Normal-form transformations of context-free grammars

By G. Hotz
To the memory of Professor Laszlo Kalmar

Introduction

Each context-free grammar G can be transformed into a Chomsky-normalform
(CNF) and-into a Greibach-normalform (GNF) without changing the languages
generated by the grammars. Our interest does not concern the invariance of the
languages under such transformations but the ambiguity of the grammars, the
multiplicity of words relative to the grammars and relations between pairs of gram-
- mars. Syntactical transformations of languages are induced by the grammars. There-
fore, it should be of interest, if certain syntactical transformations between languages
transform in a natural manner with the normal form transformations. The role
of monoid homomorphisms in connection with rational transformation is played
by functors between the syntactical catéegories of grammars in connection with
tree transformations.

In this paper we define three different transformations 7., Ts and 7, of grammars
in CNF into GNF. 7, produces productions with one terminal and at most two
non-terminals in the range of the productions. 7, and 7; generate productions p
with maximally two resp. three non-terminals and one termlnal on each side of
the range (p).

. 7, has been considered for the first time in a technical report 1967 by S. Grei-
bach. One finds it again in [GR] (1975). Implicitely the construction is contamed in
[Ho 2] (1974) too. 7, and 7, seem to be studied here the first time. _

Geller, Harrison and Havel showed in [GE—HA], that for each LR(k) lan-
guage there exist a LR(k") grammar in GNF thh k’=k for k=1 and that there
exist LR(0) languages for which one has always k’=1. But they did not use the
simple transformation ;.

We show that 7,, 7, and 7, preserve unambiguity and do not increase multi-
plicities. But there exist grammars for which the multiplicity decreases. Non LR(k)
grammars may be transformed into LR(k) grammars.

We show that functors between the syntactical categories of the grammars
G, and G, are transformed into functors between the syntactical categories between
the grammars t,(G,) and 7,(G,).
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66 G. Hotz

With the same methods we show in a following paper, that t,' preserves LL (k)
for all k and LR(k) for k=1 and that LR(0) is transformed into LR(1). The proofs
for both properties are nearly identical. From this paper we use the unambiguity
lemma for the existence of well formed decompositions of morphisms (classes of
derivations) in products of (f, 1)-prime derivations. 7, and 7, may destroy the LR
and LL properties. This means that transformations inverse to t, and 7, may eventu-
ally transform non LR(k) grammars into such grammars.

Because until now we do not know much about transformations which trans-
form certain grammars of LR(k) languages into LR(k) grammars the relations
771, 737! may be of interest.

For certain transformations from general context-free grammars into: CNF
the LR-invariance has been showed by [Bg] (1976) and [ScH] (1973)

We use the notation of x-categories or syntactical categories as defined in
{[Ho—CL]. An introduction in related questions the reader may find in {A—ULL]
or [Sa].

Definitions and preliminaries

. In the following T is the terminal and Z the variable alphabet, and S is the
axiom of the context-free grammar G. We assume that the set P of productlons
of G is in Chomsky normal form. This means that for f¢P we have

f=(z2z2z) or f=(z1),

where, as always in this paper, z, z;, z, aré in-Z and ¢ in 7. We assign to G the
free x-category F(G); that means that we wish to calculate with derivations of ‘G,
or — more precisely formulated — we wish to calculate with the classes of in-
essentially “different derivations of G. We write

wtu and D(fy=w, C(f)=u

if f is a derivation class from w.to u. w is the domain and u the codomam of f

From

_w—f-u and” w 2.y

we from
ww’ IX8 ,

the class of derlvatlons we get from f and g by domg the derivations f and g

in parallel. .

We form
/
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by executing first f and then g if C(f) D(g). - : S -
For F(G) we also write F(P) where P is the production set: of G and we wrrte

W—P"U

if there exists f€ F(P) such that
. wlep
holds. _ ) ) ‘ X
Now we study as in [Ho 2] special derivations which-are Telated to canonical
derivations of words uw with u€T* and weZ*. These special derlvatlons w1ll be
used to construct the productions in our normal form grammars S

Definition. A derivation: f in Chomsky normalform

: z—f»uwv,uéT*,vET*,wEZ*- :

is called (u, v)-prime if from
it follows that g=1,,.
_ This means that f is (u, v)-prime if f is a shortest derivation ‘which generates
from z a word which begins with the terminal symbols « and ends with the termmal
symbols v and has only nonterminal symbols (possibly none) between.:
As we will see later, of special interest are the cases
u=1, veT,
2. ueT, v=1,
3. ueT, veT.
Let

~

. B(z,u,0) = {weZ*| there exists. z-L- uwv, f (u, v)-prime).

In [Ho 2] we showed that B(z,u, 1) is a regular set for all u¢ T*. By ‘symmetry
arguments it follows that B(z, 1,v), too, is a regular set for v¢ T*
‘For f (u, v)-prime u, v€T we have a decomposition °

f=X1,Xg)oh, weZ*
such that h is (u,1)-prime and.g is (1, v)-prime.
On the other hand f is (u, v)-prime for all (u, 1)- prrme h and {, v) prrme g.
We define for LCZ* and x€Z* -
L,.= {weZ*wxeL}
and
L = {weZ*|xwel}). - : . s
With this notation we have

. B(z,t,r) = N Bz, t, 1)L,B(y_, 1,r) for {,_rET.

Now, the relation wl_wzoLwl_sz is the well known syntactlcal congruence
(i.e., left invariant equivalence -relation): For regular sets'L there are only a finite
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68 G. Hotz

number of these congruence classes where each class is also a regular set. From
this we conclude that [B(z, ¢, 1)], is a regular set and thus that B(z, ¢, r) is regular
for all ¢, reTU{1}.

Lemma 1. The set
B = {[B(z, t,r)},|z€Z, xcZ*, yeZ*}

is a finite set of regular sets for all 7, reT U{1}.

Proof. We know from the above discussion that B(z, ¢, r) is regular. We know
also that
= {[B(z, t,r)),|yeZ*, z¢Z}-

is a finite set of regular sets.
Now as one sees 1mmed1ately

[qu]s = yL§q7 . s[qu] = pqu

Therefore we conclude from the finiteness of the set 4, that B is also finite and
from the regularity of the elements of A, that the elements of B are regular. This
finishes our proof.

Lemma 2. For :
u, v€ET*, z€Z and ¢t,reT
it follows that
B(z, ut, rv) = \_EEB(x, t, D[B(z, u,v)],B(y,1,r)
X,y

U \—n-Z/B(x t,r).

x€B(zu,v)
B(z;ut, rv), then is regular.

Proof. Let f be a (ut, rv)-prime derlvatlon with D(f)=z. Then f can be
decomposed into
. f = (luxgxlb)oh )
such that 4 is (u, v)-prime.
Now we discuss the two cases correspondmg to D(g)EZ'" for m=2 and
D(g)€Z; these are the. only two possibilities, since G is in Chomsky normal form
1. For this case g can be decomposed into

g= glx l\ng"
Here g, is (¢, 1)-prime and g, is (1, r)-prime. Otherwise f would not be (ut, rv)
prime. Let D(g,)=x, D(g,)=y. Then we have
.C(h) = uxwyv, where xwy€B(z, u, v).

Further, let C(gl)—tw1 and C(ga) wyr. Then we have wleB(x t,1),w,€B(y,1,r) .
and for C( = utwrv the following holds:

e W= wywwe€B(x, ¢, l) x[B(z u, v)),- B(y, l,r)
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2. For this case g can be decomposed into

g=(1,X1,,Xgyog

with g,(z, 1)-prime and g,(1, r)-prime. Then for C(g))=tw,y, C(g)=w,r, C(f)=
=utwrv and C(h)=uxv we have for yeZ

w = wy-w,€[B(x, t, 1)],- B(y, 1,7) € B(x, 1, r).

From case 1 and case 2 we conclude that the left part of the equation in our
lemma is contained in the right part. This completes the proof in one direction.
The inclusion in the other direction follows directly from the following facts. ~
For g, (¢, 1)-prime and g,(1, r)-prime and /(u, v)-prime, then if the product -

f = (lqulxlegZXIu)oh

is defined where w€ Z*, f is (ut, rv)-prime. This means that each B(x, ¢, 1) [B(z, u, v)),
B(y, 1, r) is contained in B(z, ut, rv). For x¢B(z, u, v) it is clear that B(x,t r)c
CB(z, ut, rv). This completes the proof of the lemma

This lemma nearly gives us a recursive equation for calculating the sets
B(z, u, v). The importance of these sets follows from the obvious

Theorem 1. -
w=u-vEL < 1¢B(S,u,v).

“This means that the word problem wé L can be reduced to the problem of wheth-
er 1 is in a regular set. We are here not interested in developing this direction fur-
ther, however. For our purposes of constructing a normal form grammar we do
not need a complete recursive definition of the B(z, u, v).

To construct the productions of our normal form grammars we will use the
(u, v)-prime derivations of the free x-category F(G) for the special case that u,veT
rather than T*. If, for example, S-L-uwv is sucha (u, v)-prime derlvanon we could
include a production of the form S—uRv in one of our normal form production
systems, P, where R=B(S, u,v). Then for any such new varlable R we would
also have to introduce productlons of the form . et

-R—~1t-B(R,t,¥)-r

into P representing the class of all (z, )) prime denvat]ons from the set RcZ*
in P. Here B(R, t,r) is a simple extension of the definition of B(z, 1, r)

B(R, 1, 7) = {wlw = twr is (¢, ¥)-prime and we R}.

To see that this process of constructing productions for P can be continued with
the B(R, t, r) sets we give the following lemma which one can easily prove.

Lemma 3. For 1, r¢Tand RcCZ*.
~ . B(R,t,7) = ~— B(x, 1, 1)[R],B(y, 1, 1)
x,y€Z .

U——B(x,t,7).

xERNZ
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This lemma gives us a way to factor the set B(R,t,r) into the regular sets
we introducad earlier. Thus we are now able to generatP all codomam sets of
derivations f€ F(G), where each such f is a productin “o” and “ X of prime deriv-
ations, from the domain sets

JAB(z, 6, P, treTU(L), tor =1

where length (p)—length(q) for p,q€Z* From Lemma 1 it follows that
AB(z, t,r)], is a hnite set of regular sets. More precisely formulated, from Lemma 3
we can.select the following classes of derivations from F(P) for all p, qEZ* length
(p)—length(q) and r,yEZ u, v€T, and 1, rETU{l} t-r=l:

. S—~t- -B(S,t,1r)-r, '_ (P'1) -
AB(z-t, ), —u-B(x,u, 1), [B(z, {,7)],,- B(y, 1, 0)-0, (P’2)
Bz 1)), —u-B(x,u, v) ‘v, X€[B(z,t,1r)],NZ. (P’3)

Each of the classes (P’1), (P’2) and (P’3) represents an entire set of derivations
generated from the choices of p, g, r, t,u, v, w, x, and y. Clearly, many of these
choices will lead to empty sets. However, it is evident that each of these classes
is finite (since B(z,t,r) is a regular set, the congruence relation established by
Bz, 1, 1), for all p, g€ Z* is of finite mdex) T'.erefore, we can use these deriva-
tions as the basis for constructing the productions P of our normal form grammars.
Before constructing such a normal form production system, however, we must
convince ourselves-that every derivation class in F(P) can be decomposed as above.

Well formed decompositions of derivations .

Now we consider normal forms of derivations for any context-free grammar
G in Chomsky normal form using the x-categorical expressions which define deri-
vations. We show that each class f of derivations has exactly one normal form
derivation which we will call well formed (w.f.).

Definition. A decomposition f=f,o...c f; with D(f)€Z and
fi=fiaX X fim for i=1..n
is well formed if conditions (W1), (W2) and (W3) hold.
See Fig. 1 for (W1) and Fig. 2 for (#'2).

(W1) D(f;0eZUT.
If. D(f;,)=t<T then f,_l
If D(f;)€Z then f;, is (1, r)-prime with t,lETU{[} and ¢-r=l.

(W2) Let
finrofi= FiX ... XF,,

be the uniquely determined decomposition with D(F)€ZUT for i=1, , m;, and
= (HyX ... X Hy X HX G X ... X G o fi |
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' ’ Fig. 2
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be the uniquely defined decomposition with D(H)€ZUT, D(G)¢ZUT, D(H)eZU
U{1} and f,(t;, ry)-prime. Then it follows that H,=1,, G,=1,, for 1,, € TU{1},
t-r#1 and

H; is (4, 1)-prime, €T,

G, is (l,r,-)-prime rieT

for i=2,...,m, and H=1 for length (C(£.) even; for length (C(f,) odd
He¢P (the set of productions of the underlying grammar) with C(H)¢T*, or H
1S (Imt1s Fmer)-PIIME With 44, Fpya €T,

(W3) f1€P and f is terminal, or f1 is (¢, r)-prime with ¢, r¢T.

Lemma 4. Let F(P) be the free x-category generated by the context-free pro-
duction system P in Chomsky normal form. For each f¢ F(P) there exists exactly
one (w.f.)-decomposition of f if D(f)EZ and C(f)eT+.

Proof Let A

z;f»\v, z€Z, weT+,

If feP, then f is terminal and f is a unique (w.f.)-decomposition of itself.
Now assume f¢ P. Then we can write w=tw’'r with ¢, r¢T and w’ uniquely
determined by ¢ and r. Therefore there exists a unique decomposition

f = xXhX1)of,

such that f; is (z, r)-prime. We decompose
h_ng XHkXHXGkX XG2

such that D(H)€Z, D(G)EZ and H=1 or D(H)EZ for k=2.
Again this decomposition is uniqué, if it is p0551ble If it is not possible to
decompose /4 in this way then A=1 and f=f;; that is, one has

. f=f=(g1Xg)ogs
with . v
' 28,22, 7381, 2z, By
productions in P, and our lemma holds in this case.

Now with A decomposed as shown, :
’ . z'iﬂ‘wia yi—'uia Wi, U,-ET+
for i=2,...,k and _
x-H. u, uerl+*
for H=1.
For i=2,...,k we can decompose the derivations uniquely as

H; = (l,l.Xh,-)O 2,i>
Grioi = (gix L))o fo i
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in the case that H=1. Here f;; is (#;, 1)-prime and f; ;; is (1, r;)-prime. In the
case H#1 we have the same decomposition for H,, ..., H, but

=(1txh,><1r')of2,k+1! t s T ET
and
Griz—i = (@X1,) 0 fohs14i
for i=2,...,k, where f5 ;4 is (t r’)-prime and fp ;.14 s (1, ry)- prlme _
We now iterate this construction by applying it to the /;, g; and A’ in the same
way as we did to A, and so on.

After a finite number of steps we get the unlquely determmed (w.f.)-decomposi-
tion of f.

The first normal form transformation

Using the result of lemma 4 we now derive a productlon system from the
relations (P’1), (P’2) and (P’3).
Weé write
- B - BI

for B, B’c(ZUT)* iff for each we B’ there exists a u€ B such that u—w in the
usual sense holds. It follows directly that

B — {u}
for u€B. For simplicity we identify » with {u#}. Using this relation and the transi-
tive closure property of derivations one has

p[B(Z, Z r)]q e
for x€,[B(z,t,r)], and x-s.
Let V’ be an alphabet and v a mappmg into ¥V’ which is defined on
U={(z.t,r,p,q)|z€Z; t,reTU{1}, t-r % 1,\p, g€Z*, length (p) = length ()}

such that
v(z, t,r,p,q) =0, t" v, p,q")
JAB(z t, 1], = B, ¢, )]y -

From lemma 1 we know that such an alphabet ¥’ and such a mapping v can
be constructed effectively and that ¥ is finite. Let ¥=¥’"U{S} be the nonterminal
alphabet of our normal form For v(z, t,r, 1, 1) we write simply v(z, ¢, r).

iff

Using (P, 1) we construct the productions (P, 1) as
(P, 1) S—u for ucTUT? and S*u.

S—t-v(S, t,r)-r 'for‘ B(S,t,r) = 0.
We define (P, 2) as follows.
(P,21) wv(z, t,r,p q) ~u-v(x,u, 1)-v(z, t,7, px, yq) - v(y, 1, w)-w
for B(x,u,)NZ* %0, B(y,1,wNZ*+* =0, ,[B(ztr),,NZT =0,
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(P,22) v(z, t,r,p,q) —u-v(x, u, 1)-o(y, 1, W) w

for 1€,[B(z,1,r),, Blx,u, DNZ*+ =0, By, 1,w)NZ+ =0,
(P,23) v(z, t,r,p,q) — u-v(z, t,r, px, yq) -v(y, I, w)-w

for 1€B(x,u, 1), W [B(z, t,r)),,NZ* %0, By, 1,wNZt =0,
(P,24) v(z, t,r,p,q) = u-v(x,u,1)-v(z, 1,1, px, vg)-w '

for lEB(y,.l, w), B(x,u, DNZ* 0, ,[B(z1t r)]thZ"' = 0,
(13, 25) v(z, t,r,p,q) ~u-v(x,u, 1)-w o . A

for 1€, [B(z,t,r)l,;- B(y,1,w), B(x,u, N)NZ* =9,
(P,26) v(z,t,r,p,q) —u-v(zt,r px, yq)-w.

for 1€B(x,u,1)-B(y,1,w), ,[B(zt,r),,NZ* =0,
(B,27) v(z, t,r,u,v) ~u-v(y,1,w)-w

for 1€B(x,u,1)-,.[B(z, 1,r)l,,, B, 1,w)NZ* =0,
(P,28) v(z, t,r,p,q) ~u-w

for 1€B(x,u, )., [B(z, t,7)],,-B(y, 1, w). _

We set
(B,2) = 51 (B, 20).
We now define the productions (P, 3).

(P,3) wv(z,t,r,p,q)—u-v(x,u,w)-w

for x€,[B(z t,r),NZ and B(x,u, wyNZ* 5 0,

v(z, t,r,p,q) ~u-v

for x¢,[B(z,t,r)],NZ, 1€B(x,u,w),

v(z, t,r,p,q) —~u

for x€,[B(z,t,r)),NZ, (x,u)€P.

We define . _ _
P=(P, DUP YU, 3)
and 5
G=WUT, T, P, 5).
We write
G = 1,(G).

1, is our first normal form transformation.

Let -

L=L(G), L=LG)

be the languages generated by the grammars G and G, respectively.
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- Lemma 5, .
LclL.

Proof. We construct a functor from the free F.\'-category F(P) into the monoidal
category of the relations '
b ' B-~B for B, B c(ZUT)*

which are induced by the production set P. :
Let A be the power set of (ZU T)*; then we define the monoid homomorphism

¢ VUT)* - U
by setting
0.(t) = {t} for t€T,
- 0u(S) = {S},
@(v(z 7, p, q)) = IB(z 1, 1)),
for v(z, t,r,p,q)€ V.
‘We will write ¢ for {f} and S for {S}. For each f¢ P we define

@:(f) = (2,(D(f)), 0:(C(N))-
‘One can easily check that for fcP

@:(D(f)) = ¢:(C(f))

We extend (¢,, @;) to the functor @=(¢,, ¢,) which is determined uniquely
by (¢,, ¢3). We have then for SLow, weT*

S = 0y(S) 2L g, (w) = w, h

:aand therefore from the definition of B—B’ for sets we have

S—-w
in the usual sense. 5 _
This means that wéL for all wel, and thus Lc L.
: Len{ma 6.

LclL.

This lemma will be proved in two parts.

* Part 1. A derivation step f;: Z +—»(Z UT)* is cailed a w.f. derivation step
iff fi=HyX..XH,XHXG,X...XG, is a decomposition of f; into prime deriva-
tions in the usual sense (e.g. see (W2)). How, let w,...w,€B(p, t,r) for w;, pcZ
and t,r€TU{l} such that ¢-r=%1, and let f; be a wf derivation step with
D(f)=w,...w,. Then we can constructf with D(f)=v(p, t,7) such that

N B(C) = o(C(SY)

where ¢ and ¢ are two homomorphisms which forget the nonterminals in a strmg
and are constant on terminals.
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To show this we must examine the two cases for n even and n odd. For n even
we have

Wi Wy = Xy Xy Voo Yy

where m=n/2, x;=w;, yi=W,_;41, and n=2. For n odd we have similarly
for m=1 '
Wi Wy = X1.. X2V V1 -

“Since the proof for these two cases is similar, we will show the result only
for the case that »n is odd.
Here we have for w,...w,€B(p, t,r)

So=HyX...XH XHXG,X...XG,

Wieoe W =X ... X2V oo V1
hXxy... X1, -+ Ly Xy ...x,,,nmt,,ﬁuz1 o ZiTmt1Vmy o+ Ymy Tm - Y1p - Yy -

We then construct f; as shown below for v(p, ¢, r), the variable corresponding
to B(p, t,r), using the rules P.

v(p, t,

. Fs
tlv(xla tls 1)”(1’, 119"'19 X1 yl)v(y19 1’ rl)rl -

tlv(xl’ tl: 1) th(-xm’ tms I)U(P, tla Fi5X1 - Xms Yy - yl)

fs m+1

U(ym9 1, rm)r U(yh 1 rl)rl
Ho(xy, t, 1) 8,0, by D102, tsts Py ) Tna
U(ym’ 1’rm)rm-"v(y1’ 1,7’1)1‘1.

Now, set fi=fqm+10fomo---0fi1.

Clearly 3(C(f. )= (p(C( f)). Further, for each string of “isolated” nontermi-
nals in C(f;) (a string of nonterminals w1th a terminal on both ends) there is a.
correspondmg v variable in C(f,) in the same location. For example, for LXp e

<X in C(f), wWhere X, ;... x¢ n €B(Xy, 1, 1), we have n,v(x,,#,1) in C(fs)-
in the same location in terms of the terminal symbols in C(f,) and C(f)).

If one of the x;, z, or y; — for example x; — is rewritten to a single terminal
followed by no nonterminal string, this corresponds to the fact the 1€B(x;, t;, 1)
and thus that the corresponding v variable also does not appear in C(f,). Therefore
the isolated nonterminal strings and the v variables correspond exactly. Using these
tesults the lemma can now be easily proved.

Part 2. For weL and S-Lw with fEF(P)-, let

f=f,0...0f

be the umque (w.f.)-decomposition of f. Then we can construct fEF(P) such:
that S-Lw. -
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We will prove this inductively by showing that for each f;, f;, ..., f, we can
find f, f2, ..., fy such that @(C(f))=@(C(f)) for.all i, where f=fo0...0f],
and such that the isolated variable strings in C(f;) correspond exactly to the v
variables in C(f}). ,

For f; we have

S
S txy . X, T
and '

Sﬁ» (S, t, r)r,

which clearly satisfies our conditions (if x;...x, is empty in C(fy), v(S, t,r) does
not appear in C(fy)). .

Assume that this is true for fio...of; and fi0...0fi for n=>k>=1 to show
for the case k+1, we look at the partlal derivation f; 4,0 f;0...0f;. We know
from the induction hypothesis that 3(C(f))=0(C(f)) and further that the
isolated nonterminal strings in C( f;) correspond exactly with the v variables in C( £,).

From what we proved in Part 1, then, the result should be clear. To each
terminal in C(f;) we apply an identity ‘derivation; to each string of isolated non-
terminals in C(f;) we apply a w.f. derivation step f;. The “X” product of these
identity'derivations and w.f. derivation steps forms f; ., as one can easily see from
the proof of Lemma 4 and ﬁgure 1.

Let

fk+1 =& X X8

be this product. Then we construct

f;c+1 =&1X...X&n °

where g; is the 1dent1ty derlvatlon if g; is the identity, and g; is the correspondmg
fs derivation if g; is a “type f,” derivation. Clearly, then, the conditions of our
assumptions hold, and we have-that C(f)=C( f) and thus that LcL.

Our proof gives a sharper result than stated in the lemma. f—~f is a mapping.
If this mapping is surjective, then the multiplicity of each element w¢L relative
to G will not be greater relative to G

Analysing the proof of Lemma 5, one also sees that glven feF(P) one can
find a g€ F(P) such that §=f. .

From Lemma 5 and Lemma 6 and the above remark we have

Theorem 2. For each language L generated by a context-free grammar G our
transformation 7; produces a context-free grammar G=t,(G) which generates
L and in which the productions are of the form

zZ—1tpr or z—v

where pcZUZ2UZ3, ve TUT? and t,r€T, z€Z. 1, does not increase the multl-
phc1ty of words.

Corollary Ty transforms’ unambiguous grammars into unamblguous grammars.
. We now deﬁne two -more transformations 7; and 12 for which the same
theorems hold, :
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1, is the transformation’into. Greibach normal form.from Chomsky normal
form with at most two nonterminals.in thé right hand side of each production.
1, transforms each G in Chomsky’ normal form into a grammar G in which the
productions are of the form -
zZ—1qr Oor zZ -y

with g€ ZUZ?, veTUT? 2€Z,1,F€T.

We will only give the relations corresponding to (P’, 1), (P’,2) and (P’, 3)’
From this the definitions of 7, and t, and the proofs of the corresponding theorems
will be obvious to the reader.

The transformation T,

Now we apply the methods which led us to the just proved normal form
theorem to the recursive equation of theorem 2 in [Ho 2]. :

B(s, ut, 1) :,U B(z t,.1).[B(s, u, 1)].

z€Z
Again, we can try to construct product1ons from these B sets of the form:
B(s,v, 1) = tB(s, vt, 1)
for s€Z,veT™*, t€T. Factoring the right. hand side, we have
B(s,v,1) - ¢t-B(z,t,1)- [B(s, v, 1)]

for teT, zcZ, vET s€Z.
We introduce as before variables x(z, t, p) which we assign to [B(z, ¢, 1)].
~ Here we get a production system i

x(s,v,p) - t-x(z, 1, 1) x(s v, pz)
for B(z,1,1)#0, ,.[B(s, v, D] =0, and B(z,t,1) and pz[B(s 0, 1)]#{1} and
x(s,v p) ~t-x(z,1,1),
x(s, v, p) —t+x(s, v, pz)
for’ 1€,.[B(s, v, 1)] or 1€B(z, t, 1), respectively.
We define the first and the terminal productions as follows:
S—1t-x(S,t,1) for B(S,t,1) =0,
S —1t for (S,t)epP;
x(z,t,p) —r for 'yep[B‘(z, t, )] and (y,r)eP.’
This grammar we call G and the transformation from G to G is the desired

transformation T, .
As in the case of 7; one proves

Theorem 3. The transformation 7, transforms context-free grammars G in
Chomsky normal form into grammars G=rt, (G) which are in Greibach normal
form. The productions of G contain on ‘the right hand side not more than two
variables. The transformation 1, does not increase the multiplicity of words.
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The transformation 7,

Let
R ={.[B(z, 1, M|z€Z, teTU{1}, reTU(1}, t-r # 1, u€Z*, veZ*}.o
As 'we ha\;é seen R is a finite set. We derived from relations of the form
\R — R, Ry Ryr

and
S - tRr o

a cubic- normal form for ‘the context-free languages.
Now from relations of a similar form .

[R, 2]—’tB(Z 1) [R1R2] By, Lr)-r
we can derive a quadratic normal form from the fact that
R, R, = AR [R], U (Ry) - [R,Ua(R) - IRy,

where .
@ for 1€R

o(R) ={{1} for 1€R.
If we now write

Ry=B(z,1,1), R, =R], Ri=[R)],, Ry=B(,1,1),
Ri=o(R)-.[R), Ry=c(R)-[R], -
then we have the relations -
[Ry Ro] ~ 1+ [Ry R - [R3 R] - 7,
: [R,R;] — t" (R, El] “[Rs] -7,
[R,R,] — t-[Ry)*[R, Ry 1.

R, the set.of all valid R sets, is. closed under left and right divisions by construc-
tion, and from R finite it follows that RUR-R .is also finite.

If we now choose variables v(R,) and v(R,, R,) for R;, R,¢R just as we did
in developing our cubic normal form we get a productlon system P of the type

Yy > ixzr,
y — txr,
Ly — 1,
y=b

or y, x, z nonterminals and ¢, r terminals.
This is the transformation t,.
As in the cubic case we have the following
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Theorem 4. The normal form transformation

o~

2.6

defined for grammars in Chomsky normal form has the property L(G)=L(G).
The transformation does not increase the multiplicity of the words weL.

The proof is completely analogous to the proof of theorem 2 and is therefore
left to the reader.

Functorial properties of the normal form transformations .

Let F(P)=((Z,UT)*, M, D, C) for i=1,2 be two x-categories generated
by the context-free production systems P, and P, in Chomsky normal form. Further
let ¢=(p,, ps) be an x-functor from F(P,) to F(P,).

This means that .

@11 (ZUTY ~(Z,UT)*

is a monoid homomorphism and that
@s: M, — M,
@:(fog) = @2(f) 09:(2)
?2(fX8) = 02(f) X 92(g)-

Also for identities 1,, we have

fulfills

if fog is defined, and

02(1,) = (pl(w)
We restrict ourselves to the case gol(T)CT and gol(Zf)CZ*. From this follows
length (W) = length (qol(w)) for weT*.
We have no derivation |
- u

for us1. Because we are in Chomsky normal form we have no superfluous vari-
ables. This means for each z€ Z there exists

z-Lew, weT+:

therefore ¢,(z)=1 would be a contradiction. From this and the fact that ¢, is
length preserving on T* it also follows that ¢,(Z,)cZ,. Thus, since we are using
Chomsky normal form, we have :
¢1(Py) C P,.
Now let
z-L tur
be a (¢, r)-prime derivation. Then

?1 (z) 901(t)§01 OIAGE
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is (¢1(t), @1 (r))-prime. Therefore

@1(B(z, 1, 1)) € B(01(2), 9:(2), ¢1(r))-
For RcCZ*, x,y€Z the identity

. ’ (21 (x[R]y) <p1(x)[(P1 (R)]¢1(y)
holds since ¢,(Z)CZ,.

. Let R, be the set of our sets [B(z, 2, r)],#0 belonging to G, and G, respectively.
Then for the variables v(z, t,r, p, g) we can write v(R) for certain R€R;. Then
we have for the set Z; of varlables of G,

Z,={v(RIRER}, i=1,2.

Now ¢, induces a mapping
. 012 Ry —~ mz

Using this we can define the monoid homomorphism

@y (21UT)* - (ZzuT))_k
by setting

¢ ¢,(t)=1 for (€T
@, (v(R)) = v(p,(R)) for ReR,.

It is clear, then, that the following diagram commutes '

O(F(Py) - O(F(Pz))

1:| Ir

O(F (Pl)) -0 (F (Py)

for t=r1;, 15, 73, Where 0 is the object set of the given categorles
We can now define the function @; which maps the productions of P, to pro-
ductions in P, by setting

and

_ 03z 9) = ($:(2), $2(9))
for (z, q)€P;. ‘ -
Extending (&, ¢3) to the x-functor (@, $§,) we have proved the following

Theorem 5. Let T be one of our normal form transformations t,, t,, 7; and
let @=(¢;, @,) be a functor from F(P,) to F(P,), where P, and P, are in Chomsky
normal form with ¢,(T)cT and ¢,(Zf)cZ;. Then there exists a natural
transformation of ¢ to a functor ¢ from F(t(Py) to F(t(Py)).

The theorem states in other words that the diagramm

FP)2- )
F(P)- -~ F(P)

has a solution @. This means that the t; induce a functor between the functor
categories of the x—categones F(P), P in Chomsky normal form, and the functor
categories F(P) with P in one of the three normal forms 1,2 or 3.

6 Acta Cybernetica I[V/1
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Transformations of linear languages

We have seen that the transformations t; do not increase the multiplicity of
words. Therefore the question arises whether an LR(k)-grammar G is transformed
into LR(k")-grammar G by our transformations t;. We are not able to solve this
problem here, but we show that t, transforms one sided linear grammars into
minimal ]inear grammars. This means that in this case 7; transforms non-LR (k)-
grammars into LR(0)-grammars. 7, here corresponds to the reduction of finite

automata.
Let P be a left-linear grammar where productions are of the type

z—-2z'«t, z—>t
for z,2’€Z and t€T, where Z is the variable alphabet, and T is the terminal
alphabet. We transform these productions into Chomsky normal form by intro-
ducing the variable alphabet X={(x, ¢)|t€T} where x is a fixed symbol.
We define
Pc={(z, 2’ - (x,))|(z, 2’ - )€ P}
U {((x, 1), )lte T}U{(z, D|(z, )€ P}
P., then, is in Chomsky normal form and the grammars G=(ZUT, T, P, S)
and G'=(ZUXUT,T, P., S) generate the same language L.
Now we apply our transformation 1, to Pc. We have for z€Z and (x, r)€X
B(z,1,)c X*
B((x, 1), u, 1) c-{1}.

AB(y, 1, D] =0
for z€Z and y€ZUX. N
Therefore our relations which define P; have the form

AB(Y, 1, D] —u- ,[B(y', 1, 1)]

for peX*, y=(x,u)€X, and y'cZ.
Now let

and

From this follows

@: X*-T*
be the monoid isomorphism defined by .
o(x, 1) =1t
Then .
e([B(y,t, D)), y€Z, 1€T, pex*

defines the syntactical congruence classes of L (i.e. the left invariant equivalence
relations). This means that t, transforms P into a minimal grammar for L.
We therefore have the following



Normal-form transformations of context-free grammars 83

Theorem 6. 7, transforms left linear grammars — represented in Chomsky
normal form as shown — into minimal right linear grammars.

Corollary. 7, transforms certain non-LR(k)-grammars into LR(0)-grammars.
There exist grammars such that under the transformation 7, the multiplicity of
words decreases properly.

One can easily prove similar results for the transformations 1, and 3.

From our theorem about the multiplicity of words it follows that the trans-
formations 1; transform an LR(k)-grammar G into an unambiguous grammar G.
7, and 1, do not preserve the LL(k) and LR(k) property of grammars, but ¢, does
preserve it as we can show [Ho 3].

A normal form for the Chomsky—Schiitzenberger theorem

Using our normal form transformations t, and t; one easily derives a normal
form for the theorem of Chomsky—Schiitzenberger.
Let
X = {X3, oo X X7 o x0 1}

where x;, x;! are bracket pairs and D, the corresponding Dyck language over X,.
The well known theorem states that for each context-free language Lc T* there
exists an alphabet X,, a standard regular event R, and a homomorphism ¢: X} —~T*
with @(X,)cTU{1} such that '

: L = o(D,NR).

Using our normal forms and following the well known proof of this theorem
one finds the normal form of

Theorem 7. For each context-free language LcT* one can find X, ¢, and
R such that L=¢(D,MNR) and from ¢ (w)€T and the existence of u, v such that
uwv€ R it follows length (w)=3.

From this theorem we arrive at the theorem of S. Greibach [Gr] about a hardest
context-free language as it was proved in [Ho 1].

Abstract

We discuss three normal form transformations 7,, 7. and 7; of grammars G which are in
Chomsky normal form into grammars G,, G, and G; respectively. G, is in Greibach normal form
with nonterminal productions restricted to z—fp such that 7€ T and p€Z* and length (p)=2. The
nonterminal productions of G, and G; are of the form z—tpr such that 7, r€ T and p€Z+, length
(p)=2 or length (p)=3, respectively. It is shown that these transformations do not increase the
multiplicity of words in the generated languages. Furthermore we show that certain functorial
relations between languages are preserved under these transformations. The restriction of 7, to one
sided linear grammars produces the minimal grammars. 7, and 7, do not preserve the LR(k) pro-
perty of grammars. 7, preserves LL(k) for k=0 and LR(k) for k=1, LR(0) may be transformed
into LR(1) as we show in the following paper.
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