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Discrete devices are nowadays widely used in various fields. Since the con-
temporary discrete devices are very complex, multipurpose and high-dimensional,
considerable changes in conventional design techniques which rest upon the so-
called “finite automaton model [1] are necessary.

The basic disadvantage of the existing techniques for the description of control
discrete devices, viz., flow tables (for sequential machines) and state tables (for
combinational automata) is that each input, internal and output state should be
dealt with separately, which limits signiﬁcantly the dimensionality of the problems.:

A way to increase the dimensionality is to use functions which are characteristic
of sets of states with some special properties such as having the same distance
between states, the same value of certain variables, etc.

Some operations with characteristic functions of the sets of states are described
below. Dévelopment of thése operations was necessary for the design®of computer-
aided logical design of discrete devices.

1 Proximity of functions

Let two Boolean functlons F; and F; be given as thelr sets of permit (one
meaning) M* and forbid (zero meamng) M states M=M!NM}; M;=M}NM}
characterized by the functions F}, F?, F}, FJ ** .

Let us distinguish the following sets of states M}, the subset of permit states
identical for both.M; and M;; M}?, the subset of forbid states identical for both

ij»

* A permit (fOI'bld) state is the state in which the function is equal to one (zero). Besides,
there are “don’t care” states (M ™) which are mdlﬂ'erent to the value of the function (it may equa]
either 1 or 0).

Sets of states: M, M°and M ~ are nonmtersect in panrs and MUM°UM”~ .18 equal to the
set of all states, i.e., 1ts power is 2", where n is the number of varibles of the functlons F; and F,.

** Statement “function F (A) characterized sets of states M *** means that:

i FA) {1 if AEM*
- 0 if A¢M*

’
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M; and M;; M}, the subset of permit states only for M; not contained in M;;
Mo, the subset of forbid states only for M; not contained in M;, M{*, the subset

of permit states only for M; not contained in M;; M, the subset of forbid states
only for M; not contained in M;; M, the subset of permit states in M; contained
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in the forbid states set in M; (M[*=M]%); M/, the subset of forbid states in M;
contained in the permit states set in M; (Mf°o=M}") that is (fig. 1):

M3 = MINM}Y; M = MY\ M?;
Mi=MINM[; Mo = MPOM; s M = MINM ;' Mpr = M{N M,
MP = Mp = MY MY Mpo = My = MY M}.

If the functions F; and F; are given by the sets of their permit and forbid states
then the sets of states of classes: s, ¢ and r are characterized by the functions:

F} = FIF}; Fyp = FF};
Fr=FIF] = FAF}F); Fo= RF] = FRF}RY; M
Fp = F}F, = FJF\RY Fp = FF, = FIREY;
F = Fp = F F}; Fi* = F* = F' F}.

Let us present the sets of states F! and F° as the join of the above subsets of
states. The function will then be represented as (fig. 1):

M; = [M}, M]] = (M3 UMPUMP), (M3UMPUMP)]

)]
M; =M}, MY = [(M3UMPUMY), (M3UMPU M)
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The proximity of the functions its measured as the power of the subsets of
states M". If M, M[°, M[*, Mo, are empty M} =M;? are empty the functions
F; and F; after introduction of the additional don’t care states may be realized
by the same structure (fig. 2) but in the second case the output of one of the
functions was taken from an additional invertor (fig. 3). Assume the proximity of
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the functions F; and F; is absolute (the distance is zero) with the corresponding
functions completely connected in the first case, and maximal, with the correspond-
ing functions inverse-completely connected in the second case.

‘The concept of the proximity of functions made use of in defining optimal
or near-optimal architecture ‘of realizing functions in multioutput structures. The
design technique for such a realization builds the so-called “connectivity nodes”
of the structure, viz., a set of functions “completely” or ‘‘inverse-completely”
connected. ' '
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For functions which do not enter the connectivity nodes the distance to one
of these nodes is to be found and the question answered whether the realization
of these functions is connected with a connective node or a separate one.

To define these structures the operations of union intersection and comple-
mentation of subsets of states are used. If one has two sets of states M; and M;
written in the form (2), one may write for the operations of union, intersection
and complementation:

MUM; = [(MPUM)), MPNMY] = [(MzUMPUMP)U
U (M3 UMPUM), (M3 UMPUMNMPUMPUM9)].

The intersection of subsets of states M/° and M]° is empty subsets M{° contains
in subsets M, and subsets Mj® contains in subsets M;”. Therefore we shall have:

M,UM, = [(MPUMD), (M3 UMPUMD)] (3a)

Similarly, .
MOM; = [(MINM3), (MPUMP)] = (MU UMBUMD), (MPUM®]  (3b)
M, = [((MD), (M?))] = [(MD), (MD)] (3¢)

2. Determination of the power of the state sets

In the above technique (as well as in determining some other criteria for the
realization of these functions) the power of some subsets of states is to be found.
The characteristic functions of these subsets can be described in an arbitrary form.

For this purpose [2] offers techniques for the transformation of an arbitrary
Boolean expressron into.some ‘“canonical” form enabling the computations of
powers of various state subsets as a sum and product of the powers of the state
subsets which correspond to separate parts of the function analyzed, thus sig-
nrﬁcantly simplifying the computations. The use of the analytical form of the func-
tions permits one to take full account of the information: contained in the state
table which corresponds to the ana]yzed function wrth no need to construct the
table itself.

Let us enumerate the parentheses denoting by 1 the outer parentheses of the
parenthetic expression of the Boolean function and increasing the index with the
rank of the parenthesis. The subfunction in the i-th parenthesis will be referred to
as the i-th disjunctive or conjunctive term depending on the outer logical operation
of this subfunction (i.e., depending on the s1gn of the (i+1) st terms contained in
the expression). Invers1on over the expressrons will be denoted by square paren-
thesis and similarly enumerated. .

A canonical parenthetrc form which may be used to find the number of states
is the form where any pair of terms included into a disjunctive term is orthogonal
and all the terms of a conjunctive term should contain no coinciding variables.

" The transfer to the canonical parenthetic form is done by means. of the. de-
composition .of a given parenthetic expression by variables using Shannon’s rule.
It-is obvious that for the disjunctive term i of the canonical form the number of
states equals the sum of the numbers of states of the (i+1) conjunctive terms con=
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tained in this disjunctive term. The number of states of the conjunctive term will
be a;=2""%B,B,...8, where n is the total number of variables, k£ is the number
of variables contained in the conjunctive term, f,, fs, ..., B is the sum of the
numbers of states of the disjunctive terms contained in the conjunctive term. A term
with square parenthesis (inversion) has the number of states defined as

B; =2 —B;
where r is the total number of variables contained in this inversion term and S} is
the number of states of this term.

This follows from the fact that the power of the sets of states, characterized
by the inversion function is equal to addition up to 2" (r — is the number of the
variables of this function) from the power of the sets of states, characterized by
function, wich is under the symbol of inversion.

Let the function
F= [xix]-\/fjxkx,,].
be given. ‘ -

The number of states, characterised by the function, which is inside of square
parenthesis (under symbol of inversion) is: B*=6. The number of variables of
this function is: r=4. Therefore the number of states, characterized by the given
function is: Np=2*—6=10.

. Let us have a certain function specified by its permit (F') and don’t care (F7)
sstates
P = x VX xsxe VX (K5 X6V X0 X5 X6 X190 X11) V Ko X (R VE VXV XV E),

F™ = x3x,VXg%,.
Obviouély the functions, characterized by the sets of permit and forbid states with-
out the don’t care ones (F'~ and F°7) will be described as
F'™ = FII*T=(x5VilxsxGVxl()?sxs\/xzf;-,fsxmxu)\/
Vx2x1(5€'3V5€'4Vf7\/)Tszs))[x3x4sti’9],
F7 = F1F" =[xV X, Xg X6V X, (¥5 %5V X3 X5 X X10 %11) V
Vx5, (%3V X4V %7V X5V Xo)] [203 X, V X Xo].-

Transform these expressions to canonical form using Shannon’s rule in order
variable: x;, X,, X3, x,.* Denoting the upper index of parenthésis by the number
of states in the form 2"=*8,B, ... B,, and the lower index by rank of parenthesis, we
shall have: '

Fl = 1(2(28351 Xy Xy Xy [F* X Xpl§ 2)aV o(¥ Xy Xo X3 [*°Xg Tola)3 3V e (233‘1 Taa(®'x;5V
VX5 x0)t 2 5(%sV X3 X5 5[ X -’_69]3)20'27\/ 2(2821 LV E; x5 23(X5V
VX3 X052 5[ Xs f9]3)§1'28)1
FO = (37001 %, [° X5V X5 x5 o( X3V X3 X)37 2[R Folg)i 2V o(°% [ x5V
VEsx6ls o(X3V X5 X052 5[ X ’79]3)51'9)1 .
* For determining the order of v;ariables, which give the 4 expression, approaching the

smallest amount of letters, it is useful to apply the heuristic criterion (5) or (6) (see page 7 and 8),
as statistical experiments show.
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Thus the powers of the sets of permit and forbid states for the given function
will be
‘ N1 =22.3428.3420.27421.27 = 117
N©®=20.9421.9 =27,

3. Decomposition of Boolean functions

Realization of a given Boolean function in given elements is essentially a
problem of decomposing this function into subfunctions in accord with the logical
properties of the element. Obtaining the accurate solution for a problem of mini-
mizing a Boolean function, or transformation to the form with the smallest
number of operations and letters is a complex problem of combinatorial search
[3, 4]. With the number of input variables as high as 20 or 30 the problem becomes
hardly solvable even on computers. Therefore presently minimization of Boolean
functions is achieved by means of heuristic methods with local optimization which
we call the “directional search”.

One of the first attempts to eliminate combinatorial search was introduced
in [5] and widely used afterwards. This was the procedure of finding additional
letters of the terms which describe the function in a contradictory way (the so-
called “insufficient minterms’). Further in [6] a method of directional search was
suggested for the case when a Boolean function was given by its table of states.
The method contained criteria for selecting the so-called “‘inessential” variables®
and finding minimal terms of the kernel as well as the minimal set of insufficient
minterms.** .

The fact that the function should be specified by its table of states significantly
limits, however, the dimensionality of such problems. Ref. [7] suggested a technique
in which minimization procedure rests upon the record of the given function and
all its intermediate forms obtained in the course of minimization in an arbitrary
analytical form thus considerably increasing the dimensions of the problems.

A more general technique was developed afterwards for realization of a func-
tion or a system of functions using ‘“‘arbitrary” elements, or those whose logical
properties are described by arbitrary Boolean functions [8].

The first stage of this technique implies elimination of the so-called “‘inessential’”
variables i.e. such whose elimination from F! and F° does not change the values
of the function.

To determine inessential variables, a notion of Boolean ‘“‘derivative’ is used,
introduced in Ref. [9]. The derivative of the given function with respect to an in-
essential variable is equal to zero. '

dF

dx = F(lxk=1)F?xk=0)VF(lxk=0) F(Oxk=1) 4)
Xk

* An inessential variable is a variable for which no pair of permit and forbid states exist
differing only by the value of this variable. Elimination of this variable does not change the value
of the functions. If a pair of permit and forbid states differs by the value of one variable, the values
of this variable in these states are called obligatory letters.

** Minterm of the kernel is the conjunction of obligatory letters which describe only a subset
of permit states or only a subset of forbid ones. Such terms should be included into alld-n. f. versions
of a given function.
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To obtain optimal realization* the order of elimination of inessential variables
is important. A heuristic criterion is used for this purpose which estimates the
proximity between the variable and the constant

_ 1 0 1,0
Ry = nixnox+np i g &)

where nf , and n§ , are the number of permit states in the function in which the
variable x; takes on the values of 1 and 0, respectively, and n{, and n§, is the
-same for borbid states.

This criterion gives exact results in utmost cases, when the variable x, is con-
stant or a given function equal to the Ietter X, Or Xi.

In the ﬁrst case ng ,=ng, k—O or nj,=n k—O and therefore R= O In the
second case nj ,=n3 k—O or nj,=nj k—O It is possible to show that in these
cases R=max.

First an inessential Varlable is ehmmated for which we have the least value
of the criterion R. After the variable is eliminated from the function F, the values
of R are recomputed and the next variable is eliminated until all the variables left
are essential. ‘

Let us assign as the inputs y;, ¥, ..., ¥, of the output element ¢ a certain
set of input variables x;, x;, ..., x,. At the output of the element we shall have
then the functions. 2 and g.** ’

Then it is clear that if

Fii=0 Fg=0

the function can be realized by a single element with a given assignment of vari-
ables as inputs of this element. If these expressions are not equal zero, the realiza-
tion-of the function wilt be contradictory, i.e., for some states from M?! “0” will
appear at the output of ¢ the element, and for.-some states, from M?, “1”.

Two problems arise here:

a) find a set of variables assigned as the inputs of the output element such
that the functions /1 and g be as proximate as possible to the functlons F' and F 0,
that provides optimization of the entire structure, and

b) design the ‘‘additional” functions with the minimal necessary number of
states assigned as inputs of the output element for elimination of contradictions.

The first problem is solved by the calculation of the value of the heuristic
criterion for every variable x,

1 il
_ ny,x nU,k (6)

k=™ N1 O NO

where: ni , and n§, — have the same sense, as in criterion (5); N?' is the power
of the set M* and N° is the power of the set M°. If b, is positive then x, is without

* By an optimal realisation we understand the obtaining of a function, nearing to such one,
which has a minimal number of variables.
** The functions 4 and g specify the states which in the function realized by the element are
permit and forbid states, respectively.
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the sign of inversion. If b, is negativ then x, is with the sign of inversion. The
variable x, is selected with the maximal value of b,.

The second problem is solved by determination of the sets of permit and:
forbid states of the so-called ‘““additional” function, i.e., such function by the re-
placement of which variable x,, will remove or decrease contradiction in realiza-
tion of the given function.

Design of these functions for an arbitrary element is a rather bard task achiev-
ing which illustrate well the problem of isolating, from the sets of states of the
given function, certain subsets with given properties, which was mentioned at the
beginning of this paper.

Let us examine in a more detailed manner what states have to be permit and
forbid for this function.

Let us introduce notion of “partial” derivative and “‘ranks” of partial deriva-
tive variables.

The partial derivatives of first rank for the variable x; are:

oM (F),, = F(lxk=1)F?xk=0) (7a)
and
M F)z, = Fl—0yFlx =1y ‘ (7v)

Expression (7a) characterizes the set of permit states in which variable x,=1
and x, is essential. Accordingly in the set of forbid states x,=0 and x, is also
essential.

Expression (7b) characterizes the set of permit states in which the variable
x,=0 and x, is essential. Accordingly in the set of forbid states x,=1 and x;
is essential. ‘

In these cases, for every state from M and M° there will be found accordingly
exactly one state in M°and M?! which differs by the significance of the variable x;
from the given state.

Let us consider that in these cases these states are in distance ‘‘one”

Let us understand as derivatives of rank of *j>* (97 (F),, and &/ (F)z, ‘functions
which characterise the states from F* or F?° havmg in ratio to given state j variables
(including x,), which have opposite significance. Let us consider, that in these
cases these states are in distance “‘j.

For the analysis of states included in additional functions the expressions

S = V P E),, (82)
and -
S = V¥ (P, (85)

will be useful.
These expressions characterise disjunctions of states for the partial derivatives
of all ranks, without the first. , ,
' To obtain the expressions S(F') and S(F° one should consider:those for
each rank of partial derivatives and then join them up.
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Let us consider a technique of finding second rank partial derivatives. First
find the functions D*(F') and D!'(F°) describing the ‘“‘remaining” states in M!
and MO after elimination of the states included in the first rank partial derivatives.

D'(F) = F'7*(¢")

D'(F%) = F°7°(o%
2(0) = ZG0 @)V EFI @)
(@) = Z(7:0* (0),)VE(7:0(9Y)5)-

The second rank partial derivatives are those of the first rank for D'(F') and
D'(F% over y;,y; with respect to t!(p!) and (9.

Higher rank partial derivatives are determined in a similar way.

Let functions F! and F°® which characterise permit and forbid states M and
M?® for some function F be given. Let an element ¢ be also given, having ¢ in-
puts: y;, ¥z, ..., ¥,. Permit and forbid states of this element are characterized by
functions: @'=r(yy, s, ..., ¥,) and @°=s(yy, yo, ..., ¥,)- In addition, let the
set of variables: x,;, x;, ..., x;, be determined as assigned by inputs of element ¢,
which result realisation of functions: h(x;, x;,"..., x,) and g(x;, x;, ..., x;) on the
output of this element, accordingly with permit and forbid of given function F,
but realize it contradictory.

In [10] the following formulas are given characterlsmg permit (f;}) and forbid
(fy)) states of additional function on input y; of element

= PEMNVS@)VFP@GNSHE) )
12 = PO )V S,V PO,V Sh),). (9b)

Let us show, that these formulas reflect category of states including in addi- ~
tional function correct and completely. To the set of permit states belong follows:

a) The states in which x,=1 or x,=0 and the given function is realized
correctly at the output of the element, and the change of the value x, changes the
output value which becomes contradictory. It is clear that these values should
be preserved in the additional function which provide for the replacement of the
variable x;.

b) The states in which x, also is either ““1”” or “0” but the function F is realised
at the output of the element contradictory and the change of the value x, leads .
to elimination of the contradiction. Here as in the previous case the letter x, is
an obligatory letter and in order to eliminate the contradiction the state should
be replaced with the one from the opposite set of states. '

Functions characterising states of categories of a) and b) will be expressed
therefore in the following form

AL(f2) = F13\(h), \ FO0 (h)y,.

If the states of the element ¢, leading to contradictory realisation, belong only
to categories a) and b), then the function 4'(f}) completely eliminates the con-
tradictions.

where

and

3 Acta Cybernetica 1V/1
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¢) If the state under consideration differs from those of the opposite set of
the table by values of several variables, the change of the values x, via additional
function is still helpful, since it decreases the ‘“‘distance” between the given state
and the one which correctly realises .the given function thus simplifying the realiza-
tion of additional functions at the other inputs of the element.

The function, characterising these states, will be expressed in following form

A ”(.f;,-) = Fl S(g)i.v FO S(h);’( '

a) The states, in which correct realisation of permit states of a given func-
tion F is provided write help of other variables and therefore the change of the
value of given variable don’t change the significance of the output of the element,
belong to don’t care states. of additional function.

The disjunction: A’(f;)VA”(f}) gives formula (9a). The correctness and
completeness of formula (9b) prove analogous.

Successive application of formulas (9a) and (9b) for all mputs of element ¢
and for received additional functions give the convergent process of ellmmatlon
of contradictory in the realization of the given function F.

4. Algebraic model of a discrete device

A number of problems in the analysis of discrete devices (revealing statistical
and. dynamic races, reliability analysis, determination of check and diagnosis tests,
etc) are very difficult because of the lack of adequate models which would describe
in a compact way the internal structure of the device as well as its operating
algorithm,

The model without this defect [10] uses the fact that introduction of each in-
ternal variable (a function of the same input variables) doubles the number of states
of the function and exactly one half of them should belong to the states of M ~.
Indeed, if we have some element for the function

@; =fi(x1,x2a Teey xn)

where x;, X, ..., X, are the input variables, then the function 4;=¢, f;(x,, x5, ..., x,)V
V@ fi(x1, X3, ..., x,)=0 i.e. it describes the subset of states M ~.

Additional internal variables associated with outputs of the elements are in-
troduced for each /-th output of the structure of a discrete device by eliminating
from M! and M?° the states characterised by the functions 4;.

Similarly as above, let us denote the functions characterizing the subsets of
states M! and M?° at the /-th output of the structure containing £ elements may
be described as follows

Fo* = Fl (%1, Xay oo X)¥

Flo’k = Eo(xl’ x2, vt n)lp
where :

.
Y= _/=\1 (@ fiCers Xas oo s XDV @i Ge1, X ey X)),

INSTITUTE OF CONTROL SCIENCES
MOSCOW, USSR
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