Truth functions.and problems in graph colouring

By G. LUk

To the memory of Professor LAszLO KALMAR

Introduction

The aim of this paper is to introduce some truth functions, which seem to
be useful in the theory of graph colourmg, and to study their basic propertles and
their interrelations.

It can be hoped that a future article will contam a some more detailed analysis
of these functions and some applications of the results presented now.

Theorem 3 includes (somewhat implicitly) a purely graph-theoretical asser-
tion. In fact, a simple representation of the maximal v-critical graphs ’may be given:
these can be produced as the intersection of N graphs each of which is the comple-
ment of a partition graph1

‘§ 1. Concepts and notations for graphs

1.1. By a graph, always a non-directed finite graph is meant without loops
and parallel edges. Later the vertex set of any graph will be viewed to be labelled,
a vertex will be identified with the corresponding number (except when it is emphasiz-
ed explicitly that a graph is considered abstractly, i.e., apart from isomorphy).

If a natural number is denoted by a letter N, then denote by A (the script
form of the same latter) the set {l, 2, ..., N}; furthermore, we define 4] by '

Hi={1,2,..,i-Li+1, .., N}
for an arbitrary i (1=i=N). The letter # denotes an arbitrary set of natural
numbers (not necessarily of form {l, 2, ..., H}). The cardinality of a set 5 is denoted -

by [#]. € is the complete graph with- the vertex set #. If 5 is a subset of A,
then we put H=A"—#7.

T The notions ‘occuring here will be defined later. )
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For a graph G, ¥(®) is the set of vertices of ® and I' (®) is the set of edges of G.
If the number N is ﬁxed and ¥ ((5) C 4 for a graph ©, then we denote the comple-
-ment of ® (with respect to C. ,,) by &

The isomorphy of graphs is denoted by ~. The sign € can express both subset
and subgraph; we write C if the inclusion is proper. x(®) is the chromatic number
of &. :

A graph ® is called partition graph if each connected component of (5 is
complete.

Let us fix the set 5. By 2% the set of all partition graphs ® is meant such
that ¥ (@)—Jf and the number of connected components of ® is c.

1.2. Let A—||,1, ;jll be a symmetric matrix of size NXN such that the entries
of A are truth values and A,;=A4,=...=Ayy=1}. Let the function & assign to
A the graph G= di(A) with V(®)=A" such that the edge ij exists in ® if and
only if A;;=t. @ is obviously a one-to-one mapping and the range of & exhausts
the set of all graphs on the vertex set V.2

1.3. An abstract graph ® is called edge-critical (or e-critical) if »x(®")<3x(®)
for every ®’ such that &’ results from ® by deleting one edge.

Analogously, & is called vertex-critical (or v-critical) if »#(6")<x(®) holds
for any ®’ such that may be obtained from & by deleting one vertex (and the edges
incident to it). Any e-critical graph is evidently v-critical..

A wv-critical graph ® is called maximal v-critical if »(6*)=>x%(®) holds for
every choice of ®* such that &* is v-critical and @ is a subgraph of G*.

If ® is e-critical and »(®)=c, then ® is called c-edge-critical.

Let the natural numbers ¢, N be fixed (c<N). Denote by Ay the set of all
c-edge-critical abstract graphs such that ¥ (G)=4 ’ _

“We get the graph class ¥4° or 5 in a similar manner if * edge-cntlcal” is
-replaced by “vertex-critical” or “maximal vertex-critical” (respectively) in the
above definition. And, moreover, if |¥ (@)]<N is replaced by |7 (®)|=N, then

the resulting graph classes are denoted by Ji”N , "V ¢ and .//lN (respectively, in analogy
to how Xy, ¥4°, 4§ have been defined).

§ 2. Introduction of truth functions defined on graphs

2.1. Consider a number N and the vertex set '#; let a graph G, be fixed with
V(@o) A. Define a truth function Xs,[4] by

tho[A] /\ }H'j : 2.1

. R J. i= t
where

A is a symmetric matrix of size NXN (as in Section 1.2)),3
.the variables of A are the entries 4;; of A fulfilling i<j,

2 Cf. the first sentence of - l 1. @&(A) can be viewed as a non-directed graph because of the
© symmetry of A. _
3 Hence &(A) is a graph whose vertex set is A~
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‘on’ the right-hand side of (2.1) the conjunction is taken for all pdirs (i, j) such.
that A{;=t where 1Y, is the entry of ®~(®,) being in crossing of the i-th row and
Jj-th column .

An obvious consequence of the above definition is:

Proposition 1. The value XGO[A] is t if and only if any edge of § is an edge of
& (A), too.

2.2. Let ¢ be a natural number (c<N) In analogy to the above - definition
of ye,, we define the truth function D¢ by -

D= V yeldl

G*e.fr"

where the- dlsjunctlon is taken for all elements ®* of the set The meaning of
D¢ is expressed in the following evident assertlon

Proposmon 2. The followzng three statements are equwalent Jor any matrix A:
(@) D[A]=1,

(ii) ®=D(A) contains a partition graph consisting of ¢ connected components,

(iii) the complement of ®(A) is c-colourable (i.e., »(®)=c).

2.3. In the particular case when ®, has only one edge e, the function yg [4]
expresses whether this edge e is present in @(A) or not. In this special case we write
. also y[4].

Let an abstract graph & with at most-N vertices be chosen. Define the func-

-tion Lg by’
o Laldl = AV z.l4]

where R’ runs through all graphs such that
¥ (R YEA and -
K’ is isomorphic to K;

for any choice of K, e runs through the edges of K.
The next result follows easily from this definition:

Proposition 3. La[A]=1 if and only if no subgraph ‘of the complement of ®(A)
is isomorphic to K.

2.4. Let the functions £¢ and F* be defined by
O E= A Lald]

Rexsty
and _
FelA]= A La[A]

.Rexf‘“

- . The: following two assertions follow eas:ly from these definitions and from
Proposition 3. : :

T

Proposmon 4. E°[A]=14 if and only if the complement of ®(A) has no (c+ 1)-
edge-critical subgraph with at most N—1 vertices.
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Proposition 5. F¢[A]=1% if and only if the complement of tD(A) has no (c+1)
-edge-critical subgraph containing each of the N vertices. A

Proposition 6. The equality

’ De[A).= E°[A]A Fe[A]
holds for any matrix A.

Proof. Let us consider four assertions:

(i) E[A]AFe[A])=t,

(i) the complement of @(A) has no (c+1)- edge critical subgraph,

(iii) the complement of ®(A) is c-colourable,

(iv) De[A]=1.

Propositions 4, 5 imply the equivalence of (i) and (ii). Proposition 2 has stated
that (iii), (iv) are equivalent. If (ii) is false then s(®(A))>c, this means the falsity
of (iii). As it was shown in [2], the falsity of (iii) implies the falsity of (ii).

2.5. We mention some obvious consequences of the definitions occuring in
this §. xs, is an elementary conjunction. D¢ was defined in a disjunctive normal
form. Each of Lq, E€, F° was introduced as the conjunction of functions expressed
in disjunctive normal form. All these functions are isotonic. -

In what follows we shall write e.g. D} instead of D¢ if we want to cmphasnze
that graphs with the vertex set A are con31dered

§ 3. Results

The most important mterrelatlon concerning the defined truth functlons is
expressed by

Theorem 1. For any matrix A we have

N
ES[A] = A D, (A].
From Theorem 1 we shall infer to
Theorem 2. There is- exactly one truth Sfunction AS.[A] such that
(i) A5 [A] is isotonic
(ii) any matrix A fulﬁls the equallty ES[A]= D/V[A]VA‘A[A],
and
(iii) A;,[A] and D¢, [A] have no prime implicant in common.

Remark. A% is identically true if and only if
' Gty = |¥(6) = N-L
_In the next assertion A5 is char;;cterized by means of vertex-critical graphs.
Theorem 3. Suppose that t/ze'humbérs N, ¢ are such that there is a (¢ + 1)-v-
«critical graph with N vertices. y,= y@O[A] isa pnme Impllcant of AS[A] if and only if

(a) (50@{1”1 and -
) ¥ ([®,) =
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We are able to give for a disjunctive normal form of F¢ a characterization
which is somewhat less explicit in comparlson to how E° has been- characterlzed
in Theorem 2. : .

Theorem 4. Let N, ¢ be numbers as in Theorem 3. y,=ye,[A] is'a prime implicant
of F5[A] if and only if
: (a) ®, has no subgraph ®, such that all the vertrces of B, are contamed in ®,
and G,€ A¢+t and
(b) whenever 632 isa subgraph of (60 then rhere is a subgraph 63 of 62 such that

63 E c+1
Moreover if x; is a prime implicant of F<[A), then either (ﬁoeﬂy or (50 contains
a (c+ 1)-critical graph ®, such that ®, has at most N—1 vertices. . -

§ 4. Proofs

We shall use the fdllowing well-known fact (see [1], p. 40):

Lemma 1. An isotonic truth function has a single irredundant dlSjunctwe normal
form this form consists of -all its prime implicants, :

- Proof of Theorem 1. Since Df, < [A] is isotonic, we can use Lemma 1 By Pro-
posmon 6 and the definitions of E¢, F¢, we have -

Dy [A]= A La [A]

ﬁeo{”

for any i (1=i=N). If we form the conjunction of these N equalities (in such a
manner that the conjunction of the left-hand sides and the conjunction of the
right-hand sides is taken, with an equality sign between them), then the right-hand
side can be simplified to Ef§[A], thus we get the assertion of Theorem 1.

Proof of Theorem 2. Let us distinguish three cases. If N<c+1, ;=0 and
so D¢ is undefined. If N=c+1, then, by Proposition 4, E§=t, as there exists
no. (c+ 1)-edge-critical graph with at most ¢ vertices. So D°[A]=F°[A] whence
follows the. existency and unicity (in the sense of the assertion). of AN[A], namely
A4[A]l=t. If N=>c+1, the proof runs as follows.

. Our first aim is to verify that each prime implicant y, of D§[A] is a prime impli-
cant of E§[A]. By Proposition 6, any implicant y, of D{[A4] is an implicant of
Ef[A]. Let g be a prime implicant of E§[A] such that y; is a subconjunction of x,.
By the definition of D¢, there is a graph ®y(€2) such that y,=ye,[4]. Let
T,,%3,, ..., T, be the connected components of &, (any of them is a complete
graph). As N=>c+1, |7 (Z)|=1 for at least one k (1=k=c). Fixing such a k,
let r be an arbitrary element of ¥'(X,). Let an edge e be chosen in ®, such that -
r, e are not incident. We have y;=yxg;[4] for a suitable subgraph ®; of ®,. Let
V(B,,, be defined by ©,,= (f)oﬂ(EN By Theorem 1, there is a partition graph’
Gp(€2) such that ;S 6,,. If Gp(c2y) is defined by Gp=6,NCy_, then
we -have GprS 6., S G,. Since Gp, Gp are partition graphs on the same vertex
set and the number of their connected components coincide, Gp G, -is impossible,
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hence Gp=6.,= (5,, The (arbitrarily chosen) edge e of G, belongs' _to
6p(E6,), thus /0—‘/0

AN[A] is defined as the disjunction of the prime implicants ¢ of EN[A] such
that-¢.is not a prime implicant of Dg[A]. :

. Lemma 2. Let & be a graph such that ¥ ((6) {1, 2 N}.' The .folloiving
. three assertions are equivalent for ®&: - o ‘
(i) ® is (c+1)-vertex-critical,
(i) ®NE,, is c-chromatic for any i (l<zSN),
(iii) ®NC,, inclides a partition graph with connected components.

‘Remarks. ®NE #, Tesults from & by deleting the vertex i and the edges in-
cident to it. ®NCE,, is the complement of GNE,, “with respect to €.

Proof of Lemma 2. (i) and (ii) are equivalent in consequence of the definition
of vertex-critical graphs. The equivalence of (ii), (iii) is obvious (cf. the statements
(i), (iii) in Proposition 2).

Proof of Theorem 3. Assume that the first sentence of Theorem 3 holds for
N, c.

Necessity. Let. ye,[4] be a prime implicant of Af[A].

First we prove that condition (ii) of Lemma 2 holds for &,. Let k be.an arbltrary
element of . y, is an implicant of D¢, %, because of Theorem 1. So ®, includes an
element of #5 ,.say P,. For this elemient PB.S 6,NE, «,, thus G, satisfies condi-
tion (iii) of Lemma 2, and so — by the lemma — conditions (i) and (ii) too.

Hence ®, is (c+ 1)-vertex-critical (by Lemma 2). The necessity will completely
be proved if we show the maximality of &,.

, Let e=ij be an arbltrary edge of ®,. Deﬁne the graphs &, and U (agam on
the vertex set {l,2, ..., N} such that

the edges of ®, are the edges of &, and e,

. the edges of ®, are the edges of 6, except e.
It is clear that ®,, ®, are complements of each other, and

 (to =) 16, [4] = 16,[AIN A5,

Let the short notation y, be used for yg,[4]. X2 is not an implicant of A§[A], con-
sequently there exists a k(€A such that X2 is not an implicant of Dy [A] (by
Theorem 1)

If ®, is defined by 6;=6,NCy,, it is clear that ,(GS[A] is not an implicant
of D/k [A] :

By Proposition 2 this means that Q’)a has no subgraph P such that Pec2;, .
From Lemma 2 it follows that @ZQV . As ©,=6,U{e} and e is an arbitrary
edge of ®,, B, is maximal v-critical indeed, which completes the necessity proof.

Suﬁ?czency If conditions (a) and (b) are fulfilled -by ®,, then

(1) xe,[4]=1x, is an implicant of Af.

This can be shown in two steps. - _ :

- (1.1) 3 is an implicant of E§. Indeed, ®, satisfies condition (i) of Lemma 2,
and so.also condition (iii) of this lemma. This implies that the graph B,NCy, includes
an element P of 25, and therefore y, is an implicant of DS, . (for every I(EN)) by
Proposition 2.
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Now from Theorem 1 it follows that y, is an implicant of Ef.
(1.2) 3, is not an implicant of D§. By Proposition 2 this is true if and only

if ®, includes no element of #5, that is %(&,)>c. But thls iS now in consequence
of condition (a) of our theorem.

From (1.1) and (1.2) we conclude that (1) is true. It remains to prove that

‘() x is a prime implicant of A%.

To prove this chose an arbitrary edge e of ®,. Let us introduce a new graph
6, by 6,=6,U{e}. As G, is maximal (c+ 1)-vertex-critical, ®, is not (c+1)-
vertex-critical. By Lemma 2, there exists an r(€.4") such that the graph &,NC,,
includes no partition graph € Py, . By Proposition 2, for this r ye,[4] is not an
implicant of DS, [A]. -

By Theorem 1, ¥, is not an implicant of E§[A], thus we have proved assertion 2.
This completes the sufficiency proof.

‘Proof of Theorem 4. The first part of the assertions — the sufficient and necessary
condition — is equivalent to Proposition 5; so it does not require any proof. To
prove the last sentence of the theorem, let us distinguish two cases: (i) »(By)=
zc+1 and (ii) #(®y)<c. In case (i) by the first part of this theorem |V (B,)|=
=N-—1, which is the second alternative of the assertion to be proved. In case (ii)
there exists a graph P€PS such that G,2P and so ygp[A] is a subconjunction
of ys,. But xgp[A] is an implicant of Fg§[4] because it is an implicant of D§[A].
As yg,[A] is a.prime implicant of F§, it cannot include yg[A] properly, therefore
xo,[A]=xg[A4], that is ®,=%P, proving the second part of the theorem. Thus
Theorem 4 is proved. :

¥
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