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Introduction 

The aim of this paper is to introduce some truth functions, which seem to 
be useful in the theory of graph colouring, and to study their basic properties and 
their interrelations. 

It can be hoped that a future article will contain a some more detailed analysis 
of these functions and some applications of the results presented now. 

Theorem 3 includes (somewhat implicitly) a purely graph-theoretical asser-
tion. In fact, a simple representation of the maximal ^-critical graphs may be given: 
these can be produced as the intersection of N graphs each of which is the comple-
ment of a partition graph1. 

§ 1. Concepts and notations for graphs 

1.1. By a graph, always a non-directed finite graph is meant without loops 
and parallel edges. Later the vertex set of any graph will be viewed to be labelled, 
a vertex will be identified with the corresponding number (except when it is emphasiz-
ed explicitly that a graph is considered abstractly, i.e., apart f rom isomorphy). 

If a natural number is denoted by a letter N, then denote by JF (the script 
form of the same latter) the set {1, 2, . . . , yV}; furthermore, we define Jf by 

J T t = {1,2, . . . , / - l , i + l , ...,JV> 

for an arbitrary / (1 ^ i s N ) . The letter J4f denotes an arbitrary set of natural 
numbers (not necessarily of form {1, 2, . . . , H}). The cardinality of a set J? is denoted 
by is the complete graph with the vertex set If j f is a subset of J f , 
then we put H e = J r - $ e . 

1 The notions occuring here will be defined later. 
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For a graph ©, is the set of vertices of © and r (©) is the set of edges of ©. 
If the number N is fixed and y((S>) for a graph ©, then we denote the comple-
ment of © (with respect to Cjr) by -

The isomorphy of graphs is denoted by %. The sign Q can express both subset 
and subgraph; we write c if the inclusion is proper. * (©) is the chromatic number 
of ©. 

A graph © is called partition graph if each connected component of © is 
complete. ^ 

Let us fix the set By S?c
x the set of all parti t ion graphs © is mean t such 

tha t y / " (©)=J f and the number of connected components of © is c. 

1.2. Let / l = m y | | be a symmetric matrix of size NX.N such that the entries 
of A a re truth values and —X^—.. . — ) . N N = I. Let the funct ion $ assign to 
A the graph &> = <P(A) with such tha t the edge i] exists in © if and 
only if l i j = $ is obviously a one-to-one mapping and the range of exhausts 
the set of all graphs on the vertex set V.2 

1.3. A n abstract graph © is called edge-critical f o r e-critical) if x ( © ' ) < * ( © ) 
for every © ' such that © ' results f r o m © by deleting one edge. 

Analogously, © is called vertex-critical (or v-critical) if x ( © ' ) < « ( © ) holds 
for any © ' such that may be obtained f rom © by deleting one vertex (and the edges 
incident to it). Any e-critical graph is evidently «-critical. 

A «-critical graph © is called maximal v-critical if x ((§>*) :(©) holds fo r 
every choice of ©* such tha t ©* is u-critical and © is a subgraph of ©*. 

If © is e-critical and x ( © ) = c , then © is called c-edge-critical. 
Let the natural numbers c, N be fixed (c*=N). Denote by Jify the set of all 

c edge-critical abstract graphs such that " f i ^ ^ j V . 
W e get the graph class % c or in a similar manner if "edge-critical" is 

replaced by "vertex-critical" or "maximal vertex-critical" (respectively) in the 
above definition. And, moreover, if | iT (©) | ^ jV is replaced by (®)|=JV, then 
the resulting graph classes are denoted by Ji^f» a r ) d (respectively, in analogy 
to how J i j f , i f f , J i ^ have been defined). 

§ 2. Introduction of truth functions defined on graphs 

2.1. Consider a number N and the vertex set "Jf, let a graph ©„ be fixed with 
V ( ^ ) = J T . Define a t ruth funct ion /©J/1] by 

ft.M= A >Hi (2.1) 
t 

where 

A is a symmetric matrix of size NXN (as in Section 1.2.),3 

the variables of A a re the entries ¿¡j of A fulfilling / < / , 

1 Cf. the first sentence of 1.1. 0(A) can be viewed as a non-directed graph because of the 
symmetry of A. 

3 Hence <P(A) is a graph whose vertex set is 
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on the right-hand side of (2.1) the conjunction is taken for all pairs (i,j) such 
that l l j—t where Ay is the entry of i> -1((S0) being in crossing of the /-th row and 
7-th column. 

An obvious consequence of the above definition is: 

Proposition 1. The value x®0[/l] is t if and only if any edge of (5„ is an edge of 
$(A), too. 

2.2. Let c be a natural number (c<N). In analogy to the above definition 
°f Z(50, we define the truth function Dc by 

DC[A]= V x M 
. . . . ©* s #c

( , 

where the-disjunction is taken for all elements (3* of the set SP'v. The meaning of 
Dc is expressed in the following evident assertion: 

Proposition 2. The following'three statements are equivalent for any matrix A: 
(i) 

(ii) & = 0(A) contains a partition graph consisting of c connected components, 
(iii) the complement of <P(A) is c-colourable (i.e., x ( ® ) S c ) . 

2.3. In the particular case when ©0 has only one edge e, the function xCo[A] 
expresses whether this edge e is present in $(A) or not. In this special case we write 

. a l s o / J ^ l ] . 
Let an abstract graph with at most N vertices be chosen. Define the func-

tion Lx by 
L*[A] = AVZ.M 

SV e 

where runs through all graphs such that • 
r ( i \ ' y a .Ar and 
iV is isomorphic to S ; 

for any choice of iV, e runs through the edges of S\'. 
The next result follows easily f rom this definition: 

Proposition3. Ls{[A] = \ if and only if no subgraph of the complement of i"(/l) 
is isomorphic to ft. 

2.4. Let the functions Ec and Fc be defined by 

E<[A]= A L*[A] 

and 
F<[A\ = A L*[A\ 

The following two assertions follow easily f rom these definitions and f rom 
, Proposition 3. r 

Proposition 4. EC[A]=\ if and only if the complement of <P(A) has no (c+ 1)-
edge-critical subgraph with at most N— 1 vertices. 

I 
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Proposition 5. F°[A} = \ if and only if the complement of <P(A) has no ( c + 1 ) 
edge-critical subgraph containing each of the N vertices. 

Proposition 6. The equality 

DC[A].= EC[A)NFC[A] 
holds for any matrix A. 

Proof Let us consider four assertions: 
(i) Ee[A]l\F°[A\=\, 

(ii) the complement of $( /1) has no (c+l)-edge-cri t ical subgraph, 
(iii) the complement of <P(A) is c-colourable, 
(iv) DC[A]=\. 
Proposit ions 4, 5 imply the equivalence of (i) and (ii). Proposit ion 2 has s ta ted 

that, (iii), (iv) are equivalent. If (ii) is false then x(<P.(A))>c, this means the falsity 
of (iii). As it was shown in [2], the falsity of (iii) implies the falsity of (ii). 

2.5. We ment ion some obvious consequences of the definitions occuring in 
this §. xe0 is an elementary conjunction. Dc was defined in a disjunctive no rma l 
form. Each of LA, Ec, Fc was introduced as the conjunct ion of functions expressed 
in disjunctive normal fo rm. All these functions are isotonic. 

In what follows we shall write e.g. Dc
y instead of Dc if we want to emphasize 

tha t graphs with the vertex set J f are considered. 

§ 3 . Results 

The most impor tant interrelation concerning the defined truth funct ions is 
•expressed by 

Theorem 1. For any matrix A we have 

. E%[A] = A D^[A]. 
i= i 

F r o m Theorem 1 we shall infer to 

Theorem 2. There is exactly one truth function AC
V[A] such that 

(i) AC^[A] is isotonic 
(ii) any matrix A fulfils the equality E^[A] = DC

X[A]VAc
r[A], 

•and 
(iii) A^[A] and DC^[A\ have no prime implicant in common. 

Remark. A'y is identically true if and only if 
|r(©)| =§ N-l. 

In the next assertion Ac
x is characterized by means of vertex-critical graphs. 

Theorem 3. Suppose that the numbers N, c are such that there is a (c + 1 
•critical graph with N vertices. = /©„[/I] is a prime implicant of if and only if 

(a) ©O<EJ//£+1 and • . 
(b) *"(©„) = 
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We are able to give for a disjunctive normal form of Fc a characterization 
which is somewhat less explicit in comparison to how Ec has been characterized 
in Theorem 2. 

Theorem 4. Let N, c be numbers as in Theorem 3. /„ = ^®0[/l] is a prime implicant 
of if and only if _ 

(a) (t)0 has no subgraph ©x such that all the vertices of ©0 are contained in ©x 

and and 
(b) whenever (5, is a subgraph of ©0 then there is a subgraph ©3 of ©2 such that 

Moreover, if y0 is a prime implicant of F^[A\, then either or ©0 contains 
a (c+l)-critical graph ©4 such that ©4 has at most N— 1 vertices. 

§ 4. Proofs 

We shall use the following well-known fact (see [1], p. 40): 

Lemma 1. An isotonic truth function has a single irredundant disjunctive normal 
form, this form consists of all its prime implicants. 

Proof of Theorem 1. Since Dcjr[A] is isotonic, we can use Lemma 1. By Pro-
position 6 and the definitions of Ec, Fc, we have 

Pejrt[A] = A U[A] 

for any i (l^i^N). If we form the conjunction of these N equalities (in such a 
manner that the conjunction of the left-hand sides and the conjunction of the 
right-hand sides is taken, with an equality sign between them), then the right-hand 
side can be simplified to E^[A], thus we get the assertion of Theorem 1. 

Proof of Theorem 2. Let us distinguish three cases. If N<c + 1, ^ - = 0 and 
so Dc is undefined. If N=c+1, then, by Proposition 4, E§ = \, as there exists 
no (c+l)-edge-critical graph with a t most c vertices. So DC[A]~FC[A] whence 
follows the existency and unicity (in the sense of the assertion) of A%[A], namely 
A%[A] = \. If N ^ - c + l , the proof runs as follows. 

Our first aim is to verify that each prime implicant / 0 of Z)^[/l] is a prime impli-
cant of Efi[A]. By Proposition 6, any implicant Xo of DC

N[A] is an implicant of 
EH[A\. Let Xo be a prime implicant of E^[A] such that %'0 is a subconjunction of / 0 . 
By the definition of Dc, there is a graph ©0(€^>-) such that 'X0

 = X%[A]- Let 
iXj, 3;2, . . . , 2 C be the connected components of ©0 (any of them is a complete-
graph). As J V > c + l , for at least one k ( l ^ f c S c ) . Fixing such a k, 
let r be an arbitrary element of ir(Zk). Let an edge e be chosen in ©0 such that 
r,e are not incident. We have x'o=Xci[A] for a suitable subgraph ©£ of © 0 . Let 
(5'or • be defined by . By Theorem 1, there is a partition graph 
© p ( € ^ r ) such that If © P ( < E ^ r ) is defined by © p = © o n d l V r , then 
we have © p Q © , ^ © p . Since ©p, © P are partition graphs on the same vertex 
set and the number of their connected components coincide, © p C © p is impossible, 
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hence © p = © „ , = © p . The (arbitrarily chosen) edge e of ©0 belongs to 
© ; ( g © 0 ) , thus xo-'Xo-

AC
N[A\ is defined as the disjunction of the prime implicants (p of E$[A\ such 

that is not a prime implicant of DC
N[A], 

Lemma 2. Let © be a graph such that T^"(©)={1,2, . . . , TV}. The following 
. three assertions are equivalent for ©: 1 ' 

(i) © is (c-\-\yvertex-critical, 
(ii) © H G ^ , is c-chromatic for any i ( l S / ^ i V ) , 

(iii) ©nC£^ i includes a partition graph with connected components. 

Remarks. © f l t t y , results f rom © by deleting the vertex i and the edges in-
cident to it. © H G ^ . is the complement of © H C ^ . with respect to (£Xi . 

Proof of Lemma 2. (i) and (ii) are equivalent in consequence of the definition 
of vertex-critical graphs. The equivalence of (ii), (iii) is obvious (cf. the statements 
(ii), (iii) in Proposition 2). 

Proof of Theorem 3. Assume that the first sentence of Theorem 3 holds for 
N, c. 

Necessity. Let. x®0[/1] be a prime implicant of A^IA^ 
First we prove that condition (ii) of Lemma 2 holds for © 0 . Let k be.an arbitrary 

element of J f . y_0 is an implicant of because of Theorem 1. So © 0 includes an 
element of SPc

Jik, say For this element thus ©„ satisfies condi-
tion (iii) of Lemma 2, and so — by the lemma — conditions (i) and (ii) too. 

Hence ©o is ( c + l)-vertex-critical (by Lemma 2). The necessity will c.ompletely 
be proved if we show the maximality of © 0 . 

Let e=ij be an arbitrary edge of ©„. Define the graphs ©x and ©2 (again on 
the vertex set {1,2, . . . , iV} such that 

the edges of ©x are the edges of ©0 and e, 
. the edges of ©2 are the edges of ©0 except e. 

It is clear that © l 5 ©2 are complements of each other, and 

(Xo = X - . M A A y . 

Let the short notation x<i be used for X2 is not an implicant of A%[A], con-
sequently there exists a such that is not an implicant of DVk[A] (by 
Theorem 1). 

If ©3 is defined by © 3 = © 2 n G / r k , it is clear that xG3[A] is not an implicant 
of D ^ A ] . 

By Proposition 2 this means that ©3 has no subgraph such that 
From Lemma 2 it follows that ©2 $ % c . As © 2 = © 0 U {c} and e is an arbitrary 
edge of ©o, 0>o is maximal «-critical indeed, which completes the necessity proof. 

Sufficiency. If conditions (a) and (b) are fulfilled-by ©„, then 
(1) X©0[/l]=Zo is an implicant of AC

N. 
This can be shown in two steps. 

(1.1) XO is an implicant of EFI. Indeed, ©0 satisfies condition (i) of Lemma 2, 
and so. also condition (iii) of this lemma. This implies that the graph ©0 f l (£lV, includes 
an element of 3>c

Xi and therefore / 0 is an implicant of Dc
x. (for every i ( £N) ) by 

Proposition 2. 1 
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Now from Theorem 1 it follows that Xo is a n implicant of E§. 
(1.2) Xo's n o t a n implicant of DC

N. By Proposition 2 this is true if and only 
if ©o includes no element of that is x ( © 0 ) > c . But this is now in consequence 
of condition (a) of our theorem. 

From (1.1) and (1.2) we conclude that (1) is true. It remains to prove that 
(2) / is a prime implicant of AC

N. 
To prove_this chose an arbitrary edge e of © 0 . Let us introduce a new graph 

®i by © 1 = © 0 U {e}. As ©o is maximal (c+l)-vertex-critical, ©L is n o t _ ( c + l ) -
vertex-critical. By Lemma 2, there exists an r(<iJf~) such that the graph ©xfl 
includes no partition graph 6 . By Proposition 2, for this r x e j / l ] is not an 
implicant o i D ^ A ] , 

By Theorem 1, x©! is not an implicant of E§[A\, thus we have proved assertion 2. 
This completes the sufficiency proof. 

Proof of Theorem 4. The first part of the assertions — the sufficient and necessary 
condition — is equivalent to Proposition 5; so it does not require any proof. To 
prove the last sentence of the theorem, let us distinguish two cases: (i) x(©0) = 
S c + 1 and (ii) jc((50)<c. In case (i) by the first par t of this theorem |K(© 0 ) |S 
^ N — 1, which is the second alternative of the assertion to be proved. In case (ii) 
there exists a graph such that © 0 2 < p and so is a subconjunction 
of x©Q. But /ip[/l] is an implicant of F^[A\ because it is an implicant of D°N[A]. 
As Xm0[A] is a prime implicant of F§, it cannot include x<pM] properly, therefore 
X%[A]=Xy[A], that is © 0 =^8, proving the second part of the theorem. Thus 
Theorem A is proved. 

* 
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