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Discrete devices are nowadays widely used in various fields. Since the con-
temporary discrete devices are very complex, multipurpose and high-dimensional, 
considerable changes in conventional design techniques which rest upon the so-
called "finite au tomaton" model [1] are necessary. 

The basic disadvantage of the existing techniques for the description of control 
discrete devices, viz., flow tables (for sequential machines) and state tables (for 
combinational automata) is that each input, internal and output state should be 
dealt with separately, which limits significantly the dimensionality of the problems. 

A way to increase the dimensionality is to use functions which are characteristic 
of sets of states with some special properties such as having the same distance 
between states, the same value of certain variables, etc.. 

Some operations with characteristic functions of the sets of states are described 
below. Development of these operations was necessary for the design of computer-
aided logical design of discrete devices. 

Let two Boolean functions F t and F j be given as their sets of permit (one 
meaning) M1 and forbid (zero meaning) M°* states = M \ f l M f ; Mj=Mjf]Maj 
characterized by the functions./7 ' / , F f , Fj, FJ.** 

Let us distinguish the following sets of states: M f j , the subset of permit states 
identical for both Mf and M f , M f f , the subset of forbid states identical for both 

* A permit (forbid) state is the state in which the function is equal to one (zero). Besides, 
there are "don't care" states ( M ~ ) which are indifferent to the value of the function (it may equal 
either 1 or 0). 

Sets o f states: M1, M° and M~ are nonintersect in pairs and M ' U J W U M " , is equal to the 
set of all states, i.e., its power is 2", where n is the number of varibles of the functions F, and F, . 

** Statement "function F(A) characterized sets of states M*" means that: 

1. Proximity of functions 
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Mi and Mj\ Ml1, the subset of permit states only for Af ; no t contained in M}\ 
M[<>, the subset of forbid states only for M-t not contained in M j , M'f, the subset 
of permit states only for M j not contained in A/,; Mj°, the subset of forbid states 
only for Mj not contained in A/f; M f 1 , the subset of permit states in Mi contained 
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in the forbid states set in Mj (M[l = Mj°); M[<>, the subset of forbid states in Mt 
contained in the permit states set in Mj (Mf° = Mj1) that is (fig. 1) • 

M?j = Ml n Mj; M f f = Mf n Mj; 

Mf1 = M]n MJ ; Ml" = M°nMJ ; Mj1 = Mj f l M~ ; Mj" = M] f l MJ ; 

Ml1 = Mj" = M} f l M°; Mf» = = Mf n Mj. 

If the functions F; and F} are given by the sets of their permit and forbid states 
then the sets of states of classes: s, t and r are characterized by the funct ions : 

rsi _ pi f l . pso _ FO po. 
ij i j ' 1 ij i j ' 

f l 1 = FIFJ = Fl Fj F f ; F!° = F? FJ = Ff Fj F f ; (1) 

Fjl = Fj Fj = FjF?F¡°; Fj" = F] FJ = Fj Fl F?; 

F[l = F;° = FIFJ; Ff« = Fp = Ff Fj. 

Let us present the sets of states F1 and F° as the join of the above subsets of 
states. The funct ion will then be represented as (fig. 1): 

Mi = [Ml, M f ] = [(Mlj U M[l U Ml1), (Mff U M[<> U M/0)] 
Mj = [Mj, MJ] = [(MijUMp [J M'j1), (M??UM;°UM/°)]. 

(2) 
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The proximity of the functions is measured as the power of the subsets of 
states Mr. If Mf1, M[°, Mj1, Mj°, are empty M-j = Mff are empty the functions 
F( and Fj after introduction of the additional don' t care states may be realized 
by the same structure (fig. 2) but in the second case the output of one of the 
functions was taken from an additional invertor (fig. 3). Assume the proximity of 
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the functions Ft and Fj is absolute (the distance is zero) with the corresponding 
functions completely connected in the first case, and maximal, with the correspond-
ing functions inverse-completely connected in the second case. 

The concept of the proximity of functions made use of in defining optimal 
or near-optimal architecture of realizing functions in multioutput structures. The 
design technique for such a realization builds the so-called "connectivity nodes" 
of the structure, viz., a set of functions "completely" or "mverse-completely" 
connected. 
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For functions which do not enter the connectivity nodes the distance to one 
of these nodes is to be found and the question answered whether the realization 
of these functions is connected with a connective node or a separate one. 

To define these structures the operations of union intersection and comple-
mentation of subsets of states are used. If one has two sets of states M£ and M s 
written in the form (2), one may write for the operations of union, intersection 
and complementation : 

M . U M ; = [(MfUMj), (Mi(~)Mj)] = [{(Mi} U M/ 1 U Mf1) U 

u ( M f f u MY u M)O), ( ( M f f u M;° U M[») n ( M f f u M j ° u M ; < > ) ) ] . 

The intersection of subsets of states Mf and M-° is empty subsets M}° contains 
in subsets Mj~ and subsets Mj° contains in subsets M,~. Therefore we shall have : 

Mi U Mj = [(Ml U Mj), (Mff U Ml" U M'/)] (3a) 
Similarly, 

Mi H Mj = [(Mf DM}), (MfU-Mj)] = [(MfjXJM^VJMy), (MfUMj)] (3b) 

Mi = [((Mf), (Mf)) ] - [(Mf), (Ml)] (3c) 

2. Determination of the power of the state sets 

In the above technique (as well as in determining some other criteria for the 
realization of these functions) the power of some subsets of states is to be found . 
The characteristic functions of these subsets can be described in an arbitrary form. 

For this purpose [2] olfers techniques for the transformation of an arbi trary 
Boolean expression into . some "canonical" fo rm enabling the computat ions of 
powers of various state subsets as a sum and product of the powers of the state 
subsets which correspond to separate parts of the function analyzed, thus sig-
nificantly simplifying the computations. The use of the analytical form of the func-
tions permits one to take full account of the information contained in the state 
table which corresponds to the analyzed function with no need to construct the 
table itself. 

Let us enumerate the parentheses denoting by 1 the outer parentheses of the 
parenthetic expression of the Boolean function and increasing the index with the 
rank of the parenthesis. The subfunction in the z'-th parenthesis will be referred to 
as the i-th disjunctive or conjunctive term depending on the outer logical operation 
of this subfunction (i.e., depending on thé sign of the (z '+ l )s t terms contained in 
the expression). Inversion over the expressions will be denoted by square paren-
thesis and similarly enumerated. . •. . 

A canonical parenthetic form which may be used to find the number of states 
is the form where any pair of terms included into a disjunctive term is orthogonal 
and all the terms of. a conjunctive term should contain no coinciding variables. 

The transfer to the canonical parenthetic fo rm is done by means, of the. de-
composition of a given parenthetic expression by variables using Shannon's rùlé. 
It is obvious that for the disjunctive term i of thé canonical form the number of 
states equals the sum of the numbers of states of the (z '+l) conjunctive terms con-
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tained in this disjunctive term. The number of states of the conjunctive term will 
be ai = 2"-kpip2...f}m where n is the total number of variables, k is the number 
of variables contained in the conjunctive term, plt p2,..., Pm is the sum of the 
numbers of states of the disjunctive terms contained in the conjunctive term. A term 
•with square parenthesis (inversion) has the number of states defined as 

Pj = 2 ' - f t 

where r is the total number of variables contained in this inversion term and P* is 
the number of states of this term. 

This follows f rom the fact that the power of the sets of states, characterized 
by the inversion function is equal to addition up to 2r (r — is the number of the 
variables of this function) f rom the power of the sets of states, characterized by 
function, wich is under the symbol of inversion. 

Let the function 
F = [xtXjV xjxkx„]. 

ibe given. 
The number of states, characterised by the function, which is inside of square 

parenthesis (under symbol of inversion) is: P*=6. The number of variables of 
this function is: 4. Therefore the number of states, characterized by the given 
funct ion is: iVf=2 4—6 = 10. 

Let us have a certain function specified by its permit (F1) and don ' t care (F~) 
states 

F1 = x5V xix5xev XifaxeV xsx5xex10xn)V x2x1(x3V XiV x,V xsV x9), I 
F — JV3 V JCgXg . 

Obviously the functions, characterized by the sets of permit and forbid states with-
ou t the don ' t care ones (FL~ and F°~) will be described as 

F1' = F 1 F ~ = (x5 V x! x3 x6 V (x5 x s V x2 x5 x6 x10 x u ) V 

V x2 X l (x3 V x4 V x7 V x8 V x0)) [x3 x4 V x8 x9], 

F°~ = F1F~ — [x5 V Xj x e x6 V X\ (x5 x6 V x, x5 x6 x10 xL1) V 

V x2 Xj (x3 V x4 V x 7 V x8 V x9)] [x3 x4 V x8 x9]. 

Transform these expressions to canonical form using Shannon's rule in order 
•variable: x 1 ; x2, x 3 , x4 .* Denoting the upper index of parenthesis by the number 
of states in the form 2"~kp1p2... Pm and the lower index by rank of parenthesis, we 
shall have : 

F1 = i(2(2 x ^ x ^ f x 8x 9] | 3)2V2(2 xxx2x3 s[2 x8x9]3)| 3V2(2 -^iX2a(2 x5V 

Vx5x8)3
 3

3(X3VX3X4)| 93[xgx9]3)| 27V2(2 x l 3(2 x5Vx5x6)3
 3

3(x3V 

Vx3 x4)3
 9

3[x8x9]3)l 28)i 

F0 = 1(2 jc23[2 x5Vx5x6]3
 13(x3Vx3x4)3

 33[x8x9]3)| 9V2(2 Xi3[" x5V 

Vx5xe]3
 13(x3Vx3x4)3

 3
3[x8x9]3)| . 

* For determining the order of variables, which give the expression, approaching the 
•smallest amount of letters, it is useful to apply the heuristic criterion (5) or (6) (see page 7 and 8), 
as statistical experiments show. 
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Thus the powers of the sets of permit and forbid states for the given funct ion 
will be 

TV1 = 2- • 3 + 23 • 3 + 2° • 27 + 21 • 27 = 117 

№ = 2°-9 + 2 1 - 9 = 27. 

3. Decomposition of Boolean functions 

Realization of a given Boolean function in given elements is essentially a 
problem of decomposing this function into subfunctions in accord with the logical 
properties of the element. Obtaining the accurate solution for a problem of mini-
mizing a Boolean function, or transformation to the form with the smallest 
number of operations and letters is a complex problem of combinatorial search 
[3, 4]. With the number of input variables as high as 20 or 30 the problem becomes 
hardly solvable even on computers. Therefore presently minimization of Boolean 
functions is achieved by means of heuristic methods with local optimization which 
we call the "directional search". 

One of the first attempts to eliminate combinatorial search was introduced 
in [5] and widely used afterwards. This was the procedure of finding additional 
letters of the terms which describe the function in a contradictory way (the so-
called "insufficient minterms"). Further in [6] a method of directional search was 
suggested for the case when a Boolean function was given by its table of states. 
The method contained criteria for selecting the so-called "inessential" variables* 
and finding minimal terms of the kernel as well as the minimal set of insufficient 
minterms.** 

The fact that the function should be specified by its table of states significantly 
limits, however, the dimensionality of such problems. Ref. [7] suggested a technique 
in which minimization procedure rests upon the record of the given funct ion and 
all its intermediate forms obtained in the course of minimization in an arbi t rary 
analytical form thus considerably increasing the dimensions of the problems. 

A more general technique was developed afterwards for realization of a func -
tion or a system of functions using "arbi t rary" elements, or those whose logical 
properties are described by arbitrary Boolean functions [8]. 

The first stage of this technique implies elimination of the so-called "inessential"' 
variables i.e. such whose elimination from F1 and F° does not change the values 
of the function. 

To determine inessential variables, a notion of Boolean "derivative" is used,, 
introduced in Ref. [9]. The derivative of the given function with respect to an in-
essential variable is equal to zero. 

dF , 

* An inessential variable is a variable for which no pair of permit and forbid states exist 
differing only by the value of this variable. Elimination of this variable does not change the value 
of the functions. If a pair of permit and forbid states differs by the value of one variable, the values: 
of this variable in these states are called obligatory letters. 

** Minterm of the kernel is the conjunction of obligatory letters which describe only a subset 
of permit states or only a subset of forbid ones. Such terms should be included into all d-n. f. versions: 
of a given function. 
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To obtain optimal realization* the order of elimination of inessential variables 
is important. A heuristic criterion is used for this purpose which estimates the 
proximity between the variable and the constant 

^ = + (5) 

where n{yk and n\ k are the number of permit states in the function in which the 
variable xk takes on the values of 1 and 0, respectively, and n\ k and n„ik is the 
same for borbid states. 

This criterion gives exact results in utmost cases, when the variable xk is con-
stant or a given function equal to the letter xk or xk. . . . 

In the first case «o,t=wo,/t = 0 or n\<k — n^k = 0 and therefore R = 0. In the 
second case nl : k = nl tk — Q or n[ k = n'f) k = Q. It is possible to show that in these 
cases /? = max. 

First an inessential variable is eliminated for which we have the least value 
of the criterion R. After the variable is eliminated f rom the function F, the values 
of R are recomputed and the next variable is eliminated until all the variables left 
are essential. 

Let us assign as the inputs y1, y2, ..., yq of the output element <p a certain 
set of input variables x ^ x j , . . . , x q . At the output of the element we shall have 
then the functions, h and g.** 

Then it is clear that if 
Fxh = 0 F°g — 0 

the function can be realized by a single element with a given assignment of vari-
ables as inputs of this element. If these expressions are not equal zero, the realiza-
tion-of the function will be contradictory, i.e., for some states f rom M 1 " 0 " will 
appear at the output of <p the element, and for some states, f rom M°, "1" . 

Two problems arise here: 
a) find a set of variables assigned as the inputs of the output element such 

that the functions h and g be as proximate as possible to the functions F1 and F°, 
that provides optimization of the entire structure, and 

b) design the "addit ional" functions with the minimal necessary number of 
states assigned as inputs of the output element for elimination of contradictions. 

The first problem is solved by the calculation of the value of the heuristic 
criterion for every variable xk 

1 (6) N1 № 

where: n\<k and nJ j t — have the same sense, as in criterion (5); N1 is the power 
of the set M1 and N° is the power of the set M°. If bk is positive then xk is without 

* By an optimal realisation we understand the obtaining of a function, nearing to such one, 
which has a minimal number of variables. 

** The functions h and g specify the states which in the function realized by the element are 
permit and forbid states, respectively. 
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the sign of inversion. If bk is negativ then xk is with the sign of inversion. The 
variable xk is selected with the maximal value of bk. 

The second problem is solved by determination of the sets of permit and 
forbid states of the so-called "addit ional" function, i.e., such function by the re-
placement of which variable xk, will remove or decrease contradiction in realiza-
tion of the given function. 

Design of these functions for an arbitrary element is a rather bard task achiev-
ing which illustrate well the problem of isolating, f rom the sets of states of the 
given function, certain subsets with given properties, which was mentioned a t the 
beginning of this paper. 

Let us examine in a more detailed manner what states have to be permit and 
forbid for this function. 

Let us introduce notion of "part ial" derivative arid " r anks" of partial deriva-
tive variables. 

The partial derivatives of first rank for the variable xk are: 

(7a) 

(7b) 

Expression (7a) characterizes the set of permit states in which variable xk = 1 
and xk is essential. Accordingly in the set of forbid states xk=0 and xk is also 
essential. 

Expression (7b) characterizes the set of permit states in which the variable 
xk=0 and xk is essential. Accordingly in the set of forbid states xk = l and xfc 
is essential. 

In these cases, for every state f rom M 1 and M ° there will be found accordingly 
exactly one state in M° and M 1 which differs by the significance of the variable xk 
f rom the given state. 

Let us consider that in these cases these states are in distance " o n e " . 
Let us understand as derivatives of rank of "_/"' (dj(F)Xk and dJ(F)nk functions 

which characterise the states f rom F1 or F° having in ratio to given state j variables 
(including xk), which have opposite significance. Let us consider, tha t in these 
cases these states are in distance " / ' . 

For the analysis of states included in additional functions the expressions 

S ( f i ) = V &(E)Xk (8a) 
j=2 

and 

S(F°) = V dJ(Fhk (8b) 
j = 2 

will be useful. 
These expressions characterise disjunctions of states for the partial derivatives 

of all ranks, without the first. 
To obtain the expressions S (F1) and S(F°) one should consider : those for 

each rank of partial derivatives and then join them up. 

à H F ) X k = ^ t = 1 ) J F ( V 0 ) 

and 

= ^ = 0 ) ^ = 1) 
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Let us consider a technique of finding second rank partial derivatives. First 
find the functions Dl(F1) and D1(F°) describing the "remaining" states in Ml 

and M° after elimination of the states included in the first rank partial derivatives. 

£ > i ( f i ) = F V O p 1 ) 

Z)i(fO) = F V O 0 ) 

T H ? 0 ) = X i y d H ^ y n i y M ^ h ) . 

The second rank partial derivatives are those of the first rank for Z)1(F l) and 
Z)1 (Fn) over yt, yt with respect to t 1(<p1) and x 1(<p°). 

Higher rank partial derivatives are determined in a similar way. 
Let functions F1 and F° which characterise permit and forbid states M 1 and 

M° for some function F be given. Let an element cp be also given, having q in-
puts : yt, y2, Permit and forbid states of this element are characterized by 
f u n c t i o n s : <P1=r(y1, y2, ..., yq) a n d cp°=s(y1, y2, ..., yq). I n add i t ion , let the 
set of variables: x h x j , . . . , x k be determined as assigned by inputs of element cp, 
which result realisation of functions: h(xh xJ: ..., xk) and g(xi,xj, ..., xk) on the 
output of this element, accordingly with permit and forbid of given function F, 
but realize it contradictory. 

In [10] the following formulas are given characterising permit ( f y ) and forbid 
( / $ states of additional function on input y t of element 

/¿. = Fl(i)l(h)y.y S(g),)y F°(dl(h)h\/ S(h)-yt) ( 9a ) 

= Fi(dHh-y()V S(g)yt)V F°(di(h)yiV S(h)yt). ( 9 b ) 

Let us show, that these formulas reflect category of states including in addi-
tional function correct and completely. To the set of permit states belong follows: 

a) The states in which xk = 1 or xk = 0 and the given function is realized 
correctly at the output of the element, and the change of the value xk changes the 
output value which becomes contradictory. It is clear that these values should 
be preserved in the additional function which provide for the replacement of the 
variable xk. 

b) The states in which xk also is either "1" or "0" but the function F i s realised 
at the output of the element contradictory and the change of the value xk leads 
to elimination of the contradiction. Here as in the previous case the letter xk is 
an obligatory letter and in order to eliminate the contradiction the state should 
be replaced with the one f rom the opposite set of states. 

Functions characterising states of categories of a) and b) will be expressed 
therefore in the following form 

A1 ( f t ) = Fid\h)yy F°d\h)-yi. 

If the states of the element cp, leading to contradictory realisation, belong only 
to categories a) and b), then the function A1(fy) completely eliminates the con-
tradictions. 

where 

and 

3 Acta Cybernetics 1V/1 
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c) If the state under consideration differs f rom those of the opposite set of 
the table by values of several variables, the change of the values xk via additional 
function is still helpful, since it decreases the "distance" between the given state 
and the one which correctly realises .the given function thus simplifying the realiza-
tion of additional functions at the other inputs of the element. 

The function, characterising these states, will be expressed in following form 

= FiS(g)-yiVF°S(h)-yr 

a) The states, in which correct realisation of permit states of a given func-
tion F is provided write help of other variables and therefore the change of the 
value of given variable don' t change the significance of the output of the element, 
belong to don' t care states of additional function. 

The disjunction: A'(f^VA"(f*) gives formula (9a). The correctness and 
completeness of formula (9b) prove analogous. 

Successive application of formulas (9a) and (9b) for all inputs of element cp 
and for received additional functions give the convergent process of elimination 
of contradictory in the realization of the given function F. 

4. Algebraic model of a discrete device 

A number of problems in the analysis of discrete devices (revealing statistical 
and. dynamic races, reliability analysis, determination of check and diagnosis tests, 
etc.) are very difficult because of the lack of adequate models which would describe 
in a compact way the internal structure of the device as well as its operating 
algorithm. 

The model without this defect [10] uses the fact that introduction of each in-
ternal variable (a function of the same input variables) doubles the number of states 
of the function and exactly one half of them should belong to the states of M~. 
Indeed, if we have some element for the function 

<Pi=fi(x !,X2,...,Xn) 
where x1, x2,..., xn are the input variables, then the function A = , x 2 , . . . , x„) V 
\f (pfi(x1, x2, ..., x„)=0 i.e. it describes the subset of states M~. 

Additional internal variables associated with outputs of the elements are in-
troduced for each /-th output of the structure of a discrete device by eliminating 
f rom M1 and M° the states characterised by the functions At. 

Similarly as above, let us denote the functions characterizing the subsets of 
states M1 and M° at the /-th output of the structure containing k elements may 
be described as follows 

F}'k — Flipci, x2, ..., 

Ff'k = F?(xi,x2,...,xn)$ 
where 

k 
•A = A ((Pifi (*! , X2 , ... , - O V <?;/; (.*! , X2 , ... , X„). 
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