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Introduction

The notion of a symmetric function can be found in any textbook on switching
theory or logical design. It is well-known (SHANNON [1]) that the truth-value of
a symmetric function depends only on the number of literals for which the truth-
value TRUE is substituted. More precisely, the following theorem holds.

" Theorem (Shannon). Let ¢ be a Boolean function of n variables. ¢ is a symimetric
function if and only if there exists a set of integers {n, ns, ..., m} (called the Shannon
set of @) (k=n, 0=n;=n for i=k) such that the truth-value of ¢ is TRUE iff for
exactly n; of the literals TRUE is substituted.

The proof of this theorem gives no idea.how to determine the set {n,, n5, ..., n,}.
- Since symmetric functions have nice properties, it is important to decide whether

a given function ¢ is symmetric or not. As far as we know, there are only trivial
methods (i.e., to test all possible cases) for the solution of this problem.

In this paper we present an effective algorithm to determine the Shannon set
of a Boolean function if it exists. The method is based on the tree-representation
of Boolean functions .used by the present authors [2] to get irredundant normal-
forms as representation of them. In particular, we associate a number — the number
of negative literals — to each path of this tree. Then by a simple comparison of
the endnodes of the paths and of the associated numbers, we can collect the Shannon
set provided it exists. - o

1. The tree-representation of Boolean functions
3
To make the paper self-contained, we ' present here the tree-construction -al-
gorithm, too. A more detailed explanation and the basic results can be found in [2].
. Let a Boolean function ¢ be given in which at least one variable occurs. Choose
a variable of ¢ according to some rule (a so-called selection function), fixed pre-
viously. First, substitute the truth-values TRUE and FALSE, respectively, for the
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chosen variable. Then eliminate the truth-values from both expressions obtained
by using the following transformation rules:
PNl —@; INp o
¢A0O —0; 0N —0
oV1—1; IV —1
oNVO—p;  OVo—o
¢—>11
¢—-0-9
S
0—-p+1
@—D)=p; (=)o
(p=0)—~@; OQ—¢)—¢
Ao —o
PAG0;  FAe—0
PN@ ¢
VP —1; Vo1
-1
(o)1
P
T-0
01
As a result of the elimination process we come to one of the followmg two‘
cases: - . . .

(i) The expression obtained contains at least one variable. Then let us choose
a variable in it according to our rule, and repeat the substitution and the elimina-

tion described above.
(ii) The expression obtained is a single truth-value. Then the algorithm stops.

We note that the function ¢, together with a seléction function, determines its
tree uniquely up to isomorphism, and conversely, every binary tree determmes
a Boolean-function uniquely up to logical equivalence.

The following example illustrates the method. We use the usual loglcal con-.
nectives (A for conjunction, V for disjunction, — for implication, < for equivalence,
and ~ (bar) for negatlon) 1 and 0 w1ll denote the truth-values TRUE and FALSE’

respectively. -
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Example. Let the Boolean function ¢ be as follows:
¢: (A=BN(CVB) - )~ 4

Let us choose the variables alphabetically. The substituted and “simplified” ex-
pressions can be arranged in a tree as indicated in Fig. 1. .

As it was proved in [2, Corollary 6], the function ¢ and also its sub-functions
can be omitted since they are obtainable from the shape of the tree, so it is enough
to draw the simpler form as indicated in Fig. 2.

[ (A=B A (EvB)— AN—n

The concept of a complete tree was introduced also in [2]. A tree of a Boolean
function is complete iff all paths from the root to ‘an endnode of the tree have the
~ same length, which .is equal to the number of the varlables of . The reader can
easily verify the following two assertions. :

Lemma 1. Let @ bea Boolean Junction of n'variables. T hen oné’can ﬁnd d Boolean
Sunction ¢’ with the same variables, the tree: of which is complete. and ¢”.is. logically
equivalent to @. ¢’ and its complete tree are uniquely determined. .

In practice, it is very easy to get a complete tree from any mcomplete one as
Fig. 3 shows. :

Lemma 2. Let ¢ be a Boolean function of n variables.and suppose: that the tree
of ¢ is_complete. Then there exzst exactly 2" paths in the tree of go

Conventwn In the rest of this. paper we shall assume that every tree is’ drawna
in such a way that the positive sub-expressions (those which can be obtained: by
substituting TRUE for a variable) are drawn on the léft-hand side, while the niegative
sub-expressions-are drawn on the right-hand.side of the tree. Observe . that.trees
in Fig. 1—3 correspond to . this con_\{entipn. oo

Definition. Let @ be a Boolean function: of . varlables Then 1ts complete tree
is the tree of ¢’ determined by Lemma 1. e L e kg T d
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Fig. 3

) 2. The s_équenée &
Definition: Let us definé the sequence of non-negative integers ({) by
4 ék—the number of 1 in the bmary expansmn of k——l (k—l 2 )
: Deﬁmtwn Let (C,,) be deﬁned by the followmg recurrence:

G =0,
Cor-1= s
$or = L+ L.

Lemma 3. We have &=L for every k=1,2,.

Proof. If k=1, then the lemma holds by deﬁmtlon For every k=2 there
exists: exactly one non-negatwe mteger n such that 2"<k=21*1 We proceed by
induction on n.’

Let n be fixed. Assume 2"<k52"+1 and that 152" 1mp11es é,—C,

-~ Let k=2l—1. Obviously, k—1=2I—-2 s even and /=2", sa.

L=li=&=¢.

Note: that the last- equatlon holds, since multlphcatlon by 2 S1mple means a shlftmg
in the bmary expansion of k—1.
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Let k=2l vaviously k—1=2I—1 is odd.and ‘[=2" so
L = oy = Cz‘*‘l = C1+1 =& 1+1

where again the last equatlon holds by the shlftmg property mentloned above.
We have to prove that 4

ot =y

However, this readily follows by definition from the fact that 2/—1-is ‘odd and
2]—1=2]-2+1.
The proof of Lemma 3is complete

Definition. For each non-negatlve integer n we deﬁne fzn(k) by the follow-
ing recurrence: ,

M) &e()=0, L
. En(k) if O0<k=2", 1
v(") 62"+1(k) ={ n n+1 — on
v En(D) . if 2"k =2 and k=.2"+1.
Lemma4 We have Li=CEan(K) provzded O<k=2"
Proof It is enough to prove that
Gen@k—1) = ()

and | o N o
Eroa(2K) = En(k) 1,

since if we assume that 0<k=2" entails .
~ 4 b= En(K),” - 2
then if [=2k—1 (2"<I=2"*+1), then ‘ '
R 6= Cami = Ge= & (R)
by (2); and if [=2k (2"<I=2n+1), then
| O=Cu =01 = L) +1.
We prove (1) by induction on n. If n= O then (1) trivially holds. If n;éO
then we prove that :
' B fzn+z(2k—1) = Conaa(k)
and
- g2n+z(2k) = Egnra(k)+1 (k =1,2,..,2"),
In each case two subcases will be dlStlngUIShed
1) If k is odd and 2k—1=2" then ‘
ézn+2(2k—1) = 52n+1(2k"— 1) = égn(k) = égn+1(k).
HIfkis odd and 2k-—1>2" then -
2k—1= = 2" 41,

L4

where ./=2" and /is odd, thus _
- 2k—1=2"4+2m—1.-
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We have also for k=2"+m,
Conr2(2k—1) = Eone2(R"+]) = Lnr(D+1 =
= Epn(m)+1 = &1 4 m) = Exnes(K).
.3) If k is even and 2k =2" then
Conv2(2k) = Lone1(2k) = Ean(k) +1 = Eaner (k) + 1.
4) If k is even and 2k=2" then .
Conv2(2k) = Eone2(2+1) = Loner(D+1 = Epra(Cm) +1 =
=Con(m)+2 = Lnna "1+ m)+ 1 = Epnna(k) + 1.
The proof of Lemma 4 is complete. '

The sequence &yn(k) can be easily generated so by Lemma 3 and Lemma 4
we have a “fast” algorithm to obtain the sequence {£,). The use of this sequence
is shown by the following

Theorem S. Let ¢ be a Boolean function of n variables. Let us number the end-
nodes in its complete tree by k=1,2, ...,2" from the left to the right. Then £, means
the number of the negative literals in the path, the endnode of which is numbered by k

Proof. Denote by n(k) the number of the negative literals in the path labelled
by k. Actually, one can prove by induction on the number of the variables in ¢. that

n(k) =¢

3. Symmetric functions
Definition. Let T be the set of indices of those paths whose endnodes are
TRUE.

Corollary 6. Let ¢ be an n-ary symmetric function and let m be an arbitrary
non-negative integer such that m=n. Then m is an element of the Shannon set of
@ if and only if

Jk|n— ék m}ET.

Proof. 1t is qu1te easy by Theorem 5.
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