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a summary 

t Contemporary computing machinery includes many analog devices — machines 
which, by a direct process, produce continuous functions of a real variable as their 
output. These functions appear to be computable by virtue of the fact that there 
are real existing devices which generate them. One might at tempt to understand 
these functions by means of traditional computer — oriented techniques. For example, 
one might begin with an effectively generable set of functions each of which is "ob-
viously computable". One might then consider the class of functions obtained f rom 
this set by finite programs (=interpre ted schemes=flow char ts=f ini te algorithms), 
[3]. However, as Shepherdson has pointed out [8], no procedure of this kind can 
encompass all the computable functions of a real variable. Fortunately the literature 
of recursion theory provides a precise definition of this concept — Grzegorczyk [1]. 
We give this definition below. 

Our paper is concerned with the differentiability properties of computable func-
tions of a real variable. Unless stated otherwise, we restrict our attention to func-
tions defined on compact intervals. Grzegorczyk raised the question [1, p. 201] 
whether differentiation and integration are computable processes. The indefinite 
integral of a computable function is computable ([4], [7]). Lacombe [5] stated a 
negative result for differentiation, although he gave no proof. He made no mention 
of higher derivatives. In 1971, Myhill [6] showed that the derivative of a computable 
continuously d i f ferent ia te function need not be computable. He suggested in a 
footnote that the same should hold for infinitely differentiable functions. This seems 
at first glance to follow fron* a modification of his construction — a modification 
so obvious that it need not be written down. However, the result turns out to be 
false. We prove that if f(x) is infinitely differentiable and computable, then all of 
its derivatives are computable. This follows from the stronger statement: 

Proposition. If f ( x ) is computable and of class C 2 (twice continuously differen-
tiable) on a compact interval [ — M, M] (with M a positive integer), then f'(x) is 
computable. 

This proposition is best possible. For by modifying Myhill's counterexample 
[6] slightly, we can construct a computable function which is twice differentiable 
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(but not continuously), and whose derivative is not computable. Using a completely 
different construction we can show: 

Example. There is a computable continuously differentiable function f ( x ) on 
[0, 1] whose de r iva t ive f ' { x ) is not computable, but such t h a t f ' ( x ) is "Banach—Mazur 
computable" (definition below). 

As an immediate consequence of the proposition we have: 

Corollary. I f f ( x ) is computable and C°° (infinitely differentiable) on a compact 
interval [—M, M ] (M a positive integer), then the «-th der ivat ive/ ( n , (x) is comput-
able for each n. 

We now give Grzegorczyk's definition of a computable function of a real vari-
able. The fundamental definition is phrased in terms of general recursive functionals. 
In [2], Grzegorczyk presented seven definitions all of which were proved equivalent 
to the fundamental definition. In this paper we find it convenient to use one of these 
other definitions. First we need: 

Definition 1. A sequence of reals {x„} is computable if there exist recursive func-
tions a(n, k), b(n, k), and s(n, k) such that 

b(n, k) k+i 

for all n, k (with b(n, k)*0). 
Roughly, this means that there is a recursive double sequence of rationals rnk 

which converge effectively to as fc — 

Definition 2. A function / ( x ) f rom a compact interval of R into R is comput-
able if: 

(i) / maps every computable sequence of reals into a computable sequence of 
reals (the Banach—Mazur property); 

(ii) / is "effectively uniformly continuous", i.e. there is a recursive funct ion 
g ( n ) > 0 such that 

l * - . ^ — T ^ T impl ies 1 / 0 0 - / 0 0 1 - 1 
g(n) ' / i + l ' ' 

. (This is Grzegorczyk's definition reduced to the case of a compact interval. Grze-
gorczyk considered functions from- R. to R, and used a more complicated version 
of condition ii) ' to take account of the noncompactness of the domain.) 

Two further results follow from our work. 1) The example above shows that 
there exists a computable continuously differentiable function f ( x ) whose derivative 
satisfies condition i) of definition 2 (the Banach—Mazur condition), but not con-
dition ii). By contrast, there is no case where / (x ) is computable and f i x ) satisfies 
ii) but not i). 

2) An at tempt to extend the corollary leads to the following counterexample. 
There is a computable infinitely differentiable function f{x) on [0, 1] such that the 
sequence of n-th derivatives is not uniformly computable as a function of n. In 
other words, although by the corollary each derivative is computable, the sequence 
of derivatives need not be. 



Differentiability properties of computable functions — a summary 125 

We now consider the proofs. The proposition is fairly easy, and so we shall 
give a sketch. However, the counterexamples are rather intricate. For the sake of 
brevity we omit an account of the constructions involved. 

To prove the proposition we proceed as follows: Since f"(x) is continuous 
•on a compact set, it is bounded. Thus \f"{x)\^K, an integer. Now by the mean 
value theorem, for any x, y£[ — M, M] with there exists a £ with .Y 
such that : 

/ ' ( v ) - / ' ( A") = / " ( ? ) ( > ' - . Y ) . 

Hence f'(x) is effectively uniformly cont inuous— in fact, \f\y)—f'{x)\^K\y — x\. 
N o w applying the mean value theorem again (this time t o / a n d / ' ) we have: 

For all .v, — M, M] with x<y, there exists a I with x < c < y such that : 

f g ) _ / ( > ' ) - / W 
) •*• X 

The difference quotient [f(y)—f(xj)/(y — x) is computable since / is. And the 
effective uniform continuity o f / ' means that f'(£) converges effectively to f'{x) as 
Î - * . • 

The result proved above does not hold for functions defined on noncompact 
intervals such as the real line. (Here we return to Grzegorczyk's original definition 
[1], with its more complicated condition (ii).) By modifying Myhill's counterexample 
in an obvious way, we can show that : There is a computable infinitely differentiable 
function on the real line whose first derivative is not computable. 

A detailed account of the results discussed in this note is planned for a forth-
coming paper. 
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