Mixed computation in the class of recursive program schemata

By A. P. ErsHov

To the memory of Professor Laszlé Kalmar

Let some class A of algorithms be prescribed by a set # of programs P, a
domain Z of input data X, a domain % of results Y and a computation V being
a universal process which is defined for any P and X and is either infinite or
resultless (yielding an aborr) or yields some Y as a function of P and X: Y=V (P, X).
Mixed computation [1] in 2 is a universal process M which is defined for any
P, X and a parameter u (specifically characterizing the process). The process is
either infinite or resultless or it generates some residual program Mg (P, M, 1)
and vyields partial results Mc(P, X, 1). A mixed computation is correct if for
any P, X and p the following functional identity holds

V(P: X) = V(MG(P, X’”)a MC(Ps X’ﬂ))

It has been shown [2] that mixed computation and such related concepts as
partial evaluation [3], computation over incomplete information [4], “progonka”
[5] may be a basis for solution of many programming problems where efficiency
has to be traded off with universality.

It is natural to seek a correct formalism of mixed computation for the most
common abstract models of program. The correctness of mixed computation for
ALGOL-like programs has been shown in [6]. In this note a correct procedure
of mixed computation in the class of recursive program schemata is presented. This
class reflects such properties of algorithmic languages as recursion and proceduring.

We shall introduce some notations. If .# is a set of elements m then M" is
an n-tuple of elements from .#. The length of a tuple used as an argument of a
functional symbol f is always equal to its arity g(f). [B] is a term 7 constructed
over a set B of basic symbols, 1(4) is a term t for which its arguments (variables
or constants) 4 are shown.

According to [7] a recursive program schema is specified as a system of equalities
(function declarations)

fi(XiQ(fi)) = Ti[Xi’ C’ {fl’ “'5fk}3 ”’ ¢] (’ =]9 CERE} k)’

2%

20 A. P. Ershov

where f; are defined functions. & and ¥ are countable sets of variables x and con-
stants ¢, IT and & are finite sets of predicate and functional symbols, respectively,
of fixed arities.

Predicate terms 7 are used to define conditional terms {m|t,|t,} where ¢, and
t, are functional or conditional terms. Terms t; are arbitrary terms (function bodies)
over specified sets of symbols.

Let an interpretation of the basic symbols (constants, functions and pre-
dicates) converting a schema into a recursive program be given. A system of func-
tions ¢,, ..., ¢, is called a fixed point of a recursive program if, having been com-
bined w1th the system of basic functions IT and @, it makes (after substltutmg o;
for each’ f;) the function declarations identities.

We say that a function ¢, covers a function ¢, if the graph of ¢, contains that
of ¢,. Under natural assumptions on basic functions and their regions of definiteness
each recursive program has a single so called lowest fixed point (LFP) covered by
any other fixed point of the program {7]. _

Let T and C be tuples of terms and constants respectively. A call is a term in
the form f(T'); a bound call is a term in the form f(C); a semi-bound call is a
term in the form f(C", T™) where n+m=9(f) a transitively bound call is a
call having no variables.

Let one function declaration f(X)=t in a program be treated as a leading
declaration and C be a tuple of ¢(f) constants. A (sequential) computation V over
a program P is a step-wise process of constructing a sequence of terms t°=f(C),
71,72, ... which either is developed infinitely or ends by an (resultless) abort or
(sucessfully) by a constant which is taken as the value ¢ (C) of the function ¢(X)
computed over the .given program for its leading declaration.

Each step of the construction of '** from t* consists of two parts.

1. Rewriting. In 7" somehow a call f;(T) is chosen. This call is replaced by
a term t. The latter is obtained from the function body 7; of the declaration
fi(X;)=1; by replacement of variables from X; by correspondmg components
of the tuple T. Let 7° be the rewritten term.

2. Simplification. Inductively, all such subterms in 7 are evaluated which
contain only constants and basic functions and predicates. The evaluated func-
tional terms are replaced by their value, conditional terms are replaced by their
if- or else-part depending on the value of the predicate. If the simplification yields
either an abort or a constant ¢ then the process in terminated yielding either the
abort or ¢ as a successful result. Otherwise, the simplified term is taken as ti+!.

Similarly, a partial computation is defined which allows 7° to be an arbitrary
term with variables. Partial computation is terminated when the simplified term
contains no available transitively bound calls.

A variety of computations is determined by the method of selection of sub-
terms subjected to rewriting. In the general case a computation provides with a
function covered by the LFP of a given recursive program. A computation which
guarantees LFP is called safe. An example of safe computation is the execution
of the ““left outermost” call that corresponds to the “call by name”. An unsafe
computation is the execution of the “left innermost™ call (call by value).

Let the first function declaration f,(X;)=t, of a recursive program P be
leading and let a partition u of variables X; (X;=X"UX) and a semi-bound call

Mixed computation in the class of recursive program schemata 21

fi(B, X) be given. Let a computation V provide the leading declaration with a func-
tion @(X’, X). A correct mixed computation M of the program P for the given
partition u and tuple of constans B is an arbitrary process of transformation of
the program P into a program Py with a leading declaration f,(X)=1, such that
the function @z(X) provided by V for the program Pj satisfies the identity ¢ (B, X)=
=@p(X).

We shall describe a transformation of P which we call an execution of the
semi-bound call f,(B, X). Let us take a copy of the term 7, and replace in it all
occurences of variables from X’ by the corresponding constants from B with all
subsequent simplifications; we will obtain a term 7, as a result. Then we take a
new functional symbol f; of a defined function f;(X) and replace, in all terms
Tgy T1s ov-» Tx, all semi-bound calls in the form £, (B, T) by the calls f,(T), thus
obtaining the terms 7,1}, ...,7;. Let us denote by P* the program which is
obtained from P by attaching to it the equality fi(X)—ro as leadrng declaratron
and by replacing the bodies 1y, ..., 7, by the terms 17, ..., 75.

. Lemma 1. Let ¢,(X’, X); @, ..., ¢x and Yo, ¥y, ..., ¥, ‘be LFP of the prog-
rams P and P*, respectively. Then ¢;=¢; (i=1,...,k) and ¥,(X)=0,(B, X):
The proof is based on Kleene’s theorem on recursion [8]: it can be shown that
subsequent approximations of P and P* to their LFPs satisfy the lemma at each step.
Let us introduce a reachabzlzty relation over the defined functions .f, ..., f;
of a recursive program: f; is reachable from f; if the body of f; contains calls
for f;. We will also consider the transitive closure of the reachabrhty
:We shall formulate two obvious lemmas. :

Lemma 2. Deleting from a program P the declaration of a function. which
is transitively unreachable from the function of the leadmg declaration preserves
the 1st component of the LFP of P.

Lemma 3. Replacing in P a call f(T) for the function with a declaratlon
f (X)=t(X) by the term t(T) preserves the Ist component of the LFP of P.

- Now we can describe a correct mixed computation with respect to some com-
putatlon V.

Initial step. A semi-bound call f{(B, X) is grven 1t is declared to be the start
of the first cyclic step.

Cyclic step (transformatron of P into P) Let a start f (B X) be glven ‘The
corresponding declaration in P is considered as the leading one. P is transformed
into P* with the leading declaration f,(X)=1, according.to the rules of executlon .
of a semi-bound call. A partial’ computauon V with 7, as the initial term and
as the result (1f any) is undertaken. P* is then transformed 1nto P’ by replacmg To
by the term 7Ty, in the’ declaratron fO(X)=1y-

After each cyclic step’ we look at’ty whether it contains a semi-bound call
f(C, T). If so then the term f(C, Y), where Y are variables from the declaration
of f which correspond the terms 7, is taken as a start for the next cyclic step.
Otherwise the mixed computation is terminated yielding the program after the last
step with the leading declaration from the first cyclic step as the residual program,
Afterwards, the residual program may be simplified according to lemmas 2 and 3,

Example A. (Power function x")
pow (x, n) = {n = 0|1|{n is even |[pow?(x, n/2)|x><pow (x, n— l)}}

22 i A. P. Ershov

Let pow (x, N)=N(x). The residual program for pow (x, 5) before simpli-
fication

5(x) = xX4(x);
4(x) = QM)
2(x) = (1(x))%;
1(x) = xX0(x);
0(x) =1;
pow (x, 1) ={n = 0[1|{n is even|pow?(x, n/2)|xX pow (x, n— 1)}}.
The residual program after simplification:

5(x) = xX((xx 1)?)>

_Let pow (5, ny=exp (n). The residual program pow (5,n) after simplifi-

cation:

exp (n) = {n = 0|1|{n is even|exp®(n/2)|5Xexp (n— l)}}.
Example B. (Akkerman function)
AQx,y) ={x=0ly+1|{y =0]d(x—1, D|4(x—1, A(x, y—1))}}.
Let A(Q,y) =exp(y); AQ,y) = mult(y); A(l, y) = add (y), A(m, n) = amn.
The rtesidual program for A(3, y) after simplification:
exp () = {y = 0la21|mult (exp (y— 1))};
mult (y) = {y = Olal1jadd (mult (y — 1))}
add (y) = {y = 0[a0l]|add (y —1)+1}.
Let A(x, N)=aN(x). The residual program for 4(x, 3) before simplification:
a3(x) = {x = 0}4|4(x—1, a2(x))};
a2(x) = {x = 0]3|A(x—1, al (x))};
al(x) = {x = 0]2|4(x—1, a0(x))};
a0(x) = {x = 0]l|al (x—1)};
A(x,y) ={x =0ly+1|{y = Olal (x—1)|4(x—1, A(x, y— D)}
Notice, that elimination of non-recursive declarations can be made in different

ways due to the mutual recursion of ¢0 and al. Eliminating a0 and a2 we obtain
(exploiting the logical dependencies):

a3(x) = {x = 0l4|4(x—1, A(x—1,al(x)))};

al(x) = {x =0)2[4(x—1,al (x—1))};

AQx,y) ={x=0ly+1{{y =0lal (x—D]4(x—1, A(x, y—))}}.
COMPUTING CENTRE

SIBERIAN BRANCH OF THE USSR AC. SCI.
NOVOSIBIRSK 630090, USSR

Mixed computation in the class of recursive program schemata 23

References

[1] ErsHov, A. P., OO0 ORHOM TEOPETHYECKOM MPHHLUHIE CHCTEMHOIO MNPOrPaMMUPOBAHUA
Dokl. Akad. Nauk SSSR, v. 223, No. 2, 1977, pp. 272—275.

[2] Epuros, A. I1., O CylHOCTH TPAHCIIALMAM, HpoepaAmupoeanue, No. 5, 1977, pp. 21—39.

3] BECKMAN, L., A HARALDsON, (). OSKARSSON, E. SANDEWALL., A partlal evaluator, and its
use as a programming tool, Artificial Intelligence, v. 7, No. 4, 1976 pp. 319—357.

[4] Ba6uy, I'. X,, JI. ®. HITepHGepr, T. K. }OraHOBa, Anropmmmecmﬁ A3BIK MHKOJI Anis
BBHIOMHEHHA BLIMMCIICHHIT ¢ HenOMHOH uupopmauueit, [Mpozpasmuposanue, No. 4, 1976, pp.
24-32.

{5] Typuun, B. ®@., DxkBuBaneHTHBIC NpeoOpa3oBaHus nporpamMm Ha Pedane, ABTOMaTH3UPOBaH-
Hasl CUCTEMA YIIPABJIEHUA CTPOUTENLCTBOM, Tpydst THUITHACC, Moscow, No. 6, 1974, p. 36.

6] ErsHov, A. P. and V. E. ItkiN, Correctness of mixed computation in Algol-like programs,
Lecture Notes in Computer Science, v. 53, 1977, pp. 59—77.

7] MANNA, Z., S. Ngess, J. VUILLEMIN, Inductive methods for proving properties of programs,
Comm. ACM, v. 16, No. 8, 1973, pp. 491—502.

[8] KLEENE, S. C., Introduction to metamathematics, Amsterdam—Groningen, 1952.

(Received August 1, 1978)

