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Introduction

This paper is devoted to study of processing random sequences with priority.
At first we formulate the general problem (§ 1.), later we show: the state sequence
characterizing the course. of the processing — as processing of independent homo-
geneous Markov-chains — is also a homogeneous Markov-chain (§ 2.). -

We deal with characterizing the processing speed (§ 3.). Since the stationary
initial distribution plays a main role, therefore we give a simple algorithm to deter-
mine it: when the transition probability matrix is the simplest (§ 4.) and for two
sequences (§ 5.).

Finally we investigate the asymptotic behaviour of the speed (§6.).

Our work has practical importance e.g. in computer performance analysis,
more precisely in modelling of multiprogrammed computers with one processor
and interleavéd memory [1]. In this case the programs are modelled by sequences
(the program with the greatest priority by the first sequence etc.), the chosen
measure of the speed corresponds to the average number of the executed operations
in a time unit, the transition probability matrix with the same elements corresponds
to the random program behaviour model and the asymptotic problem is connected
with the great number of memory moduls. ‘

§ 1. Formulation of the problem
Let oy denote the set {1,2,..., N}, and

10, f0, .
f(r) i, ..

r infinite sequences consisting of the elements of &/y. We process the elements in’
the sequences according to the .following rules:
: 1. Processing proceeds -in the points of time 1,2, ...; let i be equal to 1.

(1.1)
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2. Let k, denote the greatest positive integer for which the elements £V, ..., <D
are mutually distinct. If k,, ..., k,_, have been defined, then let k, (t=2,...,r)
denote the greatest nonnegative integer for which

U {fu) . ’)}ﬁ{f(') (r)}_g (1.2)

holds.

3. In the i-th point of time we process the first k, elements of the +-th (r=1, ..., r)
sequence. We omit the processed elements from the sequences, and reduce the
lower index of the remaining elements by %, in the ¢th (¢=1, ..., r) sequence.

4. We add 1 to i and continue the processing from the rule 2.

For a more precise characterizing of the processing we register the first and
last processed and the first nonprocessed elements for every point of time. Therefore
the processing in the first point of time is characterized by the array

fl(l) o S 1A
f“’ s 0 1 (1.3)

O, e O NS |
If k =0 holds for a given 7, then we have *,[f{" in the ¢-th line of (1.3). The
star shows that none of the elements has been processed. For the sake of brevity let

A=A LGN or Ar=(x, 1A, (1.4)

resp. By using this notation, the processing in the first point of time is characteriz-
ed by
9=(4,, ..., 4,). ) (1.5)

Let 2, denote the set of all possible 3’s. In other words &, is the set of all
s that are representable in form (1.3) giving suitable values to the elements f".
It is clear, that (4,, ..., 4,) belongs to @, if and only if the following conditions
hold:

1. Al—(:1,|12,...,ik,||j>; iys cousiy, J€ESN; iy, ..., I, are mutually distinct,

JE{ll, - ‘
2. Let Al, ..es A;_; be defined, then

Ay = {51, [Sas iy Sm 1Dy 51400y Sy 1€y,

and
t—1
a) {Sl""ssm}nU A"=Q,
n=1
b) s4,83,...,5, are mutually distinct,
t—1
c) lefsy, ..., s,,,}U[ U A,,]
n=1
or .

t—1
A, ={*,|l), and lel 4,.
- n=1
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After this the processing of a given array of type (1.1) can be described by the
state sequence
TR (OB O R

99¢D, (s=1,2,..).

It is obvious that there are pairs C;, C,€%, that cannot occur as consecutive
states, i.e. for which 9©=C,, §¢+V=C,. ‘

(1.6)

Let
96 = (499, ..., AD), (1.7)
where
AP =GR 1 1 5 159) , (1.8)
or
A = (x, [|j). » 1.9
Let in 99 and fin 9 denote the initial and final elements of 3¢, i.e..
in 90 = (i), ..., i{N; fin 99 = (GO, ..., O, (1.10)

remarking that if A(S)—(* I ](s)) then in in 3¢ we put *j(® instead of i{s). It
is clear, that the transition $® - 36+ js realisable if and only if fin 3 =in 8““)
holds. Deciding about this equality we do not take into account whether the com-
ponents of in 3¢+ contain stars or not.

§ 2. Processing of independent Markov-chains .

Let ¢ (I=1,...,r; i=1,2,...) be.random variables with values from &/
for which the following conditions hold: -

1. The sequences & (i=1,2,...) for every / form a homogeneous Markov-
chain with an initial distribution =; and transition probability matrix II;, i.e.

n(p(1, D, ..., p(N, ), where p(k,I) = PP = k)
and . .
I, =[p(x,, D], where p(x,y, 1) = PER: = x[EP = ).

2. The sequences ¢ (i=1,2,...) are mutually independent.
3. The elements of the matrices I, are positive.
“Qur job is to process the array of random variables

v, &, .

.1
é"’ &n, ...
by using the algorithm defined in § 1.
Let
: .93(1), .@(2), s B
o 2.2)

BICD, (s=1,2,..)

denote the state sequence of type (1.5).
We prove the following



88 A. Tvényi and L. Katai

Theorem 1. Under the previous conditions the sequence (2.2) represents a
homogeneous Markov-chain.

Proof. Let us compute the probabilities
p(@(l) = 9(1)) = q(9(1)),
P(B6+D = g+D|gM = g, __‘,' B = 9).
We shall use the notations (1.8) and (1.9).

Let
1(4®) = p(if; O p(E, i 1) .. PGP, D 5 1), 23)
if AM has the form (1.8) and

t(4®) = p(j®; 1), ' (2.4)
if A®D has. the form (1.9).
It is clear, that

r

q(8®) = JT 7, (4).

Let V‘=1 . o
2(AP) = p(i%; i 1) ... p(J; iDy5 1), (2.5)
if A® has the form (1.8) and let
‘ L4 =1, (2.6)
if A has the form (1.9). Further let
00 = [[4(4P). @7

- Since the sequences ¢ form homogeneous Markov-chains, therefore
P(BD =90, F6+D = g+ = g(9W)Q(99)... Q(§¢+D),

if 9W, ., 36+ js a realisable sequence. It is clear, that for a nonrealisable

sequence
P(BW =90, Pe+D = gb+D) =,

So we have proved that (2.2) is a homogeneous Markov-chain with initial

distribution (2.4) and with the following transition probabilities:

AN P(g(s+1) = 9(s+1)[g(s) - g(s), e B0 = 9(1)) —
{Q(9<s+1>),' if in 96D = fin9® e
= lo, it in 96+D 5 fin 9O

. Now we shall prove, that under a suitable positive k& all of the conditional
probabilities . S :
. p(g(sﬂc) = C2|.93(‘) =C)

are positive for every C;, C,€2,.
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Since Q(C) are positive for every C€Z,, thus we have to show that there
exists a realisable sequence

C,=9,,%,...,9%.:,=Cs.

Let finCi=(j1,..-» Jo=Pp1, in Co=(1, iy, ..., i,)=05, where a, may have
stars. It is clear that there is a realisable sequence starting with C, and ending
with $,_,, where fin3,_;=u,. Since the number of possible states is finite, we
can find a bound d with u=d. Let k=d, .and

il’ !i2, reto ira “ il ’
*

9(5) — ) 3 . " 12 (s —

*, i,
In this case the subsequence 9®, 9%+D js realisable.
Hence immediately follows the following

Theorem 2. Under the conditions of Theorem 1 the sequence (2.2) is an er-
godic Markov-chain.

§ 3. Determination of the processing speed

Let /(3) (interpreted for every $€2,) be an arbitrary function having com-
plex values.
Since any given array (l.1) determines uniquely the sequence (1.5), therefore

the sequence
1(3W), 1(3®), ... : 3.1

is determined too. We are interested in such functions / that characterize the speed
of the processing. Assuming that the conditions stated for £V in § 2. are satisfied,
we shall show that the mean values and other moments of the random variables

n(l) = 2 (@9 (32)

can be computed by using known theorems. : .
Let (Q, o, 2) be a probability space, ¢,, 02, ... a homogeneous Markov-chain
with a finite set of possible states {I,2,...,n}. Let

M= (P1> s Pn) , (3.3).
denote the initial distribution and ’ ‘

. H [pl]]l,_l =1,.. ot . (34)
the matrlx of transition probabllmes

Let - . ¢
PP = Pei=) lo, = D=1, 2 9.
.- .« The following wellknown assertion;is,‘due to Markov.
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Lemma 1. Let us suppose that there exist j and k such that p{P’=0 for
i=1,...,n. Then

lim pi =x;, x;=1, (3.5)
j=1

further
pP—x;| =C- ¢, (3.6)

where C=0 and ¢ (0<@<1) are suitable constants.

Let f be a function having complex values defined on the set {1, ..., n}. Let
M, f(g,) denote the mean value of f(g,) supposing that g, has an initial distribu-
tion n. Let 6, 0,, ... be a stationary Markov-chain on the set {l,...,n} with a
transition probabllxty matrix (3.4). Therefore the Markov-chain 6,, 9), ... has an
initial distribution x=(x, ..., x,). As an immediate consequence of Lemma 1

we get . .
IM,. f(o)— M, f(8)] = C,¢, : 3.7
where €;>0, O<@<1 are constants. Since 6,,0,, ... is stationary, therefore
M, f(8) = M, f(6), (3-8)

and from (3.7) it follows that

m.( 21@)) = 0.500) 00 (39

Theorem 2 guarantees the fulfilment of Lemma 1 for the sequence (2.2). The
approximate determination of Mpn, (/) is simple, if the stationary initial dlstrlbutlon
belonging to the chain (2.2) is known.

The explicite calculation of the stationary values is in general a cumbersome
matter, since the number of elements in 2, is about #® even for r=1.

Now we give a simple algorithm to compute it in a special case.

§ 4. Algorithm for the computation of the stationary distribution

Let the random variable sequences (2.1) be mutually independent w1th the
distribution

PED =k) = _]1\_/_ d=1..,rk=1,..,N;i=12,.). ., (41

Let 3=(4,, ..., 4,) denote the processing in the first point of time, and
b(4;) denote the number of processed elements of the chain £ (at this time), and
b(9) denote :

b(9) = (b(4Y, ..., b(4)). “4.2)

For given integers k=1, k;=0 (i=2,...,r) let p(ky, ..., k,) denote the prob-
ability of the event b($)=(ky, ..., k,), ie.

plky, ... k) = P(b(® = (ky, ..., k). ' : 4.3)
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Let 5,=0, s,=k,+...+k, (t_l .., r). Itisclear that p(k,, ..., k,)=0 unless

=k, =N, 0=k, =N-1, ;=N (t=2,...,r) 4.4)
Let '
! v
v, N)= ][ [1 "N] 4.5)
. v=1

and let VX denote the number of k-variations of m elements.
It follows from simple combinatorial considerations that in the cases (4.4)

1 '
p(kl,...,k,.) N +rV I/z"\(’g—sl"'VI’\;'—S,._l.SISQ"'Sr=
' (4.6)
N 518z . - S2 S,
= =syt e 6L N5 NN N

From this representation we can easily get the limit distributions of s’s as
N— <o for a fixed r. We are going to devote an other paper to compute the distribu-
tion and moments of k,’s under various conditions.

§ 5. Processing of two sequences

Let r=2. Suppose that the conditions stated for £{4) in the previous paragraph
are fulfilled. We wish to determine the mean speed of the processing. Using the
notations (2.2) the speed is determined by the sequence of random vectors

1(BD), (BD), ..., [(BD), ....
Due to the independence of &)’s

P = e = o) =+
By using notations (2.5), (2.6) and (2.7) we get

Q(39) = N4k, s

So 099 depends only on 1(9). It is clear, that the condition for the realisability
of 3(s) 96+ s fin (3(:))—,n(9(s+1))
For given i=(iy, iy) [or *i, 1nstead of i), j=(Ji, Jo), k=(ky, kz) let

&G, j, k) = U 4 (5.2)

ind=i
fin8=j
1(8)=k

Let & be the set of all elements Z(, j, k).
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The sequences (2.1) and (2.2) determine the sequence
Ay, 0, ..., €8 (j=1,2,..) (5.3)

uniquely, where «; (j=1,2,...) denotes that element of & for which #YV¢aq;

(J=L2,.
It is c]ear that the sequence (5. 3) is a homogeneous Markov-chain with an
initial distribution

. 1 .. ;
P(al = '@(l:.’a k)) = W v(lf Js k)’ (54)

where v(x) or v(i, j, k) denotes the number of elements of &, belonging to «.
It is clear that
1 , .
m V(I: Js k)’

if C,#B is realisable (-3}
0, otherwise.

P(as+1 = g(i’j, k)las = C) =

For the computation of v(j,J, k) we have to distinguish the fobllowing cases:

<l>: ko 0, then iy %j,, iy # i), J;

—<1 1. 1> Jz # iys J1s g

. 12y =0y

1.1):j, # i S
(LD jy# b= ~1.1.3): j, = J,
(1.1.4): j, = i,

N —<1.21>.j2¢ iza il
1.2):j;=i;—=<1.2.2): j, = i,
—(1.2.3)1j, = iy

~(2.1.1): ju # j1s iy
Q@ jy# i —[«2.1.2): jp =,

(2):ky =0, then i,=xj,

(2.1.3Y: j, = iy
, 221y, # iy

2.2):
221 = |<222) Ja=ig

We summarize the types, the number of possible different pairs of i’s and j s
the corresponding v(i, j, k) and G(type (., .,. )) values in the following table, where

G(type (., >)= ae Nklﬁkz v, j, k),

and we summarize for the #’s of given type. - -~ ;. ar e d et N aal
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Type v, Jj, ) p;f;‘:ib‘;:‘;‘;er‘; ‘;f] G(type (....))
(111 %}%(kl—l)(kﬁhQ) NW-DWV-v-3) | T Ee IIESD:

| (N=3)!

’ 112 Wk —or D N(N—1)(N=2) yles+ ke, N —1) .

| 13 5. (1.1.2) 5. (1.1.2) 5. (1.1.2)

| 14 s. <1.1.2) s (11.2) s. (1.1.2)

| (N=3)!

| 20 | Gy Gtk 5. (1.1.2) y (ks +koy NY (ki + ks —2)

(1.2.2) ‘ ?N(_Lk?% NW-1) y(ky -+ ks, N)
{1.2.3) s. (1.2.2) s. (1.2.2) s. (1.2.2)

(N=3) :
Q.11 oo k=2 N(N—1)(N—2) y (ks N) Gy —1) (ks = 2)
-2 _

| @12 i D NWV-1) ylhkn, NY(ky—1)

| @13 5. (2.1.2) 5. (2.1.2) 5. (2.1.2)

| 2 5. (2.1.2) 5. (2.1.2) 5. {2.1.2)

1 22 - N Y

. N—k)!

We have got the values in this table by using simple combinatorial considerations®
Let us consider e.g. the case (1.1.1). Let ky, ks, iy, is, j1, jo be fixed, iy, is, Ji, jo be
mutually distinct.
We need to enumerate the number of arrays

Itis clear, that j, € {u,, ..
Let us consider the subcase j,€ {us, ..

[1’1, lug, ..

iy, |Ua, ..

'7uk19|[ .

(] vkz’ ” )

., U, }. On the other hand j, € {u,, ..
., U,}. We can arrange the elements j; and

YU A{v,, -

o5 Uy}

Jsamong u,, ..., 4, in (k;—1)(k;—2) different ways. Then we choose the remain-

.ing (k;—3) w'sin

(N — 4)!

(N—4)!

(N—4—(k;~3))!  (N—k;—1)!

ways. The sequences v, ...

s ng

and i, Uy, ..., U4, I have no common elements, otherwise they are arbitrary. There-

ifore we can choose the sequence v,, ..

ways. Therefore

(N —4)!
(N—ky—ky)!

(N —ky— 1)!

_ (N=ky—1)!

., U In

(N=ky—1—(ky— 1)) (N—ky—ky)!
different processing states belong to this subcase.
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Let now j,€ {v,, ..., t,}. The set {u,, ..., u,} contains Jj1, but it does not con-
tain i,, #,, j». Therefore we can choose this set in ’ :
(ki—1) (N-! (N—4)!
! (N—4—(k,—2)) (N—k,—2)!
ways. The set {v,, ..., v,,} contains j,, but it doesn’t contain the different elements
Iy, Iy, U, ..., Uy, therefore the number of such sets is :
(N—k,-2)! (N—k,—2)!
_ = )
(ke—1) (N—ky—2— (k,—~2))! (ke—1) (N—ky—ky)!

= (kl_ 1)

Therefore

= 1)k~ 1) ey o

different processing states belong to the second subcase. From here

v@ﬂm=%r00rnvé%£%ﬁ'

The proof of the remaining cases is a bit easier.

Due to Lemma 1 the stationary distribution is constructable for the Markov-
chain (5.3). Let u(x) denote it. ‘

Let us introduce the notation

Fx,y)= 2 u(@. (5.6}

fina=(x,y)
a€Es

Due to the symmetry

F {F(l,2), if x#y 57
N =\ra,1), if x=y. .7
Let
Gxy=_ 3 u@. (58
. in a;;(g, »
For the stationary distribution we have
%’8 P(aslay)u(ay) = u(a), (5.9»
where ' ' .
Du()=1. (5.10)

a€s
Introducing the notation

o) =ZZ€' Q#) (x€8)
we get
Q(a2)’ lf in Ay = ﬁfl Xy,
Plogle) = {0, otherwise.
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Then due to (5.9)

u(a) = Q(otz)ﬁ 2 () = Q@) Flinay). (5.11)
Let x and y be arbitrary integers (1=x,y=N), and fina,=(x,y). Then
1= X Ply) = 2 Q). (5.12)

€8 inag=(x,y)

Hence, by using (5.11) and (5.12) we get
| Gx, )= 2 )u(a)'—‘F(x, y) 2 Q@)= F(,y) (5.13)

ina=(x,y ina=(x,y) -

Let

A=F(1,2), p=F(Q1,1). (5.19
If A and p are known, then the stationary distribution can be computed easily

by using (5.11). :
From (5.10) we have

_ N(N-1)A+Np=1. (5.15)

To determine A and p we shall give another relation between them.
Let
& ={alina=(h,h), (h=1,2, ..., N)}, (5.16)

&y = EN\GBs. ' (5.17)
Itis clea/r that

p=FO,D= 3 u@=i 3 Q@+x 3 0@ =ia+pup.
fina=(1,1) ﬁn:é:éal,l) ﬁn:;gl,l)

Let us observe that the «’s having the form

[h, oy [1, GOl
s, =117 u

are belonging to &,. These o’s are belonging to ¢2.2.2). Therefore

. .
ﬂ=%k.=2;v(k—l,N)- ' (5.18)

Let us consider the sum a. We classify the o’s in & according to ino=(x, y),
where x=y: ,
Class 1: y=1, then xs1. This is the case (2.1.2}.
Class 2: x=1, then ys1. Thisis the case (1.2.2).
Class 3: x=1, y=1. This is the case (1.1.3). Let a;, oy, a3 denote the corre-
sponding sums and let R :
o= oyt op .
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From the table we can see easily that

1 Mo . 1 Mot 123142
a1=_—2 ?(I’N)I’ dz=d1, a3=_2 Y(t’N)'——y
t=1 N,=1 2
(5.19)
1 NSt t2+t+2
=52 1eN—5—
From the system of linear equations

N(N-DA+Nu=1

{ (N-1) [ (5.20)

Jat+u(f—1)=0

we can compute /£ and pu.

Let now f() be a function depending only on the length of processing (number
of processed elements). Let us compute M, f(x), i.e. supposmg the statlonarlty
of (5.3).

Then we get :
M, f() =2 ,EZ;f(a)Q(aH# é’f(a)Q(ot) (5.21)

acé; a€é6y .

)

belong to the elements a€&,, for which iy =j,, i,= %1, i.e. the cases (2.1.3), (2.2.2).

Those processing states

From here
N
ang f@)Q(@) = k2=1f(k1, 0) - ky -y (ky, N), (5.22)
N
aé’ f(@)Q(») =k§1f(k1, 0) ky (ky—1)y(ky, N)+
(5.23)
N=1 N—k,
+k21 kZ *Flleys Koy (ky k) y (ky Koy N).
Substituting (5.22) and (5.23) into (5.21) we get
| N—1 N-k
M, f() = )':.—2;1 kZ='1 S(ky, ko) ky (kg + ko) y (kg + ko, N)+

Y (5.24)

+ 3 fl, O, N[yt = D+ .
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§ 6. Asymptotic behaviour of the speed

We compute the asymptotic value of the expression (5.24) as N—< for
Sk, k)=s,. Let M denote the left hand side of (5.24). Then

N N
M=) 23 sisiylse, N)+24 5 si(si—Dy(s, N)+u 2 sty(si, N), (6.1)

1ss <sp=N 5 =1 5;=1

where 2, p is the solution of

NN-DA+Nu=1
{ 6.2)
‘ al+(F—-Dp =0
and o and f§ are defined by
1 NS 24142
a= ']V’=0 2 y(’: N)5 (63)
] N1
B= Z 7). (6.4)
=0

6.1) is easily computable approximately from the original expression. We shall
give M as a simple function of N. Let

N-1
=2 t*y(t,N), (k=1,2,3,49 (6.5)
=
and
N-1 . : :
;=2 v&N) (j=01,..,4). (6.6)
. t=j
It is clear that
0L = Qo_ls
1 i
0= 00— 1-(1-57) = s=2-,
' 6.7)

1 2 4 2
on=e(1-) (1 -F) = 03 -5 7

_ -(1 ~L] (] _i] [1 _i) — o4 10 _13 6
01 = @3 N N AR Ry iy Tk
Now we compute 7,’s as functions of g, ..., gx. Because of the definition of
y(t, N) we have

' r+1 » ‘
. y(+1, N)=1y(, N) [1——N—] tr=0,1,..),
1.e.
y(+1, N)N =y, N)[N—-(@+1], ¢=0,1,..). (6.8)
Hence
y(t, Nyt = (N—=1Dy({, N)—Ny(+1, N) . (6.9)

7 Acta Cybernetica [V/1
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and therefore, by using y(k, N)=0 (if k=N), we get
T = (N_I)QO_NQI'

Let us compute now the polynomial * as the sum of the basic functions

polt, M) =1 (& N) = [T (N=(+h) (=1, ....9).
‘By simple operations we get
12 = po(t, N)— 2N=3)p(t, NY+(N—1)po(t, N), (6.10)
£ = —py(t, N)+BN—=6)py(t, N) = (BN —9IN+T)p,(t, N)+(N—1)po(t, N), (6.11)
1* = pu(t, N)+Ep,(t, N)+ Fp,(t, N)+Gp,(t, N)+ Hp,(t, N), (6.12)
where E=—4N+10, F=6N?—24N+25, ‘
G =—4NS+18N*—28N+15, H = (N—1). (6.13)
On the other hand because of (6.8)
7(t, N)p(t, N) = N*y(t+k, N), (k=0,...,4). (6.14) -
So we haQe ‘ '
y(t, N)- 12 = N2y(t+2, N)—QN—=3)Ny(t+1, N)+(N—=D¥(t, N),
vt N) -3 =—N3y(t+3, N)+BN—6)y(t+2, N)—BN2~9N+T)Ny(t+1, N) +
HN-1P2(t, V), ,
y(t, N)-1* = N*y(t+4, N)+ E- N3y(t+3, N)+ FN2y(t+2, N) +

+GNy(t+1, N)+ Hy(t, N),
and hence

Ty = N?0,—~(2N—-3)No,+(N—1)*gy = (N+1) go—2N,

1.3 =—4]\/3Q?:%(31Y—6)N292—(3N2—9N+7)er‘(]Y—1)3Q0 = 6.15)
= (2N2+3N)—(4N+1)g,, .

74 = N9+ EN®0y+ FN?0,+GN, 9, +Hgy = BN2+11N) gy —(11N2+-4N).

Now it follows from (6.3) and 6.4)

1 1 I 1 1
f=gor t=oy@iatle=(3ty]a—s (616
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By substituting (6.16) into (6.2) we get

= i = (N+2)Qo—
= NN~ GV =3IV +@N— N2,

6.17)

and
1-8 _ 2N—2¢0,
No+N(N—=1)(1—-B)  (2N3-3N3)+(4N—N?%g,"

Let us observe that

A=

(6.18)

)% (53, NY 11 5 > SG-DyG N+

sp=2 2 5=

- e
M=AZ’S2(S2 1

N 1 1

+u 3 st M) = 2[5 G|t = 2 Gt ) - . 619
Substltutmg (6. 15), (6.17) and (6. 18) 1nt0 (6.19) we get M as a flll']CthIl of N

and g,:

b NCe=9)= N*Cb—110y+9)~ NCab+To)+50 &
2N3— N2(go+3)+4Ng, AT
To estimate this expression we need the following
Lemma 2. ‘
y(t N) = V—+0(1) (N -~ oo) - (6.21)
Proof. Since l—xée"‘, we get o
4 ' v _1 Zt' v _f;
y(t, N) = H(I_TV_] =e Nv=1 < N, (6.22)
v=1
Therefore '
N
2 N 2 1 B S
S yt.N< Je N < [Nd=—V2N [ e?idi<
H=t<N t=H © H-1 2 (H-1)% .
IV
V__ - N -~ (6.23)
_ —_— -2 )} — - 2N .
2' H-1 (H_fme P=p=Te
. 2N ’
On the other hand
12 H 2 1
’Z’;e W o< [e 2th - V2N = > [ e 12 d) = C, Y N. (6.24)
= 0

It is clear that ;
o= 206N+ > 0 N) = £,4+Z5. (6.25)

=N Sct= N

7‘
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Because of (6.23)
1 2
Iy =GN e 3 = o(1). (6.26)

On the other hand by using Stirling-formula for y(¢, N) in the interval 1<tS
=N we get

1 N 1 ]
Since
N NY ¢, 2 (t)“]
log N7 = log(] T)—W+2—Ng-+0[ v) |’ (6.28)
therefore
logy(t, N) = ——- +0[’+’3] (6.29)
gy, - 2N N N2 k4 e
and so
. 1 3 .
Tu=F e N 1+0[ t ] = =2 € 2”+i0(2c)+ 50 (25),(6.30)
tsNO:6 N N2 t=NO
where ) -
To= t-e 2V, (6.31)
t=NOS ) .
Ip= Be W, (6.32)
t=NO,8
Since
0o _r oo a+1 oo a—l
e 2“' rre 2th— 2N L ® e hd) =
Zre ™ < f (@2N) f
(6.33)
a+1
therefore .
2c=0(N), Z,=0(N?, (6.34)
and so .
12 o _ 1%
o= 3 e Np0o()= e N+0(1). - (6.35)
1sstsN 6 t=1
Since ¢ 2¥ is a monoton decreasing function of t, therefore
o _ 12 £ o
[e 2th<2'e.2N<fe o gy, (6.36)
- ° t=1

and so
,2

j e Ndi+0(). (6.37)
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Since

oo 12 ] b

- _ V2 [1] — V? —
2N — —A 12 g1 — _ — —
6[ e dt = > V2N ‘;/ e /N3 d7 ) r 3 VN > }/N, (6.38)
therefore B
00 = V% VN +0(1). (6.39)

By substituting (6.39) into (6.20) we get the following
Teorem 3. Let f(ky, ko)=k;+ks. Then under the assumptions of § 5. we have

. . 31/ =
-0,5 —
"\III_I’I’LN M, f(2) = 3 l/ 3 (6.40)

In a previous paper [2] we have proved that the similar limit is I/ % for the

processing speed of one sequence. Comparing the results we get that the process-
ing speed of the second sequence is half of the speed of the first one.
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