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Introduction 

This paper is devoted to study of processing random sequences with priority. 
At first we formulate the general problem (§ 1.), later we show: the state sequence 
characterizing the course, of the processing — as processing of independent homo-
geneous Markov-chains — is also a homogeneous Markov-chain (§ 2.). 

We deal with characterizing the processing speed (§ 3.). Since the stationary 
initial distribution plays a main role, therefore we give a simple algorithm to deter-
mine it : when the transition probability matrix is the simplest (§ 4.) and for two 
sequences (§ 5.). 

Finally we investigate' the asymptotic behaviour of the speed (§ 6.). 
Our work has practical importance e.g. in computer performance analysis, 

more precisely in modelling of multiprogrammed computers with one processor 
and interleaved memory [1]. In this case the programs are modelled by sequences 
(the program with the greatest priority by the first sequence etc.), the chosen 
measure of the speed corresponds to the average number of the executed operations 
in a time unit, the transition probability matrix with the same elements corresponds 
to the random program behaviour model and the asymptotic problem is connected 
with the great number of memory moduls. 

§ 1. Formulation of the problem 

Let s/N denote the set {1, 2, . . . , N}, and 

/ i ( 1 ) , / 2
( 1 ) , . . . 

\ (1-1) 
fir) fU) Jl >J2 » ••• > 

r infinite sequences consisting of the elements of s4H. We process the elements in 
the sequences according to the .following rules: 

1. Processing proceeds in the points of time 1 , 2 , . . . ; let i be equal to 1. 
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2. Let denote the greatest positive integer for which the elements f ^ , 
are mutually distinct. If kls . . . , k h a v e been defined, then let k, (/ = 2, . . . , r ) 
denote the greatest nonnegative integer for which 

u {fiJ\ •••>A(/)}n{/1(", ...,/£>} - 0 (1.2) 
j=I 

holds. 
3. In the /-th point of time we process the first A:, elements of the i-th (/ = 1, . . . , /•) 

sequence. We omit the processed elements f rom the sequences, and reduce the 
lower index of the remaining elements by kt in the /-th (/ = 1, . . . , / • ) sequence. 

4. We add I to i and continue the processing f rom the rule 2. 
For a more precise characterizing of the processing we register the first and 

last processed and the first nonprocessed elements for every point of time. Therefore 
the processing in the first point of time is characterized by the array 

A(1), |...,A(i\ II/¿ili 

(i-3) 

/irM-,A(;MiA(;li-
If k,=0 holds for a given /, then we have * , ||/i(() in the /-th line of (1.3). The 

star shows, that none of the elements has been processed. For the sake of brevity let 

A, = </i ( ' \ \...,fHl\ ||/fc
(
t'li> or A, = (*,\\fk%), (1.4) 

resp. By using this notation, the processing in the first point of time is characteriz-
ed by 

9 = (AU...,A,). ' ( 1 . 5 ) 

Let Q>r denote the set of all possible 3's. In other words Q)r is the set of all 
S's that are representable in form (1.3) giving suitable values to the elements / ¡ ( , ) . 
It is clear, that (Alt . . . , Ar) belongs to 2ir if and only if the following conditions 
hold : 

1- A1 = (¿i, \h, ¿it, U>; t'i, . . . , i'I, . . . , i'fc are mutually distinct, 

2. Let Ax, be defined, then 

A, = <Si, |s2 , . . . , sm ||/>, s l 5 . . . , sm , 
and 

a) { S l , . . . , U n U A = fl> 
n = l 

b) s1,s2,...,sm are mutually distinct, 

c) / ^ . . . . s j u f u ^ n ) 

or 

At = (*,\\l), and ld'i)An. 
n = 1 
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After this the processing of a given array of type (1.1) can be described by the 
state sequence 

9 ( 1 ) , 9 < 2 ) , . . . 
(1.6) 

№ e D r (s = 1 ,2 , . . . ) . 

It is obvious that there are pairs C1 ,C2£S> r that cannot occur as consecutive 
states, i.e. for which 9 ( s ) = C 1 , 9 ( s + 1 ) = C 2 . 

Let 
9<S> = ( 4 S \ (1.7) 

where 
= <<t«> i - - - > ' l ( s \ t , ||j',(5)> (1 .8) 

or 
A<°>={* , llj<»). (1.9) 

Let in $(5) and fin 9 ( s ) denote the initial and final elements of 9(s), i.e. 

in = ( / f t , ..., »,<*>)? fin ,9« = Uis\ • • •, j(
r
sy), (1-10) 

remarking that if A(
t
s] = (*, ||y,(s)), then in in 3 (s) we put * j / s ) instead of i f f . It 

is clear, that the transition 9(s)— 5<s+1> is realisable if and only if fin 3(s) =in £>(s+1) 

holds. Deciding about this equality we do not take into account whether the com-
ponents of in 9 ( s + 1 ) contain stars or not. 

§ 2. Processing of independent Markov-chains 

Let c\ l ) (1=1, . . . , /•; / = 1 , 2 , . . . ) be, random variables with values f rom siN 
for which the following conditions hold: 

1. The sequences £•'' ( i = 1, 2, ...) for every I form a homogeneous Markov-
chain with an initial distribution 7t, and transition probability matrix 77,, i.e. 

jr ,(p(l , I), . . . , P(N, /)), where p(k, / ) = />(£<<> = k) 
and 

nt = \p(,x,y,1)], w h e r e p(x, y, I) = P(ii'h = = y). 

2. The sequences £,\l) ( i = 1, 2, ...) are mutually independent. 
3. The elements of the matrices 11, are positive. 
Our job is to process the array of random variables 

i M 1 ' , " . . . 

i i r ) , ... 
by using the algorithm defined in § 1. 

Let 

( s = l , 2, ...) 

denote the state sequence of type (1.5). 
We prove the following . • 

(2.1) 

(2.2) 
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Theorem 1. Under the previous conditions the sequence (2.2) represents a 
homogeneous Markov-chain. 

Proof. Let us compute the probabilities 

= 9(1>) = q($m), 

Cs+i) = = 9(i)5 = 

We shall use the notat ions (1.8) and (1.9). 
Let 

= *(«•£?; O - P i i f f , 0 - 0 , (2.3) 

if Af1} has the fo rm (1.8) and 

T ( 4 1 ) ) = p ( j [ 1 ) ; 0 , (2.4) 
if A,(1) has : the fo rm (1.9). 

I t is clear, tha t 

G(3<») = FL T,(A<»). 
i= i 

Let 
' M 4 s ) ) = p G l ? , ; i l ? , ; 0 - p ( j i ' } ; i g , ; 0 , ( 2 . 5 ) 

if A^ has the form (1.8) and let 

W ) = l , (2 -6) 

if A<*> has the fo rm (1.9). Further let 

e ( s w ) = / 7 W ) . (2.7) 
»=i 

Since the sequences form homogeneous Markov-chains, therefore 

P(3S(V> = 3(1), = 9(s+1)) = q(Sw)Q(^2))... 

if 3 ( 1 ) , . . . , 9 ( s + 1 ) is a realisable sequence. It is clear, tha t for a nonrealisable 
sequence 

P(@m = 5 ( 1 ) , . . . , = 9 ( s + 1 > ) = 0 . 

So we have proved tha t (2.2) is a homogeneous Markov-chain with initial 
distribution (2.4) and with the following transition probabilit ies: 

p(&s+l) - s(s+1)|^(s) = 9(s),..., = 9m) = 

rg (5 ( s + 1 ) ) , if in = fin (2.8) 
= t o , if / « 9 ( s + 1 ) ? i f i n № . 

Now we shall prove, that under a suitable positive k all of the condit ional 
probabilities 

= qi^(S) = C j 

are positive for every C1, . . . . . . 
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Since (2(C) are positive for every thus we have to show that there 
exists a realisable sequence 

Cl = , 9 2 5 • • • 5 +1 ~ C2 . 

Let fin C1 = (j1, ..., jr) — , in C2 = (/1, i2, •••, ir) = *2, where a2 may have 
stars. It is clear that there is a realisable sequence starting with C2 and ending 
with 3„_ 1 ; where fin Since the number of possible states is finite, we 
can find a bound d with u^d. Let k>d, and 

9 ( S ) 

> > ••• > 'r5 II '1 

* , , II ¡2 

* , II », 

(s = u, ..., k). 

In this case the subsequence !)(k\ 3 ( k + r > is realisable. 
Hence immediately follows the following 

Theorem 2. Under the conditions of Theorem 1 the sequence (2.2) is an er-
godic Markov-chain. 

§ 3. Determination of the processing speed 

Let /(9) (interpreted for every &£!2ir) be an arbitrary function having com-
plex values. 

Since any given array (1.1) determines uniquely the sequence (1.5), therefore 
the sequence 

/(S«»), Z(3<»), ... (3.1) 

is determined too. We are interested in such functions / that characterize the speed 
of the processing. Assuming that the conditions stated for <j;P in § 2. are satisfied, 
we shall show that the mean values and other moments of the random variables 

1,(1) = 2 K@(J)) (3.2) 

can be computed by using known theorems. 
Let (Q, 0>) be a probability space, q2, ... a homogeneous Markov-chain 

with a finite set of possible states {1,2, . . . ,«} . Let 

rc = (Pi, —,P„) (3.3) 

denote the initial distribution and 

; n = [p l J ] i J ^ 1 (3.4) 

the matrix of transition probabilities. 
Let - f : • " • ' 

PIP = P(e,+k=j \e, * 'iVAK= M, .••)• 
; The following wellknown assertion; i s /due to Markov. 
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Lemma 1. Let us suppose that there exist j and k such that 0 for 
i=\, . . . , « . Then 

lim pjp = Xj, ¿ X j = 1, (3.5) 

fur ther 
\PU)~XJ\ = c'<Pr, ( 3 . 6 ) 

where C > 0 and <p ( 0 < < p < l ) are suitable constants . 
Let / be a funct ion having complex values defined on the set {1, . . . , « } . Let 

M n f ( g , ) denote the mean value of f ( Q t ) supposing tha t q, has an initial distr ibu-
tion 7i. Let 9u02,... be a stat ionary Markov-chain on the set {1, . . . , n } with a 
transition probabili ty matr ix (3.4). Therefore the Markov-chain B l ,9.1 , ... has a n 
initial distribution JC=(XJ, . . . , xn). As an immediate consequence of L e m m a 1 
we get 

| M „ / ( e , ) - M x / ( 0 t ) | ^ C 1 < ? , ' , (3.7) 

where C \ > 0 , 0 < < p < l are constants. Since 0L, 0 , , ••• is stationary, therefore 

MJ{0t) = M x № ) , ( 3 . 8 ) and f r o m (3.7) it follows that 

M , ( Z K e j ) ) = t i M J i O ^ + O H ) . (3.9) 

Theorem 2 guarantees the fulfilment of Lemma 1 for the sequence (2.2). The 
approximate determination of Mr\,(l) is simple, if the stat ionary initial dis tr ibut ion 
belonging to the chain (2.2) is known. 

The explicite calculation of the s tat ionary values is in general a cumbersome 
mat ter , since the number of elements in 2>r is abou t n3 even for r = l . 

N o w we give a simple algori thm to compute it in a special case. 

§ 4. Algorithm for the computation of the stationary distribution 

Let the r a n d o m variable sequences (2.1) be mutually independent with the 
distr ibution 

/ > ( ^ ' ) = fc) = - i (Z = 1, . . . , r ; fc = 1, . . . , N; i = 1, 2,...). . ( 4 . 1 ) 

Let 9 = (Alt ..., Ar) denote the processing in the first point of. t ime, a n d 
b{Aj) denote the number of processed elements of the chain c^'* (at this time), and 
b(9) denote 

b(9)^(b(A1),...,b(Ar)). ( 4 . 2 ) 

For given integers £ ¡ ^ 0 ( i = 2 , . . . , r ) l e t p ( k x , ...,kr) denote the p rob-
ability of the event b(9)=(klt ..., kr), i.e. 

p{k1,...,kr) = P{b(d) = (k1,...,k,)). ( 4 . 3 ) 
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Let i 0 = 0 , = (>= 1, . . . , r). It is clear that p{ki, ..., kr)=0 unless 

1 31 fex N, (t = 2, . . . , r ) . (4.4) 
Let 

y ( / , A 0 = / / ( I — ) (4.5) 

a n d let V* denote the number of ^-variations of m elements. 
It follows f rom simple combinatorial considerations that in the cases (4.4) 

p(fc l5 ...,kr) = ... F ^ i s ^ . - S j S , . . . s, = 

(4.6) 

(N—sr)l Nsr+' ' } N N " N 

From this representation we can easily get the limit distributions of J,'S as 
N-«-00 for a fixed r. We are going to devote an other paper to compute the distribu-
tion and moments of kr's under various conditions. 

§ 5. Processing of two sequences 

Let r=2. Suppose that the conditions stated for c\j) in the previous paragraph 
are fulfilled. We wish to determine the mean speed of the processing. Using the 
notations (2.2) the speed is determined by the sequence of random vectors 

1(3$™), Z(J>(2>), ...,l(^s)), ••• • 

Due to the independence of «¡j^'s 

mi\ = = 0)= 

By using notations (2.5), (2.6) and (2.7) we get 

QQjW) = A r - ( * i s ) + - + ' i s ) > . (5 .1 ) 

So Q (9(s)) depends only on /(9(s>). It is clear, that the condition for the realisability 
o f . 3 ( s ) , S ( ! + 1 ) is Jin (№>)=in(9(s+1)). 

For given i=(h, Q [or * / 2 instead of i2], j=(j\, j2), k=(kx, k2) let 

k) = U (5-2) 
in9=i 
flna=j 
1(9)=* 

Let & be the set of all elements 38(i, j , k). 
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The sequences (2.1) and (2.2) determine the sequence 

a 2 , . . . , c t j £ £ 0 = 1 , 2 , . . . ) (5.3) 

uniquely, where aj (j= 1,2, ...) denotes that element of S for which 
0 = 1 , 2 , . . . ) . 

It is clear that the sequence (5.3) is a homogeneous Markov-chain with a n 
initial distribution 

P(oil = m,j,k)) = 
1 

»v(i,j, k), (5.4) 

where v(a) or v(i,j,k) denotes the number of elements of belonging to a . 

It is clear that 
i 

Nk l + k2 

if C, & is realisable 
0, otherwise. 

(5.5) 

For the computation of v(i , j, k) we have to distinguish the following cases: 

(1): k2 ^ 0, then i2 ^ *j2, i2 ^ ¿i, A 

<1-1): A * ¿i-

< 1 . 2 ) : ^ = Ï ! -

(2): k2 — 0, then i 2 - * j 2 

<2.2 ):j1 = i1-

—< 1.1.1 >: j2 ^ ij.A, i2 

- ( 1 . 1 . 2 > : j 2 = i , 

- < 1 . 1 . 3 ) : A = A ' 
—<1.1.4): j2 -=i2 

- ( 1 . 2 . 1 ) : j2 ^ i2, 

— < 1 . 2 . 2 ) : A = ¡j 

-<1.2.3):A = i2 

—<2.1.1>: j2 ^ A, ii 

—<2.1.2): A = A 
—<2.1.3): A = i2 

, - ( 2 . 2 . 1 ) : j 2 * i , 

i—<2.2.2): A = A-' 

We summarize the .types, the number of possible different pairs of f s and j's, 
the corresponding v(i,j, k) and G ( t y p e ( . , . , . ) ) values in the following table,"where 

and we summarize for the âS's of given type. 



Processing of random sequences with priority 93 

Type v (', j, k) 
The number of 

possible pairs i,j G(type <. ,„ . ) ) 

<1.1.1) 
(N— 4)! 

(N-kt-kzy. 
N{N-\)(N-2)(N-1) 

•(¿X + * , - 3 ) 

<1.1.2) 
(JV—3)! 

1) 
{N-k.-k^y. 

N(N-\)(N-2) yfa+k^NKkr-1) . 

<1.1.3) s. <1.1.2) s. <1.1.2) s. <1.1.2) 

<1.1.4) s. <1.1.2) ' s. <1.1.2) s. <1.1.2) 

<1.2.1) 
(N— 3)! 

— (ki + k.- 2) 
(N-ld-kJl • 

s. <1.1.2) y{ki-T-ks,N)(k1 + ks — 2) 

<1.2.2) 
{N-2)1 

(N-h-kJl 
N(N-1) yfa + k^N) 

<1.2.3) s. <1.2.2) s. <1.2.2) s. <1.2.2) 

<2.1.1) 
(N— 3)! 

— (A-j — 1) (Arx — 2) 
(N-kdl 

N(N-l)(N-2) y(k1,N)(kl-lKk1-2) 

<2.1.2) 
(N-2)! 

— ( fc i -1 ) (N-kJl 
N(N-1) y(ki, N)(k!-l) 

<2.1.3) s. <2.1.2) s. <2.1.2) s. <2.1.2) 

<2.2.1) s. <2.1.2) s. <2.1.2) s. <2.1.2) 

<2.2.2) 
(N— 1)! 

(JV-Ar,)! 
N • y{k»N) 

We have got the values in this table by using simple combinatorial considerations* 
Let us consider e.g. the case <1.1.1). Let k2, i\, i2, /',, / , be fixed, i\, i2, j\, j2 be 
mutual ly distinct. 

We need to enumerate the number of arrays 

'1, |"2> •• 

U, b o , .. 

u k l , 111 . 

Vk2, lli" 

I t i s clear, tha t {u2, . . . , ukl}. On the other handy',6 {w2, . . . , wfcl}U (i/2, . . . , vkl}. 
Let us consider the subcase j2€ {«2, . . . , ukl}. We can arrange the elements j\ and 
j2 a m o n g w2, . . . , ukl in (kl~\)(kl — 2) different ways. Then we choose the remain-

( J V - 4 ) ! (JV—4)! 
m g (ATJ — 3) w'sin = ( j v _ ^ i _ 1 ) !

 W A Y S - T h e sequences vlt ...,vkt 

a n d i\, u2, ..., ukl, i2 have no common elements, otherwise they are arbi trary. There-
. , . ( N - ^ - 1 ) 1 ( N — k i — 1)! 
fo re we can choose the sequence v2, ..., vk in t——- ——--——r- = -i———-—-4-

( A T _ 4 ) ! ( J V - ^ - l - f o - l ) ) ! ( N - k . - k ^ l 
•ways. Therefore —-—-—-¡—- different processing states belong to this subcase. 
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Let now j2£ {v2, ..., vki}. The set {i/2, . . . , ukl} c o n t a i n s j \ , but it does not con-
tain i1, i2,j2. Therefore we can choose this set in 

№ • - 0 , - № . - • ) ; ( y - 4 ) ! 
(JV—4—(fci—2))! V1 \N-kx-iy. 

ways. The set {v2, ..., contains j2, but it doesn't contain the different elements 
i2,il,u2, ..., ukl, therefore the number of such sets is 

(N- k j - 2 - (fc2- 2))! v 2 ' (ЛГ- ki - k2)!' 
Therefore 

(кг-\)(к2~1)- {N~4)l 

{ N - k i - k J l 

different processing states belong to the second subcase. From here 

(JV—4)! 
г ( / , У Д ) = ( / с 1 - 1 ) ( / с 2 - 1 ) 

( N - ^ - k J l ' 

The proof of the remaining cases is a bit easier. 
Due to Lemma 1 the stationary distribution is constructable for the Markov-

chain (5.3). Let u(a) denote it. 
Let us introduce the notation 

f ( x , y) = 2 "(«)• (5-6) 
fina=(jc,y) 

tie 
Due to the symmetry 

(F(l,2), if x ^ y 

Let 

f / ( l , 2 ) , it x ^ y 
F ( X ' y ) = \ F ( l , l ) , i f * = ( 5 " 7 > 

G(x,y) = 2 » ( « ) • ( 5 . 8> 
in a=(x, >') 

i = <? 

For the stationary distribution we have 

2 JP(«2|«i)"(a1)= »(«2), (5.9) 
where 

2 « ( « ) = ! • (5.10) 
Introducing the notation 

e(«) = 2 Q(m 
we get 

= i o , otherwise. 
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Then due to (5.9) 

u(<x2) = Q(x 2) 2 "(<*i) = Q(a2)F(ina2). (5.11) 

Let x and y be arbitrary integers ( l ^ x , y^N), and fin a1 = (x, y). Then 

i = ^ = 2 e i « « ) . ( 5 - i 2 ) 

a i n a 2
 = (*> y) 

Hence, by using (5.11) and (5.12) we get 
G(x,y)= 2 «(«) = Fix, y) 2 Q(*) = F(x,y). (5.13) 

ina=(x,3j) ina=(*,y) 
Let 

A = F ( 1,2), n = F( 1,1). (5.14) 

If A and /i are known, then the stationary distribution can be computed easily 
by using (5.11). 

From (5.10) we have 
N(N-l)X + Nn= I. (5.15) 

To determine A and ¡i we shall give another relation between them. 
Let 

S2 = {a |ma = (h,h), (h = 1,2, ...,7V)}, (5.16) 

g1 = g\g2. (5.17) It is clear that 
/ 

li = F(\,\)= 2 " ( « ) = A 2 fi(«) + H 2 6 ( « ) = Aa + / i / i . 
f n i = ( l , l ) fina=(l,l) fin a=(l, 1) 

are«?! 

Let us observe that the a's having the form 

f h , | ( . . . ) | |1 1 r l , | ( . . ) l l ] 

L , = 1J _ L ||J 

are belonging to S2. These a's are belonging to (2.2.2). Therefore 

P = 2 y ( k ~ l , N). ' (5.18) 
-<V k=1 

Let us consider the sum a. We classify the a's in according to in a = (x, y), 
where x ^ y : 

Class 1: v = 1, then x ^ l . This is the case (2.1.2). 
Class 2: x = l , then y ^ l . This is the case (1.2.2). 
Class 3: x ^ l , y ^ l . This is the case (1.1.3). Let a1 } a 2 , a3 denote the corre-

sponding sums and let 
a = ai + aa + ag. 
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From the table we can see easily that 

1 1 t2—3/+2 
= V(t> N ) ' > «2 = « i , «3 = ^ 2 " 2 ' 

(5.19) 
1 ¿v-i t2 + t+2 

From the system of linear equations 

\ (5.20) 

we can compute /. and /i. 
Let now / ( a ) be a function depending only on the length of processing (number 

of processed elements). Let us compute Muf(a), i.e. supposing the stationarity 
of (5.3). 

Then we get 
MJ(a) = 2 / (« )Q («) •+ Ai 2" / ( « ) 2 («)• (5.21) 

a 6 (?! a€(?2 

Those processing states 

U , | . . . | l7 2 J .1172 

belong to the elements tx£S2, for which i\ = j2, / 2 = */'i, i.e. the cases (2.1.3), (2.2.2). 
F rom here 

Z/(«)fi(«) = Zf(k1,0)-k1-y(ki,N), (5.22) 

« e i j 
(5.23) 

+ 2 1 ^ / ( f c i , k j k ^ + k j y ^ + k,, N). 

Substituting (5.22) and (5.23) into (5.21) we get 

M„/(a) = A y 7(fci. k j k ^ + k j y i ^ + ko, N) + 
kx=i jt2=i 

+ 2f(.k1,0)y(ku NWMk^V+dkJ. 

(5.24) 
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§ 6. Asymptotic behaviour of the speed 

We compute the asymptotic value of the expression (5.24) as for 
f ( k l , k2)=s2. Let >M denote the left hand side of (5.24). Then 

M = ?. Z s i s l y f e , + J s K s x - l M s x , N)+n 2 sfyfci , N), (6.1) 
AR = 1 SX = 1 

where ?., ft is the solution of 

\ a l + ( p - \ ) H = 0 ' 
and a and /? are defined by 

1 JV-l /2 i t + 2 

P = 4 f N Z y ( t , N ) . (6.4) 

(6.1) is easily computable approximately f rom the original expression. We shall 
give M as a simple function of N. Let 

t* =*Z 'kY(t,N), (fc = 1 , 2 , 3 , 4 ) (6.5) 
( = 0 

and 

Qj = NZy(t,N) ( j = 0, 1, ..., 4). (6.6) 
t=J 

It is clear that 

01 = 0 o - ' > 

02 = ( i - - ^ ) = e 0 - 2 ~ , 

(6.7) 

0 s 

= 0 3 - ( l - - ¿ r ) ( l ( l - I ) = c - 4 - ^ - i l - A . 

Now we compute tfc's as functions of o0 , . . . , gk . Because of the definition of 
y(t, N) we have 

' y ( i + l , A 0 = y ( / , J V ) [ l - i ± i - ] (t = 0, 1 , . . . ) , 

i.e. 
y(t+l,N)N = y(t,N)[N-(t+l)], (f = 0 , 1 , . . . ) . (6.8) 

Hence 
y(t,N)t = (N-l)y(t,N)-Ny(t+l,N) (6.9) 

7 Acta Cybernetica IV/1 
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and therefore, by using y(k, N)=0 (if k^N), we get 

T1 = (N-\)Q0-N6I. 

Let us compute now the polynomial tk as the sum of the basic funct ions 

PoO> AO = 1 > Pj(t,N)= ]] (N-it+h)) ( j = l , . . . , 4 ) . 
A = 1 

By simple operat ions we get 

t2 = p2(t, N)~(2N-3)Pl(t, N) + (N-]yPo(t, N), (6.10) 

t3 = -p3(t, N) + (3N—6)p2(t, N)-(3№-9N+7)Pl(t, N) + (N-l)3p0(t, N), (6.11) 

f = Pi(t, N) + Ep3(t, N) + Fp2(t, N) + Gp1(t, N) + Hp0(t, N), (6.12) 
where 

E = —4N+10, F= 6N2-24N+25, 

G = —4iV3+ 18iV 2 —28N+15, H = ( N - l ) \ (6.13) 

On the other hand because of (6.8) 
y(t, N)pk(t, N) = Nky(t+k, N), (k = 0, . . . , 4). (6.14) 

So we have 

y (t, N) • t2 = N2 y (t -f 2, N) - (2N-3)Ny (t +1, N) + (N-1 )2y (t, N), 

y{t, N) • t3 = - i V 3 y ( i + 3 , N) + (3N-6)y(t+2,N)-(3N2-9N+l)Ny(t+l,N) + 

+ (N-l)3y(t,N), 

. y(t,N)-t4 = N^(1 + 4, N) + E- Nsy(t+3, N) + FN2y(t + 2, N) + 

+ GNy(t+l,N) + Hy(t,N), 

and hence 

t2 = N2Q2-(2N-3)Nei + (N-l)2Q0 = (N+l)e0-2N, 

t3=-N3q3 + (,3N-6)N2q2-(3N2-9N+7)Qi + (N-1)3q0 = 

= (2'N2 + 3N)-(4N+1)q0, (6'15) 

= NiQi+EN3e3 + FN2e2+GNlQl+HQ0 = (3N2+UN)Q0-(nN2+4N). 

N o w it follows f r o m (6.3) and (6.4) .. . 

P = ~jjQo, a = = ^ v " ( T 2 + T i + 2 ^o) = ( y + ^ j e o - y - (6 .16 ) 
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By substituting (6.16) into (6.2) we get 

a ( N + 2 ) q 0 - N 
^ Nx + N(N— 1)(1 —•/}). (2N3 — 3N2) + (4N— N2)x>0 

and 

(6.17) 

, * ~ jg 2N—2Q0 

Na+N(N-l)(l-0) (2NS-3N2) + (4N-N2)g0' v ' 

19) 

Let us observe that 

M = k Z s2(s271)siy(s2,iv)+/ i^(Sl-I)y(Sl,'iV) + 

+ /< Z «1V (S> = ^ [ j (T4 - T3) + (T3 ~ T2)j + /JT2 = A (t4 + T3) - T2j + //T2 . (6. 

Substituting (6.15), (6.17) and (6.18) into (6.19) we get M as a function of N 
and «„: 

_ jV 3 (3g 0 - 9) - jV2(2gg - 1 1 e „ + 9) - iV(2gg + 7g„) + Sgg ' 
M 2N3-N2(q0 + 3) + 4NQ0 * 

To estimate this expression we need the following 

Lemma 2. 

eo = l 2 \ ( t , N ) = y^Y+o(i) (N —• (6.21) 

Proof. Since 1— x^e~x, we get 

» ( v - i f , - i i 
y(t, N) = / 7 [ l - — J e < c 2AT. (6 .22) 

Therefore 
JV 

N r , 2 

2 2" e W < f e 2Ndt = - f l N f e~'?}/2dk^ \: ~ 7 •/ _ 
2N 

Hst^N tSH yjlj ^ (//-l)2 

(6.23) 

(//-1)2 H 1 

On the other hand 
H r2 

Tdt^.}/2N 
'SH 0 2 0 

It is clear that 

h t*_ 1 " 
Z e 2N =s f e 2N dt ^ ^2N — f e~;-/.ll2dk S Cx)/N. (6.24) 

Qo= Z y(t,N)+ Z y(t,N) = IA + IB. (6.25) 
rS/V0'8 NW^tsN 
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Because of (6.23) 

Z B ^ C 2 N ° * - e 3 " = o ( l ) . (6.26) 

On the other hand by using Stirling-formula for y(t, N) in the interval l^t-. 
^/V0 '6 we get 

Since 

therefore 

and so 

l o g y ( f , i V ) = ( I \ R - I - r ) l o g - ^ 7 - / + O ( - I ) . ( 6 . 2 7 ) 

= + + ( 6 . 2 9 ) 

where 

Ic= 2 t-e 2 ( 6 . 3 1 ) 
tmN »•« 

ID= 2 t3* 2N• (6-32) 
ISA"'1 

Since 
oo t3 00 r2 a + 1 . oo a —1 

¿r*e 2,v < f t*e 2N dt =(2N)~y f ?~e~> d).= 
, = 1 0 ^ 0 

(6.33) 

therefore 
T c = 0(N), ID = 0(N2), (6.34) 

and so „ t»_ 

0 0 = 2 e 2N + 0(l) = 2Ar + 0 ( l ) . • (6.35) 
IStSN0'* t = 1 

r2 

Since e 2N is a monoton decreasing function of t, therefore 
o= „ ~ 

J e 2N dt < 2e 2N < / e~2N dt, (6.36) 
o < = 1 1 

and so 
~ 

Qo= J e 2»dt + 0( 1). (6.37) 
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Since 

- i ~ 
f e ™ clt = — j/2N I 

\ ~ n 
= <6.38, 

therefore 

Qo = ( 6 . 3 9 ) 

By substituting (6.39) into (6.20) we get the following 

Teorem 3. Let f(k1, k2) = k1 + k2. Then under the assumptions of § 5. we have 

processing speed of one sequence. Comparing the results we get that the process-
ing speed of the second sequence is half of the speed of the first one. 
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(6.40) 

In a previous paper [2] we have proved 
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