(pfl = d(p). 
1 = 0, ..., m —1 v v ' 1=0, ..., m — 1 

If the / r -homomorphism a: TF-*TG is one-to-one then it is called fr-embedding. 
Let us denote by TF [1] the set of all polynomial symbols f rom F with depth 

less than or equal to 1 
v • • TF[\] = {p|/>(E7V and d(p) 1}: , 
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For every mapping <p: TF{\]-+TG satisfying condition (ii) there exists exactly one 
/ r -homomorphism a : T F — T G such that a\TF[\] = <p, where ocf7V[l] denotes the 
restriction of a to 3TF[1]. 

If we take two types F and G then an / r -homomorphism not necessarily exists 
between TF and TG. For example if G consists of unary operational symbols only 
and in F there exists an operational symbol with arity greater than or equal to 2 
then, obviously, there is no / r -homomorphism between TF and TG. 

Consider the type F and denote by S(F) the following set of nonnegative 
integers 1 

S(F) = {n\3f<iF with r ( f ) = n). 

The set {0, ...,m — 1} will be denoted by in for all natural number m. 

Theorem 1. Let F and G be types, S(F) = {w0, . . . , n , .^} and S(G) — 
= {m0, . . . , mj - j} . If there exists an / r -homomorphism a : TF-*TG, then for a -
suitable mapping (p: r-<-s we have 

( w 0 - l , . . ^ m ^ j - l J K n o - W o , , , . . . , n r _ 1 - m ( r _ 1 ) 9 ) . (1) 

Proof. Let a : TF~* TG be an / r-homomorphism. If Ghas an operational symbol 
with arity zero, then (1) holds for every mapping (p: r—s because of 

( m 0 - l , . . . , - 1 , . . . , m ^ j - l ) = 1. 

In the opposite case take a p£TF of depth 1, and let g=a(p). Then 

\Mg)\..= \MP)\ - nk (2) 

for some k£r. Now consider the tree Q belonging to q. In consequence of (2) Q 
has nk leaves. Delete in g a l l leaves belonging to a given subtree of Q with depth 1. 
We get a tree with nk — {mn — \) leaves, where i1£s. Continue the deletion of 
the leaves of the subtrees f rom Q with depth 1 as long, as we get a tree of depth 1. 
At each step the number of leaves of the current tree was reduced by (miv— 1) for 
some /„££. At the end of the process, the tree of depth 1 must have m} leaves, where 

In this way for suitable nonnegative integers /„, . . . , / s _ 1 we have 

nk-l0(m0-l)-...-ls_1(ms_1-\) = mj.^ . (3> 
Hence 

nk-m} = / 0 ( m 0 - l ) + ... + / s _ 1 ( m s _ 1 - l ) . (4> 

Let d be the greatest common divisor of m0— 1, . . . , 1. Then d divides the 
right side of (4). Therefore d divides nk — mj as well. 

Take the correspondence k-»j, and denote it by \j/ 

. . . (5> 

Since /?G7V[1] was arbitrary, while it runs over the set 7V[1] in (5), thus k must 
run (not necessarily once) over the numbers 0, ' . . . , r—1 and, meanwhile, for every 
k£r, ki]/ assigns a subset of s. Let cp be a choice function of the system of sets 
{kf\k£r}. Because of (4), nk—mk(p can be divided by d for every k£r. Therefore,. 
d divides their greatest common divisor, as we stated. • 
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Unfortunately, condition (1) is not sufficient. Indeed, let F consist of a single 
unary operational symbol and let C7={g} with r(g) = 2. I t is clear tha t condi-
tion (1) holds, but that in TG there is no tree with a single leaf. 

Theorem 2. Using the notat ions of the previous theorem, the necessary and 
sufficient condit ion of the existence of an / r -homomorph i sm between TF and TG 

is the validity of the following equalities 

nk = mk9 + l0(m0-l)+... + l,-1(m,-1-l) (k = 0, . . . , r - 1 ) , (6) 

where cp is a mapping of r into I and /( are nonnegative integers for / = 0 , . . . , s — 1. 

Proof. The necessity of conditions is trivial by the proof of the previous the-
orem. 

Before we are going to prove the sufficiency let us note, that if a natural number 
n is of the fo rm 

n = mi + y0(m0-\) + ...+ys_1{ms_1-\), s 

where i£s and y0, . . . , ys-x are nonnegative integers, then there exists a q in TG 

such that 

. fr(q) = x 0 . ' 

We proof this s tatement by induction on s. Fo r s = l , 

n = m0 + y0(m0-\). 

If g£G with r(g)=m0, then the polynomial symbol 
&(•••&(£(•*()> ••• > xmo~l)> Xm0' ••• ' X2mo-l)> ••• ' * n - l ) 

is appropriate . Remark, that this choice is possible since 0 implies m0=-0. 
N o w assume that our statement has been shown for s=v, i.e. for each natural 

number n' of the f o r m 

n' = ml- + } ' 0 ( m 0 - l ) + . . . + > ' „ _ 1 ( w „ _ 1 - l ) 

there exists the desired q' in and let 

n = mi + y0(m0-l) + ...+yv(mv-l) = n' + yv(mv~ 1). 

We distinguish three cases. If 1, then we can choose for q the polynomial 
symbol 

g(.,.g(q', xn., ...,x„-+mu_1)...xn_1), 

where gdG and r(g)=mv. If mv=\ then n=ri and, therefore, q' itself is suitable. 
Finally, if mv=0 and h is 0-ary operational symbol in G, then let q be the polynomial 
symbol which can be obtained f r o m q' by replacing the variables x„, xn+1, ..., xn._l 
by h. 

N o w assume that conditions (6) hold for the types F and G. In order , to show 
the sufficiency of our conditions it is enough to define a mapping a : 7V[1] — TG 
with fr(a(p))=fr(p) fo r every p£TF[ 1]. If in F there is no 0-ary operational symbol 
then for f (XJQ, •••,xJnk_1) let 

cc(f(xJo, . . . ^ x j ^ ) ) = q(xJo, •••,xJ„k_1), 
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where q£TG the polynomial symbol with fr(q) = x0...xnk_1, whose existence 
was shown above. In the opposite case in- G there must be a 0-ary operational 
symbol as well, say h. For every f£F° let a ( f ) = h. Furthermore if f£F\F° is 
of arity nk (k£r) and q£Ta is the polynomial symbol with •fr(q) = x0...x„k_1, then 
for f(yJo, . . „ y j ^ j t T M let 

«(/OV ••' yjnk-1)) = - ' ZJnk-1)' 
where 

' =\yu i f yj£x> 
Z j , r \ h . if .yj£F° (/ = 0, ..., nk— 1). 

Theorem 2 provides two necessary and sufficient conditions for the existence of 
//•-embedding a:7>— TG for every type F. 

' Theorem 3. The following three conditions are equivalent: 
1) for every type F there exists an //--homomorphism of TF into TG, 
2) in G there exist a 0-ary and an at least binary operational symbols, 
3) for every type F there exists an //--embedding TF into TG. 

Proof. Because of the previous theorem, 1) is equivalent to 2), and it is clear 
that 3) implies 2). Therefore, it is enough to prove the implication 2)=>3). 

For this let g,h£G with r(h)=0 and r(g)S2. Consider an arbitrary type 
F and take a one-to-one mapping y of F into TG, for which 

\ f r ( y ( f ) ) \ = r ( f ) 

holds for every f£F. Now we define the mapping /?: 7"F[1] — TG in the following 
manner: 

1) P(xi) = xi 
, 2) p(f)=g(h, ...,h,y(f)) if / e n ' 

3) P(f(yi0, ...,yln_j) = g (ft, ...,h,y(f){P(yi0), Where y^XUF» 
0 = 0, . . . , n—1) .and f£F\F°. 

Obviously /? is one-to-one. Moreover, for every p(LTF[\\ we have 

• HP(p)) = f r ( p ) . 

Assume that F={f0, ... ,fk-^) and take the following unary polynomial 
symbols f rom TG 

= g(xo, h> 

qj = g{qj^,h, ...,h) ( j = 0, ..., k-1). 

Finally, let us denote by a' the mapping of- 7V[1] into TG for which 

«'(p) = IAP(P)), 
where p=fj(p0, Obviously, a' can be extended to an //--homo-
morphism a : 7V— TG. We claim that a is an //--embedding. Indeed, assume that 
for the polynomial symbols p and q in TF, a.(p)=a(q). We proceed by induction 
on the depth of p. 

If p=Xi then a (p) = x ; . Moreover, 

0 = d(x^ = d(a(p)) = d(a(q)) ^ d{q) S 0 
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implies d(q) = 0, which yields q — x,. If p = fj£F° then d(p) = a ( f j ) = 
= qj{g(li, y ( / ; ) ) . Assume that 9 has the fo rm/* ( / „ , . . . , Then 

«(?) = «(AOo, - = &(g(h. •••,h,y(fk)(ci(t0), ...,«(/„_!)))). 

This and the assumption a ( />)=a(^) jointly imply 

..., h, y ( f j ) ) ) = ...,h, y(A)(a(i0), .7., « ( /„_ , ) ) ) ) . 

But this yields . / = £ . 
Finally, assume that p=fj(p0, •••,Pn-1) and that the statement has been 

shown for every p' with d(p')<d{p). Let q=fk(.q0, •••, qm-d- Then a(p)=a(q) 
implies 

qj{g(h, ...,h, y(fj)(a(p0), ..., a(pn-:i)))) = 

= <}k(g(h> •••>h> 7 ( A ) ( « ( ? o ) 3 •••, a ( ? m - i ) ) ) ) - . (7) 
But this holds only if qj = qk, which is equivalent to j=k. Thus (7) yields tha t 
«(/>;)= a(?i) '0'—Q> •••,k— 1), which makes the proof complete. 

3. Fr-representation 

Let F be a finite type and 91=(/4, F) a finite F-algebra (for terminology, 
see [3] and/or [1]). The triple 31=(91, a, A') is called an n-ary tree automaton over 
F, or shortly n-ary F-automaton, where A'QA is the set of final states and ad A" 
is the initial vector. 

According to the terminology used in the theory of tree automata the polynom-
ial symbols over F and the subsets of TF will be called F-trees and F-forests, resp-
ectively. 

Consider the w-ary F-automaton. 9 l=(9I , a, A') and let us denote by F(3I) 
the following subset of TFf„ 

T(®) = {p\pefF,„ a n d P v ( a ) £ A ' } . 

We say that the forest TQ TF „ can be recognized by 9i (or 9T represents the forest 
T) if T= 7\3I) . 

Let Tlt T2QTFi„ and O^i^n-l. The xrproduct of Tt and T2 is the forest 
which can be obtained by replacing every occurence of x, of some tree f r o m T2 
by a tree in T1. W e denote the x r p r o d u c t of 7\ and T2 by T^XIT2. Let F 0 , i = {x,} 
and xk,' = Tk~1,i[JTk~1,ixiT (k=l, 2, ...). Finally, let us denote by T*-1 the union 
of all forests TK-': 

J * , i _ ^ y ft, i 
*=0 ' 

T*'1 is called the xriteration of the' forest f . 
We say. that the forest TQ TFt„ is m-regular. if it can be obtained f r o m finitely 

many trees of TF: M by finitely many applications of union, x r produc f and x' r i tera-
tion. A forest T is called regular if it is m-regular. for some m.. 

I t is well known tha t a forest is regular if and only if it can be recognized by 
a tree au tomaton [1]. ' 
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Take a forest TQTF<n and an n-ary G-automaton 5 I = ( 2 I , a , A ' ) . We say 
that 51 fr-represents the forest T (or T can be fr-recognized by 51) if there exists an 
//•-embedding a : TF-*TG such tha t ct(T) = T(W). 

Theorem 4. A forest is regular if and only if it can be //--recognized by a tree 
automaton. 

Proof. We shall show that the image and the complete inverse image of a regular 
forest under an / r -homomorph i sm are regular as well. This yields for us the 
sufficience of our conditions. The necessity is trivial. 

Let a : TF-*TG be / r -homomorphism. From the definition of union and xr 
product of forests immediately follows tha t fo r each 7 i , T 2 Q T F t „ we have 

« ( ^ U r ^ a ^ U « ^ ) , ( 8 ) 

<TlXiT2) = a C r j x t a ( T J . (9) 

After this by induction on k it is easy to show that 

a ( 7 ? ' 0 = a W (fc = 0 , 1, . . . ) . 
From this we get 

a W ) = a f U 7?- ' ) = U cc(Ttl) = U o c ( 7 \ ) M = « ( r j * - 1 . (10) 
V*=0 > k=0 * = 0 

Consider now the regular forest TQ TF, and assume that it can be obtained 
f rom the trees p0, . . . , p k - i £ T F by finitely many application of regular operations 
(union, x r p r o d u c t , x,-iteration). Because of (8)—(10), a(T) must be obtained 
f rom a(p0), ..., oi(pk_j) by finitely many applications of the regular operations, 
namely in exactly such a manner as T is built up f rom p0, ...,pk_1. Therefore, 
ct(T) is regular as well. 

N o w take two forests T^TG<N and T'QTFI„, and assume that T'^A.~1(T) 
and that T is regular. Then for some n-ary ( / -automaton 51, T= 7X51). Take the 
F-algebra S — (B,F) such that B=A and for every f£F, f<8=x(f)m- Moreover 
consider the n-ary F-automaton S = a, A'). We claim that T(%)-T'. Indeed 
for every p€TF,m, p£T(%) if and only if pm(a)eA'. But Pm{a)=a(p)m (a)£A' is 
equivalent to a(p)£T( = T(W)). Finally, a ( p ) £ T if and only if p£a~i(T) (=T'). 
The proof is complete. 

Let K be a class of (7-algebras. We say that K is fr-complete, if for every regular 
forest T (not necessarily over the type G) there exists a finite algebra S i = ( A , F) 
in K, an a d A" and A'^A such that the tree automaton 5 l = ( 5 t , a , A ' ) fr-repre-
sents the forest T. 

Our aim is to prove the existence of a nontrivial //--complete variety. In order 
to show this, take the type G in which there exist two operational symbols g and h 
with r ( g ) = 2 and r(h)=0. Fur thermore consider the equation 

g(h, ...,h,g(h, ...,h)) = g(h, ...,h,g(h, ...,h),g(h, ...,h)). (11) 
Theorem 5. The variety defined by the equation (11) is /r-complete. 
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Proof. Let a: TG—TG be an /r-homomorphism such that: 
1) a(*) = g'(g(fc, A), 
2) cc(g(xl0, ...,xlm_J) = g(g(xi0, ...,xlm_J,h, ...,ti), 
3) on the set of all other polynomial symbols of TG with depth less than or 

equal to 1 a is the identity mapping. 
We claim that a is //--embedding. Indeed, let a{p)=a{q). If p=x, then ob-

viously q must be equal to If p=h then because of a(h)=g(g(h, ..., h), h, ..., h), 
q does not contain any operational symbols different from g and h. Therefore, if 
d(q)^ 1, then q must have the form g(p0, . . . , p m - t ) . In this way from 

g(g(/i, ...,h), h, ...,h) = g(g(a(p0), ...,a(p m - j ) ,h , ...,h) 

it follows that h=cc(j)0) which is a contradiction. Therefore, d(q)=0 and thus 
q must be equal to h. Finally, if p is 0-ary operational symbol different" from h then 
p=q obviously holds. 

Now assume that </(/>) = 1 and that our statement has been shown for every 
polynomial symbol with depth less than that of p. Moreover, let p=gi(p0, •••,pk-1) 
and q=g2(q0, •••, Then 

a(gi)(a(Po), «(Pt-i)) = a(g2)(<*(tfo). •••> a(?/-i)) (12) 

yields that a(gi) and a(g2) must begin with the same operational symbol, but this 
is possible only if g1=g2. Therefore, from (12) we get that k=l and a(pl)=a(ql) 
(i=0, ..., k—1). According to our induction hypothesis, this yields that p=q. 

Now take an arbitrary type F and an /r-embedding /?: 7V— TQ. Then y=ctp 
is an /r-embedding of TF into TG as well. For the sake of simplicity introduce the 
notations 

' tt = g(h, ...,h,g(h, ...,hj) 
and 

t2 = g(h, ...,h,g(h, ...,h),g(h, ...,h)). 
Then 

sub ( 0 H y (TF) — 0 (i = 1, 2). (13) 

Moreover, for every p€y(TF) 
f,<tsub(p) (i = 1, 2). (14) 

Let T<^TFi„ be a regular forest which can be obtained from the trees 
p0, •••,Pk-i€TFim by finitely many applications of regular operations. According 
to (14), y(p0), ..., y(pk-i) can be represented by the m-ary (7-automata 
5I0, . . . , such that on the algebras 9l0, . . . , 3 1 * t h e equation tx = t2 holds 
([1] lemma 2). 

Note that the power set of y(7>) is closed under the regular operations, that 
is if Tlt T2<g(TP) then T^Tz, Txx{T2 and T?-'Q(TF) as well. Indeed, 

T1{JT2 = y(y\TdUy1(.TJ)^y(TF), (15) 

T\X{T2 = yinrjxtriTd) g y{TF), (16) 

T*-> = № 0 g y(TF). • (17) 
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Therefore, for every forest T'^TG which can be obtained f rom y(p0), . . . , y(pk-i) 
by finitely many applications of regular operations we have 

sub ( / ; )nr = 0 (¿ = 1,2). 

By lemmas 3, 4 and 5 of [1] if for the forests T1 and To 
1) sub ( ^ 0 ^ = 0 (i, 7=1,2), and " _ 
2) and T2 can be recognized by the tree au tomata 5 ^ and 3f2»' respecti-

vely, such that on the algebras and 5I2 h = h holds, 
then the forests 7 \ U J2, Txx;T2 and T*-> can be represented by the tree au tomata 
S i , S 2 and S 3 , respectively, such that on the algebras S f (/ = 1, 2, 3) tL=t2 holds 
as well. 

From this and f rom statements (14)—(17) we get, that every forest which can 
be obtained f rom y(p0), ..., y(pk-i) by finitely many applications of regular opera-
tions (among them y(Tj) can be represented by a G-automaton belonging to the 
variety defined by the equation (11). This ends the proof of our theorem. 

F rom the above theorem we can see that the existence of a 0-ary .and an at 
least binary operational symbols in the type G is sufficient for the existence of a 
proper //--complete variety. But, by Theorem 3 it is necessary as well. Therefore, 
the simplest types over which there exist //--complete varieties are those which 
consist of exatly one 0-ary and one at least binary operational symbols. 

By the languages over the alphabet X={x0, . . . , x„_x} accepted by an n-ary 
F-automaton 51 we mean _ 

¿ ( s t ) = { M p ) \ p e m ) } . 

In [2] it was shown by F. Gécseg and G. Horváth that there exists a proper variety 
over the type G = {g, h) with r(g)=2 and r(h)=0 such that every context-free 
language can be accepted by a finite tree automaton belonging to this variety. This 
result directly follows f rom Theorem 5. 

4. Fr-equivalence of tree automata 

In [1] F. Gecseg introduced the concept of rational equivalence of tree automata. 
Namely, two tree automata 51 and S (not necessarily of the same type) are called 
rationally equivalent if for every forest T, T can be rationally represented by 51 
if and only if T can be rationally represented by 53. Now we define_the analogous 
concept for //--representation. We call two tree automata 51 and © fr-equivalent 
if the class of forests /r-representable by 51 is equal to the class of all those forests, 
which can be //--represented by 23. 

One can naturally raise the following questions: 
1) Is . the rational equivalence of tree automata decidable? In other words, 

does there exist an algorithm to decide for arbitrary two tree automata whether 
they are rationally equivalent or no t? 

2) Is the //--equivalence of tree automata decidable? 
In this section we give positive answers to each of these questions. 

4 Acta Cybernetica 111/4 
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We shall need the following two simple lemmas. . 

Lemma 1. Let a: 7>—7> be an /r-embedding and assume that there exists 
a forest T<gTF such that a(T) = T. Then for each p£T we have 

d(*(p)) = d(p). 

Proof. For every natural number n let 

T„ = {P\P£T a n d d(p) = n). 

We shaw that for every n, z(T„) = Tn. Indeed, let n0 be the least natural number 
with If q£Tno then a~x{q)^T and d(a~1(q))^n0 which implies that 
a _ 1 ( ? ) e r „ 0 . Therefore, a^iT^^T^. But a - 1 is one-to-one and T„a is finite. 
Thus the restriction of a " 1 to Tno is onto, i.e., a.~l(Tn^=Tnii. Hence a( r„ 0 ) = r„ 0 . 
Now take an arbitrary natural number n such that and assume that for 
every m<n, a(Tm) = Tm. For each qiTn we have d{a~1(q))^n. If d(arl(q))<n 
then a~1(q)£Tm for some m<n implying q£Tm, which is impossible. Therefore, 
d(<x~1(q)) = n, or equivalently <x~1(q)£T„. Finally, again f rom the finiteness of 
Tn we get that a (T^ = Tn. • 

Consider the types F and G. We call the mapping y of F onto G a projection 
if y preserves arity. If we have an / r -homomorphism a : TF— TG such that 

1 ) fo r every fdF, d(a(f))= 1, 
2) for every / £ / " , a(/) has exatly r(f ) leaves, 
3) for every g£G, g(x0, . . . , xP ( 9 )-i)€a(7V), then we can take the projection 

y: F—G for which y(f)=g if and only if a ( / ( x 0 , . . . , xr(f)_1))=g(x0, ..., x r ( / ) - i ) . 
For this we use the notation y = a\F. 

The next result is obvious. 

Lemma 2. Take three /r-embeddings a: TE-*TG, fi: TG-*TH and y: TF — TH 
such that y = /ta. Then y\F is a projection if and only if a\F and /}\G are projec-
tions as well. _ _ _ 

Consider an /"-automaton 5t and a (J-automaton ©. We say that 21 and © 
are equivalent up to the notation of their operatioml symbols if there exists a one-to-one 
projection y of f onto G such that y(7X9l))=7"(©).. Moreover, we use the 
terminology that F is reduced for 51 if for every / £ F there is a tree p in T(9I) such 
that / occurs in p. 

Theorem 6. Take an /"-automaton 91 and a CP-automaton © such that F and 
G are reduced for 91 and 93, respectively. Then the following three conditions are 
equivalent: _ 

1) 51 and © are rationally equivalent, 
2) 91 and © are /r-equivalent, 
3) 91 and S are equivalent up to the notation of their operational symbols. 

Proof. The equivalence of 1) and 3) was proved in [1]. Furthermore, it is obvious 
that 3) implies 2). Thus it is enough to show that 3) follows form 2). 

First we prove, that if for an /r-embedding a: TF-+TF there exists a q£TF 
such that a(q)—q, than for every operational symbol / occuring in q we have 
a { f ) = f Indeed, if d(q)^ 1 then this statement is trivial. Now let q = 
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=f(<lo) •••> <7t-i) and assume that for every tree q' with d(q')<d(q) our statement 
is true. From a (q) = q we get 

a(/)(«(?o). - . a f e - i ) ) =f(<lo, —,9k-i)-

But this yields that a ( / ) = / and that a.{q?) = qi ( ¡ '=0^. . . , k— 1). 
Now take an F-automaton 2i and a (/-automaton 23 such that F and G are 

reduced for 31 and 93, respectively. Assume that 21 and 23 are //--equivalent. JThen 
there_exist two //--embeddings a: TF-*TG and jS: TG-*TF such that a(T(2l)) = 
= T(23) a n d _ ^ ( r ( ® ) ) = r(2T). Therefore, for the //--embedding y = /Jx we have 
•y(T(2i))= r(2I) . Thus, by Lemma 1, y preserves the depth of trees in 7\5t) . For 
the sake of simplicity let us denote 7\2I) by T. 

Consider the trees p0, ...,pm_^T such that for every f£F there exists a j£m 
for which / occurs in pj. Let d(p0)=n0, ..., d(p„,-1) = nm-l. Therefore, pjd T„. 
(j—0, ...,m— 1). (We recall that T„. is the set of .all trees f rom T whose depth is 
rij.) Let 

yj = y*T„. ( j = 0, . . . , m — 1). 

Since Tn. is finite and ys is one-to-one thus there exist natural numbers A0, . . . , Arm_i 
such that 

ykjJ='^Tnj O' = 0, . . . , m - l ) . (18) 

Take d=k0..^km-1. From (18) it follows that 

/ K ^ 0 U - u r „ m _ 1 ) = id r n o U . . . u 7 - n r a i . 
Therefore, for the//--embedding yd: TF^TF we have 

yd(Pj) = Pj 0 = 0, . . . , m - l ) . 

Because of the choice of the trees poi ...,pm^1 the first assertion of this proof 
yields that / f F = i d f . Thus yd\F is a one-to-one projection of F onto F, but by 
Lemma 2 this is true if and only if y\F is a projection of F onto F as well. Then 
Lemma 2, y= / f a and the fact that y\F is a projection jointly imply that a\F is 
a projection of F onto G. The proof is complete. 

According to the above theorem in order to_decide_the rational equivalence 
(//•-equivalence) of arbitrary two tree automata 21 and 23 it is enough to_check 
whether there exists a one-to-one projection y between the types of 21 and 23 such 
that y(r (2l ) ) = 7"(23). But the set of all one-to-one projections between_two finite 
types is finite, and for a given one-to-one projection y the equality y(r (2I) ) = 7"(23) 
is decidable by taking the minimal tree automata recognizing y(7"(2l)) and 7X23).. 
Thus we have 

Theorem 7. The rational equivalence and the //--equivalence of tree automata 
are decidable. 
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