
On the incompleteness of proving partial correctness

B y T . GERGELY a n d M . SZŐTS

To the memory of Professor László Kalmár

1. Introduction

Our paper deals with the question, whether there exists complete calculus to
prove partial correctness of programs. The first really important result in program
verification was the method of inductive assertions introduced by R. W. Floyd [1].
(Later the method was reformulated by Hoare [2] so we call it Floyd—Hoare method.)

Also nowadays this is the most widespread method used in program verifica-
tion and it proves partial correctness, so the question of completeness raised by
us is not without importance. Z. Manna formalized this method in strict classical
logic [3]. Several papers can be found in the relevant literature claiming the Floyd—
Hoare method being complete (e.g.: [4] p. 237 Prob. 3—19, [5], [6]). We shall show
that in the proofs of completeness some model theoretical questions were neglected.
We investigate this method in model theoretical point of view, and prove that
there is no complete method for proving partial correctness, and show the causes
why the Floyd—Hoare method can be incomplete.

2. General principles

The existing programing languages have two features relevant to proving
program properties:

— Only their syntax is formally defined, their semantics are informal.
J: — Statements about program properties can not be expressed in the pro-

gramming language itself.
However in program verification one deals with semantic properties of pro-

grams in a formal way. In the followings we outline the way how we ensure the
ability to do so.

(i) We select a language to express program properties. Since we want to
handle these properties by mathematical tools we choose language in the form
L = { L , ML, N) where £ is a formal syntax, ML is the class of models, |= is the
validity relation (see e.g. [7]).

46 T. Gergely and M. Szots.

(ii) We interpret the programs in the models of L. Let P be the formal syntax
of the programming language. Every program p£P is a static description. We define
some mathematical objects on the models of L expressing the dynamics and con-
sider it as the formal meaning of the program. Since L speaks about programs this
meaning has to be describable by formulas of L. In favourable cases it can be
defined, but weaker specification can be enough for some purposes.

Having defined the formal meaning of programs we can introduce an inter-
preting function k. To every model and program p£P k renders the mean-
ing of p in 91. So we get a programming language with mathematical semantics:
P = (P,ML,k).

(iii) The intuitive semantics of programming languages speak not only abou t
the way of execution of the commands, but contain also constraits on the systems
which the programs can be executed on. In our way of handling programs the
models of L stand for these systems, so the constraits fix a subclass Mp of ML as
the model class of P. Mp is said to be called the class of intended models. So the
programming language is: P = (P, Mp, k), and the language speaking about pro-
grams: L p = {L,Mp, l=). Since L is the language speaking about programs, it is
expedient if Mp can be specified by the expressions of L. (It is the case if the con-
straints can be expressed in L.)

(iv) Our aim is not only to express but also to handle formally program prop-
erties, that is to prove them. In (ii) we stipulate that the meaning (executions) of
a program can be expressed in the formulas of L. If we succeed to formalize pro-
gram properties in L and L has a calculus, the program properties can be proved
by this calculus. So a calculus for program verification consists of two con-
stituents:

a) An. algorithm to construct a formula of L for the program property in
question.

b) The calculus of L . .
If we have the algorithm of a), the completeness of program verifying calculus

depends on the completeness of L p = (L, Mp, |=>.
In this paper we work out these steps for the case when L is the language of

first order classical logic. Our aim is to examine the provability of partial correctness
of programs. We use [8] as standard reference for the logical notions used here.

3. Interpreting programs in relational structures

Let t = {t',t") be a similarity type. We introduce the notion of "t-type pro-
gramming language". (The type t determines the function and relation symbols
occuring in the language.) According to it L will be the /-type first order classical
language. u

For the definitions of logic see [8].

Definition 1. We define the syntax of the /-type programming language (P,).
(i) Symbols of the language :
a) Set of the program variable symbols : Y = {y0, y1; ..., ylt ...}i€tu

b) Function and relation symbols: Do(t') and Do(t")
c) Logical connectives of classical logic: {~ii, A}

On the incompleteness of proving partial correctness 47

d) Set of labels: I={1 0 , ..., l„ .. .} i im
e) Special symbols: { —, IF, THEN, (,) , : , ; , , }
The above mentioned sets are pairwise disjoint.
(ii) Set of commands: C—C f l UC c , where

a) Ca is the set of assignement commands:

, Ca = {y, - f (y h y j : y, ,yh,..., yin € Y, f£Do (t'% /"(/) = n}

b) Cc is the set of control commands:

Cc = {IF e(ytl,...,yj T H E N / ;: / ,£ / ,

yh, ..., yin£Y, g (j f l , ..., _y,n).is a quantifier-free formula of L,}.
(iii) The expressions of the programming language are the finite sequences

of labelled commands:

V i, y < n l j if i ^ j } .

These sequences are called ¿-type programs. •
Let p £Pt. The set of variable symbols occuring in p is designated as Yp, the

set of labels labelling the commands of p as I'p, the set of labels occuring in it's
control commands as Let ly the first label not in I'p, then Ip = rp{JIp\J {ly}.

Example 1. Let t be the type of arithmetic, I=a>. Then
0: y t ~ 0 ;
1: ^ s - i ;
2: I F y 2 = y ! T H E N 6;
3: y2*-y2 + l;
4: y 3 ^ y s •J'a;
5: IF^1=_v1 , T H E N 2;

is a program. If we designate this program by p, then

= {yi,y*,ya}, I'p = {0, 1, 2, 3, 4, 5}, i; = (2, 6}, ly = 6
so

/ „ = { 0 , 1 , 2 , 3 , 4 , 5 , 6 } . •

The intuitive meaning of the commands is the usual. We stipulate that the
execution of a program starts f rom the first command (/„: U0), the variables of the
program get their input values before the execution of it. The execution of the
program stops when control is given to a label not occuring in I p and the values
of the program variables at this state will be called the output of the program. All
these notions will be soon defined precisely.

The language P is minimal in some respect: some kind of assignment and
control commands are needed to build programs. We neglected input-output
commands, and do not speak about subroutines. The reason of it is not that if

48 T. Gergely and M. Szots.

we could not carry on the same investigation having these kind of commands ,
but that the result would be the same.

Now in accordance with our principles laid down in the preceding section
we shall interpret programs in the model class of classical logic, that is in the class
of relational structures. Our definition will reflect the intuition that the meaning
of a program is it's execution.

Definition 2. Let 2 l £ M t be a model ,/> = /„: i/0; : . . . ; lm:Um;£P, be a pro-
gram and kj \ Yp—A be an assignment function for every j (A is the universe of 21).
A trace of program p in model 2f is a sequence of pairs of a label and an assign-
ment function, if the following rules (i)—(iii) are satisfied.

(i) s0—(l0, k0), that is the sequence starts with a pair having the label of the
first command in the program (i.e. the execution of the program starts at the first
command). Here k0 is arbitrary, the values of k0 are called the input values of the
program variables.

(ii) Let Sj = {li,kj) and /¡£L'p. Then the next trace element (sJ+1) will be
constructed by the following way, depending on £/; (the command labelled by /,).

d
a) If Ui£C a , that is Ui = y k ^ f (y h , . . . , j ' J , then: sJ+1=(l, kj + 1), where

J _ Oi+i if ' <

I ly i f i = m

J + M k) ' \ / H l < j (y n l - ^ j (y O) if h = k.

(Note that /^{kjiyi^, ...,kj(yin)) is the value of the term f (y h , ..., vin) in according
to the k j assignment function.)

b) If Ui£Cc that is t / ^ I F o O ^ , . . . , y i n) T H E N lc, then: sJ+1=(l, kj), where

Ot+i i f W * e (y h , . . . , y l l) [k j]

- \ l c i f 2 1 ! = o (> ' , 1 , . . . , . v , n) [/ c J .] .

(iii) Let Sj = (l i , k j) and /¡$/p. In this case there is no sj+1 element, so the
length of the sequence is j+1. The values of kj are called the output values of the
program variables.

So if 5 is a trace, then (J ^ (/pX 'M) ,^ -) -1 is called the length of the trace,
0<ATSco

the elements of IpXYpA are called trace elements. •
The rules of the definition will be refered later as rules 2(i), 2(ii), 2(iii) respectively.
It can be seen that Definition 2 formalizes the intuitive meaning we circum-

scribed after the definition of syntax. Rule 2(ii) determine the correct meaning of
the commands, rules 2(i) and 2(iii) the start and stop of execution. Rule 2(iii) deter-
mines whether a trace is finite or not. In the first case the execution terminates.

We shall use the following notat ion: instead of the assignment funct ion k we
sometimes write the values of k (as a vector: 5). Since the domain of k is ordered,
this notation does not give place to misunderstanding: k(yi)=bi (idea).

On the incompleteness of proving partial correctness 49

Example 2. Let p be the program shown in Example 1, 91 be the standard
model of arithmetic. In this case s is a trace of p in 91:

s = « 0 , [3, 1, 1]>, <1, [3, 0, 1]>, <2, [3, 0,

<3, [3, 0, 1]>, <4, [3, 1, 1]>, (5, [3, 1, 1]), <2, [3, 1, 1]>,

<3, [3, 1, 1]>, <4, [3, 2, 1]>, <5, [3, 2, 2]>, <2, [3, 2, 2]>,

<3, [3, 2, 2]>, <4, [3, 3, 2]>, (5, [3, 3, 6]>, <2, [3, 3, 6]>,

<6, [3, 3, 6]».

We say that with the input [3, 1, 1] p terminates in 91 and gives [3, 3, 6] as
output. •

For the following investigations we need some auxilary definitions:

Definition 3. Let p£Pt. Then a partial end-trace of p is a sequence of trace
elements satisfying rules 2(ii), 2(iii). (Intuitively: the execution of p may start at
any command in p.)

Let 2(ii)' be a modified form of 2(ii). In 2(ii)' the condition of 2(ii) reads:
"If Sj={li,k]), and Sj is not the last element in s, ..."
A partial trace of p is a sequence of trace elements satisfying 2(ii), and 2(iii).

(That is the length of a partial trace in not determined by 2(iii).) •
Having interpreted programs in the models of L we can define our programm-

ing language:

Definition 4. The programming language is a triple:

P , = (P„Mp,k),

where P, is defined in Definition 1, MpQM,, k is the interpreting function:

Do(k) = MpXPt, k i ^ p) = {5:^ is' a trace of p in 21}. •

It is one of the interesting questions how to determine Mp. In the literature
two cases are discussed (see e.g. [4] chapter 4). The first is when Mp=Mt, that is
the programs can be interpreted in any relational structure. In this case they are
called program schemes. The second is when Mp= {21}, 2 t € M t , that is the programs
are interpreted in one specific model. Intuitively that is what we mean by programs,
e.g. if t is the type of arithmetic, the programs are. intended to be executed in the
standard model of arithmetic. However the question arises, how to characterise
the choosen model. It can be done in model theoretic way (using some metalanguage)
or by the second order classical language, but usually first order language has no
power enough — saved the case of finite models. If we want to use the first order
logic as semantic describing language we have to stick to its usage characterizing
Afp . So we have to give a first order theory T, and Mp will be the .class of models
of T: M p = Mod (T). Then the formulas of T will be the non-logical axioms of
the programming language. As we said in the previous section, wanting a complete
calculus for proving program properties the language <L, Mod (T), N) has to
have a complete one. It is equivalent with the condition that T should be axiomatized,

4 Acta Cybernetica IV/1

50 T. Gergely and M. Szots.

that is there should be a recursive set of formulas (A x T) which all the formulas of
T can be deduced f rom. So usually we define Mp as Mod (AxT).

According to the principles laid down in the previous section we have to find
a first order description of the traces which we used in the interpretation of pro-
grams. This will be done in the next section.

4. Description of semantics in first order logic

The power of first order classical logic does not ensure the description of the
mathematical object (set of traces) which we have introduced above to handle
meaning of programs. This is a natural consequence of the contradiction between
the dynamics of programs and the static nature of classical logic. So we have to
look for mathematical objects characterizing traces and being describable by classi-
cal language.

Definition5. Let pZPt, 9 l £ M P and s be a trace of p in 31, / £ / p , then the
l-volume of s is:

/={£>: there is trace element in s of the form (/, B)} •
I t is evident that the /-volume of a trace is a relation defined on the universe

of a model, so it can be expressed by the classical language. For the following
study let us fix a program p with n program variables. To examine this program we
extend L, with new relational symbols Qj for every l j f J p , t"(Qj)=2-n.

(About the extension of a language see [8]). Our intention is tha t this new
symbols should describe the l}-volume of the traces of the program, where the in-
vidual traces will be denoted by their input values (therefore the 2 -n arity).

Formally:

Definition 6. Let 91 be a model, go be a 2 • rc-ary relation on A such that , if
(a0, . . . , b0, ..., bn, ..., b^^tQf then ^ = for every 0Sz '<w. (So g 0

m a y be
the /0-volume of a trace of p in 91). Then we define 2 • w-ary relations on A for
every l j £ L p : (a0 , ..., a„_1 ; 6 0 , ..., ¿>„_i)£2o,j iff the following conditions are sat-
isfied :

(i) <Z>0, ..., bn^,b0, ¿„-i>€G8f,
(ii) (a0, ..., a„ - i) is an element of the lj-volume of the trace with input

(b0, ..., 6„_x>.
The relations (defined by the executions of the program) are called the

minimal relations for Q0 in 91. •

So we want to construct such first order formulas, those whose satisfaction
can assure that the relations corresponding to symbols Q j are the minimal re-
lations corresponding to Q f . Now we define axiom schemes formalizing the rules
of traces in Definition 2.

Definition 7. Let us define axiom schemes in the following way:
(i) At the begining of the execution the program variables get their input

values:

Vxg0(x,x).

On the incompleteness of proving partial correctness 51

(ii) The effect of the commands :
a, assignment command:

< 7 I I I + 1 : x) - A + I Q ' ! , ..•,yk-1,f(y), yk+1, ..., . V N , *)]
 :

b, control command: /¡: IF g(y) T H E N ¡j

Vx>y[Qi(y,x)Ae(y)~Qj(y,x)l •

Comparing Definition 2 with Definition 7, we can see that :
1. The rule 2(i) is not totally formalized, the axiom \/xQ0(x,x) ensures only

the identity of input.
2. The effect of the statements (rule 2(ii)) is totally formalized.
3. Rule 2(iii) is formalized indirectly by the fact that there is no axiom scheme

of the fo rm: Q s (y , if /,.<£/;.
The proposition below says that the axiom scheme for the commands formalize

exactly rule 2(ii). It follows immediatly f rom Definitions 2 and 7:

Proposition 1. For every i, j f j p , 9i£A/p and relations Q f , Q f , if there exists
the C; j axiom then the following statements are equivalent:

(i) <2t, O f , QJ)t=ou
(ii) For every (a, d) ÇQf if there is a partial trace of the form ((/, a), (j , b)),

then (B,3)£Qf. •
Let us apply the relevant axiom scheme for every command of program p. The

set of formulas got in this way will be considered the description of the program
p, we denote it by Ip.

Example 3. Let p be the program shown in Example 1. Then :

£ p = {VxÔ0(x, x),

Vx , y [Q0{y, x) - ô i O ^ , 0, y2, x)],

^x,y[Q1(y,x)^Q2(y1,y2,\,x)],

V3c, y[Q2(y, x)Ay2 ^ ^ - Q3(y, x)],

^x,y[Q3{y,x) ^Qi(y1,y2+\,y3,x)],

V x, y [Q4 (y, x) - Q5 (>>!, y2, y3 • y2, x)],

Vx,y[Qs(y,x)Ay1 = y1-^Q2(y,x)],

Vx,y[Q2(y,x)Ay2 = y1-~Q6(yx)],

Vx,y[Qs(y,x)Ayi^ J>i-* Qe(y, *)}• •

In the following we analyse what extent Ip describes program p to.

Theorem 1. Let 21 £MP.
(i) For arbitrary minimal relations :

...>•!=*, ' •
4*

52 T. Gergely and M. Szots.

(ii) If for a given (Q f) , ^ (% Qf , - , Q f , ...>N=IP; then Q l ^ Q f .
For the proof of the theorem we need the following

Lemma. The following statements are equivalent:
(i) (% Q $, . . . , Q r , . . X a P i = Z P

(ii) For every partial trace ((/,„, a)> • • •, </iy, 5)) if (a,3)£Q?0 then for every
trace element (i k , c) occuring in the partial trace in question we have (c, 3) Ç Qfk

Proof of lemma, (i) Let us suppose that <21, ...,Qf, ...)(= I p . We shall
prove the lemma by induction on the length of the partial traces.

a.. For two element traces lemma says the same as Proposition 1.
b. Let us suppose that the proposition of the lemma stands for every partial trace

with length shorter then n. Let s = (s', {lj,B)), where the length of s' is n—1.
If <4, c) is a trace element f rom s', the proposition stands for it because of the
inductive hypothesis. Let (l m , c) the last element of s', so Let us
apply Proposition 1 to the partial trace <</m, c), (/ . , 5)) and we get that

(ii) It is enough to consider the two element partial traces and then Proposi-
tion 1 is got. •

Proof of theorem, (i) (ii) of the lemma stands also for the minimal relations.
Thus, by the lemma, <31, Q%, ..., Qfti, ...),,e/pl= Zp.

(ii) Let us suppose that <St, . . . , Q f , ...)t= I p . So also (ii) of the lemma
stands for every trace having È as input if <3, For this case (ii) of theorem
is equivalent to (ii) of lemma. •

If we could have proved that a family of relations (Q f) i ^ r p satisfies I p iff
it consists of volumes of traces, we could say that Zp describes totally the program
p. This theorem shows that it is not the case. The next proposition shows the power
of Zp.

(The proposition is an imm;diate consequence of the above lemma.)

Proposition 2. If a family of relations {QY)i.<np satisfies Ip, all the relations
are volumes of partial end-traces. •

This proposition shows clearly that our failure describing programs totally
in first order logic comes f rom the fact that we could not formulize rule 2(i). In-
tuitively Proposition 2 says, that Xp allows

to start the execution of a program
at a command different f rom the first one. This failure is not due to our inadequency,
later we prove that the volumes of traces (the minimal relations) can not be defined
by first order formulas.

However the power of I p is' enough to prove properties of programs. The key
of complete proof procedures is our ability to express the programs properties
in our semantic description language, that is in the first order classical language.
So to make a program property provable we have to find first order formula which
describes this property. Succeeding with this we can prove the program property
in question by proving this formula f rom AxT U Ip by a calculus of first order logic.
We show an example in the following.

Definition 8. A p r o g r a m p is totally correct in a model '3Î with respect to (w.r.t.)
the input condition <p(x) and output condition ' ij/ (y, 3c) iff for every input (5) sat-

On the incompleteness of proving partial correctness 53

isfying <p (x) the appropriate trace in 21 terminates and the output (5) satisfies
ip(y,x). •

Theorem 2. A program p is totally correct in every modell of Axr w.r.t. <p (x)
and \]/ (y, x) iff

AxTUIp I— Vx[£>0(x, x)A<p(x) - 3y(*l>(y, x)A{ V Q,(y, *)))]•

The proof of this theorem is not difficult using Theorem 1. For soundness use
(i) of the theorem, for completeness (ii). •

5. Provability of partial correctness

Definition 9. A program p is partially correct in a model 2(w.r.t. <p{x) and
i// (y, x) iff for every input (a) satisfying (p (x) the output of the appropriate trace
satisfies i¡/ (y, x). (So we do not demand the trace to terminate for every input
statifying cp(x), but if it does for some of them the output must be correct.) We
shall use a shorthand for partial correctness: (<p, p, i¡/). •

Let us substitute (p(x)Ay=x for Q0{y,x) and ij/(y,x) for every Qj(y,x)
when lj£lp\rp, in Ip. The obtained set of formulas is denoted by Xp((p,\j/).

Theorem 3. A program is partially correct in every model of AxT w.r.t. <p(x)
and i¡>(y,x) iff AxT\=3Q1, ...,Qi,... Ip((p,\lj).

Proof. In the proof we use the following equivalence: •••> £?i> •••
..:, £„((p,ij/) iff every model of Axr can be extend so that (21, [(p(x)A_y ^x]3 1 ,
Q f , ..., Q f , . . . , [.p(y , x) f > N _ I p . (Here if / (y) is a formula, then [*(jOf is the rel-
ation on A of all vectors a satisfying y.(y)-)

(i) Let us suppose that the program is partially correct in every model of
AxT. By (i) of Theorem 1:

<21, [cp(x)Ay = x f , Qf ly ..., Qo.i, •••) 1= Zp

Since the program is partially correct w.r.t. cp and ip: £[4>(y, x)]51 for
every 7 ' 6 / p \ / p . By Proposition 2:

<21, [<p(x)Ay = *]«, Qh, ...,[<P(y, x)]41) N

So we have found appropriate family of relations to extend any model of AxT.
(ii) Let us suppose that there are Q f , ..., Q f , ... satisfying Ip:

<2i, [<p(x)Ay = x f , Qf,..., Q f , ...,№(y, x) f > N Sp

By (ii) of Theorem 1 for every jOp, Qfj^QJ- Thus for all jtlp\l'p, QSj^
£ [if/ (j , x)]a , that is the program is partially correct. •

Notice that the theorem could formalize the notion of partial correctness only
by a second order formula (Qlt ..., Qt, ... stay here for relational variable symbols).
So this theorem failed to give a complete calculus to prove partial correctness. The >
question has arised whether it is possible to give any. Before giving an answer let

54 T. Gergely and M. Szots.

us analyse the question itself, that is the notion of completeness. For a given type
t and class of intended models Mp we say that for the programming language
P , = { P t , Mp, k) there is a complete calculus to prove partial correctnes, if we have
a calculus which proves (<p, p, i¡/) iff p is partially correct w:r.t. (p, ij/ in every model

6 Mp. So the question can be raised only with respect to the similarity type and
the model class of the language. We give some propositions and theorems dealing
with different cases.

It is evident that if t and Mp are such that the second order language (L f , Mp, N)
has complete calculus, then for (P t , Mp, k) there is complete calculus to prove
0P, P. </0-

In the following we give some negative results. The first of them is concerned
with program schemes, and is based on the well known theorem that there are
no complete calculus to prove that a program does not terminate for any input
in any model (see e.g. [4] p. 264 theorem 4—2). Since non-terminating can be ex-
pressed by partial correctness using unsatisfiable formula as' output condition,
the following proposition stands:

Proposition 3. Let (bs a type containing denumerable infinitely many func-
tion and relation symbols for every arity, and Mp = ML, then there are no complete
calculus for (P t , M L , k) to prove (<p, p, •

The following two theorems are our main ones. We select the type of arith-
metic as the • type of the programming language. The negative result for this case
shows that in the practically important cases we have no complete calculus.

Theorem 4. Let t be the type of arithmetic, and is the standard model of
arithmetic. There are no complete calculus for (P,, {5R}, k) to prove (<p, p, i/0-

Proof. We use the result that the problem of existence of solution for Dio-
phantine equations is undecidable (see e.g. [9]). For the solution of each Dio-
phantine equation T1(X)=T2(X) we write a program l2>:

1: y 2 - 0 ;

n ' - l : y„ — 0;

n: IF TjXJO = ,T2(JO T H E N m + 1 ;

m: I F j>! = T H E N n;

where the command between the ones labeled by n and m compute the lexico-
graphical successor of y.

The execution of these programs gives a complete calculus for the problem
whether a Diophantine equation has solution. If we had a complete calculus to prove
partial correctness, it would give an algorithm to enumerate the Diophantine equa-
tions having no solution. So the problem of Diophantine equation would be de-
cidable. Therefore there are no complete calculus to prove partial correctness of
programs interpreted in the standard model of arithmetic. •

On the incompleteness of proving partial correctness 55

Theorem 5. Let t be the type of arithmetic, and PA be the Peano axiom system.
There are no complete calculus for (.P,, Mod (PA), k) to prove (<p, p, ip).

Proof. Let us notice that the traces of program /><tl,tj> defined above, in any
model of PA will be the same as the one in the standard model. (It is due to the
fact that input values does not effect the execution.) So the same argument is
applicable as in the proof of Theorem 4. •

Notice that the negative result is not due to the choice of first order language
for L. Theorem 4 shows the impossibility of complete calculus for any language
having the model class {91}.

Similar proofs can be created using any undecidable problem.
In the following part of our paper we analyse the Floyd—Hoare method. First

we define a calculus equivalent to this method.

Definition 10. Let AxT a decidable axiom system, p — l0: U0; ...;/„:{/„; £Pt,
<p,\p£L}

A Floyd—Hoare derivation of (<p, p, ip) consist of:
a. A mapping <1>: Ip -* L\ such that

(i) $(l0) = <p(x)Ay = x,
(ii) $(lj) = ip(y, x) if lj£lp\rp.

b. First order derivations listed below:
(i) To each labelled command lm \ yk—f(y) occuring in p a derivation of the

form
Axr h- <Z>(/J - <P(lm + !)[yklf(y)]

is assigned ([yklf(y)] means that each free occurence of yk is substituted by f (y)
in a collapsion free way).

(ii) To each labelled command lm: I F g (y) T H E N /„ occuring in p two deriva-
tions of the form

AxT b- &0m)/\g(y) $(l„),

are corresponded.
Our notation for Floyd—Hoare derivability is: AxT (— Up, p, i j /) . •

F.H.

Note that the definition of the calculus is in accordance with (iv) of Section 2.

Theorem 6. The Floyd—Hoare calculus is sound, that is if AxT i - (cp, p, \jj) F.H.
then the p program is partially correct w.r.t. cp, tjs in every model of AxT.

Proof Let us notice that the first order formulas whose derivation is required
in Definition 10 are the axioms for the appropriate command as defined in Defini-
tion 2 substituting <P(lj) for Qj. Having a Floyd—Hoare derivation, we have rela-
tions [$(lj)Yl for every 2 t 6 M o d (AxT) so that :

<2l,([<P(lj)f}ap)t=ZP

Therefore by Theorem 3 the program p is partially correct w.r.t. cp, 4* in every
model of Mod (A x T) . •

56 T. Gergely and M. Szots.

By Theorem 5 the following proposition is evident: .

Proposition 4. If the similarity type includes the type of arithmetic and AxT
is a recursive expansion of Peano axioms,. the Floyd—Hoare calculus is not
complete. •

We emphasize this last proposition because claim can be found in the literature
that the Floyd—Hoare method is complete (see e.g. [4] p. 237 Prob. 3—19, [5], [6]).
Now we analyse what causes its incompleteness and which points are neglected
by those who claims completeness.

AxT is recursive, so {L}, Mod (Axr), t=) has complete calculus. This fact
shows that if we have so that relations [i>(/;)]a satisfy I p , then (<p,p,ip) can
be proved.

So the Floyd—Hoare method would be complete if for every ljZJp\{I0} some
of the relations Qf satisfying Ip could have been defined by first order formulas.
Since the minimal relations satisfy I p , the following stands:

Proposition 5. If the programming language is in the form (Pt, Mod (AxT), k)
where t includes arithmetic and AxT is a recursive expansion of Peano axioms, then
the volumes of traces (the minimal relations) can not be defined. •

This is the point, where the refered publications fail to prove completeness
in spite of their claim. They prove the existence of relations statisfying I p , refering
to the minimal relations. (So they prove theorems equivalent to our Theorem 3.)
Some of them (e.g. [6]) neglect the question whether these relations can be expressed
by first order formulas. J. W. de'Bakker in [5] introduces a language speaking abou t
relations and using this language constructs the minimal relations for any given
program.

However his construction can not be transformed to first order language,
only to infinitary one permitting infinite "o r " . So he proved that the minimal rela-
tions can be defined by infinitary logic, but such logic has no complete calculus.

Independently from us M. Wand proved Proposition 5 in [10] for a type not
including arithmetic.

Finally we investigate the traditional case — interpreting programs in one
specific model. We discuss the case M p ={9t} , 91 is the s tandard model of arith-
metic. F rom Theorem 4 we known that Floyd—Hoare calculus can not be complete -
neither for this case. It is well know that in the standard model of ari thmetic
every recursive function can be represented (see e.g. [11] chapter 6), so:

Proposition 6. In the standard model of arithmetic the minimal relations can
be defined. •

Proposition 6 is important because it can show the nature of incompleteness
of Floyd—Hoare system to prove partial correctness — this is the same as the in-
completeness of any first order calculus to prove theorems of arithmetic. Indeed,
Theorem 4 can be veiwed as a version of the Godel incompleteness theorem for
first order logic extended with formulas (<p,p, i[>). Theorem 4 and Proposition 6
jointly say that for programming language (P, , {91}, k) there are first order formula
expressing (<p, p, ip), but we have no universal algorithm to enumerate the axioms
usable in its proof. This fact shows that the incompleteness theorems for proving
partial correctness does not prevent us f rom proving partial correctness as the
Godel incompleteness theorem does not prevent mathematicians proving theorems

On the incompleteness of proving partial correctness 57

of arithmetic. It is true that fully automatized algorithm to prove partial correctness
in every case can not exist, but with human intuition every program can be proved.
Speaking about the mechanisation of program verification this argument underlies
the necessity of interactive systems.

Abstract

First the paper shows generally the way how languages of mathematical logic can be used to
describe semantics of programming languages and to prove theorem about programs. It is worked
out for the case of first order classical logic, emphasis is laid on the model theoretical point of
view. Provability of partial correctness is investigated. We show that if the programming language
includes arithmetic, there are no complete calculus to prove partial correctness. The method of induc-
tive assertions is discussed, and we analyse why several publication claimed its completeness.

RESEARCH INSTITUT FOR APPLIED
COMPUTER SCIENCE
H—1536 BUDAPEST, H U N G A R Y
P. O. BOX 227.

References

[1] FLOYD, R. W., Assigning meanings to programs, Proceeding of Symposium on Applied Mathe-
mathics, 19, 1967.

[2] HOARE, C. A. R., An axiomatic basis for computer programming, Comm. ACM, v. 12, No. 10,
1 9 6 9 .

[3] MANNA, Z., The correctness of programs, J. Comput. System Sci., v. 3, No. 2, 1969.
[4] MANNA, Z., Mathematical theory of computation, McGraw-Hill, 1974.
[5] BAKKER, J. W. de and L. G. L. T. MEERTENS, On the completeness of the inductive assertions

method, J. Comput. System Sci. ,v. 11, No. 3, 1975.
[6] EMDEN, M. H. VAN, Verification conditions as programs, Automata, Languages and Programm-

ing, Third International Colloquium at the University of Edinburg. ed. by S. Michaelson and
R. Miner Edinburgh University Press, 1976.

[7] ANDREKA, H., T. GERGELY and I. NEMETI, Easily comprehensible mathematical logic and it's
model theory, KFKI, No . 24, 1975.

[8] CHANG, C. C. and H. J. KEISLER, Model theory, North Holland Publishing Co., 1973.
[9] DAVIS, M., Hilbert's tenth problem is unsolvable, Amer. Math. Monthly, March 1973.

[10] WAND, M., A new incompleteness result for Hoare's system, J. Assoc. Comput. Mach., v. 25,
No . 1, 1978.

[11] SCHOENFIELD, J. R., Mathematical logic, Reading, Addison—Wesley, 1967.

(Received May 29, 1978)

