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1. Introduction 

Some of the very basic questions concerning homomorphisms have recently 
turned out to be of crucial importance for some of the most interesting decision 
problems in language theory. Although homomorphisms of free monoids are very 
simple and, a t least f rom the mathematical point of view, the most natural opera-
tions defined for languages, some of these very basic questions remain still unan-
swered. 

The basic set-up in this paper is as follows. We are given two homomorphisms 
hx and h2 mapping the free monoid I* generated by an alphabet 2 into I*, where 
I1 is a possibly different alphabet. We study the language E(h1, h2) consisting of 
all words w over Z* such that h1(w)=h2(w). This language E(hx, h2) is referred 
to as the equality set or equality language for the pair {hx, h2). This paper investigates 
properties of equality languages, especially with respect to certain decision problems. 

A brief outline of the contents of the paper follows. After the basic definitions 
and some preliminary results presented in Section 2, we investigate in Section 3 
the case where the equality language is regular. This is a very desirable state of 
affairs f rom the point of view of decision problems. We show, for instance, that the 
equality language is regular if and only if it can be expressed in terms of so-called 
bounded balance. This situation occurs always when we are dealing with the "ele-
mentary homomorphisms" of [5]. In Section 4, we show that every recursively enumer-
able language is obtained f rom an equality language by a deterministic gsm mapping. 
Equality languages are context-sensitive star languages (where "star language" is 
a "star event" in the sense of [1]). If the homomorphisms h1 and h2 are into the monoid 
generated by one letter, then E{hx,h^) is context-free but not necessarily regular. 

1 The author had the pleasure of spending a longer time with Laci bácsi during the summer 
1976. I was then in Szeged with my wife, son and Mr. and Mrs. Esko Terávainen. We were all 
impressed by Laci bácsi's generous hospitality and friendliness: For instance, he was always ready 
to carry the two biggest suitcases. In August 1976, Laci bácsi was supposed to present a paper 
at the XVII Scandinavian Congress of Mathematicians in Turku. He was working also on this 
during our stay in Szeged. 
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The final Section 5 deals with some decidability results, and also points out some 
open problems. 

We assume the reader to be familiar with basic formal language theory. For 
all unexplained notions we refer to [9]. 

2. Definitions and preliminary results 

Consider the free monoid Z* generated by a finite alphabet Z. The identity 
element of Z*. (i.e. , the empty word) is denoted by X, and the length of a word w£Z* 
by lg (w). Consider, further, two homomorphisms hx and h2 mapping Z* into 
where Z t is another (possibly the same) alphabet. We denote by E{hx, k2) the collec-
tion of all words w£Z* such that 

hi (w) = h2(w). 

The set E(hi, h2) is referred to as the equality set or equality language of /ix and h2. 
(In [6J, equality sets are denoted by M I D , Vi2)-) The family of all languages L 
such that L=E(h1, h2), for some homomorphisms hx and h2, is denoted by FE. 

It is clear that E ^ , h2) remains unchanged under a renaming of Zx . Moreover, 
it is immediately seen by standard coding techniques that any language L over Z 
in FE can be given as L=E(h1, h2), where HX and h2 map Z* into {a, b}*, i.e., Zi 
consists of two letters only. A further reduction to a one-letter alphabet is not possible, 
as will be explicitly shown in Sections 3 and 4: 

We now repeat two definitions given in [4]. Consider a language L over Z, 
and two homomorphisms h1 and h2 defined on Z*. We say thatT^ and h2 are compatible 
(resp. equivalent) o n ; L iff for some wdL (resp. for all w^L) h1(w)=h2(w) holds. 

The following theorem is immediate f rom the definitions. It shows how the 
decision problems investigated in [4] can be considered as inclusion problems involv-
ing E(hl7 h2). 

. Theorem 2.1. Two homomorphisms and h2 are equivalent (resp. compatible) 
on a language L if and only if L is contained in E(h1, h2) (resp. L is not contained in 
the complement of E{hu h2)). , 

In most cases we are able to decide whether a given language is contained in 
a given regular language. Thus, Theorem 2.1 shows that , as regards the homomor-
phism compatibility and equivalence problems, it is a very desirable situation that 
E{hx, h2) is regular. More explicitly, we can express this as the following 

Theorem 2.2. Assume that K is a family of (effectively given) languages such 
that the equation 

Lf}R = <p (1) 

is decidable for L in K and R in the family of regular languages. Assume, further , 
that H is a family of homomorphisms such that E(h1, h2) is regular for all hx and 
h2 in H. Then it is decidable whether two homomorphisms h1 and h2 f r om H are 
equivalent on a language L in K. 

Proof. The assertion is obvious if we can effectively construct the regular 
language EQjj^,^): we just check the validity of (1) for R being the complement 
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of E(hlt h2). Otherwise, we run concurrently two semialgorithms, one for equiv-
alence and, the other, for nonequivalence. The latter semialgorithm is obvious: 
we just consider an effective enumeration w0, w1 ; w2, ... for L and check whether 
th(wi)=h2(wl). For the semialgorithm A for equivalence, let R0, Rlt R2, ... be 
an effective enumeration of regular languages. In the ( i + 1 ) st step of A, we consider 

and check whether and h2 are equivalent on R t . (This can be done by a result 
in [4], the result being easy enough to verify also directly.) If the answer is positive, 
we check the validity of (1) for R being the complement of R,. The correctness and 
termination of this algorithm are now obvious. (A similar argument was used already 
in [3].) • 

Under the additional assumption that h2) can be found effectively, we 
can extend Theorem 2.2 to the compatibility problem: it is decidable whether two 
homomorphisms /zj and h2 f rom H are compatible on a language L in K. 

A very interesting and important class of homomorphisms for which E ( l , h2) 
is always regular consists of the elementary homomorphisms introduced in [5] and 
studied further in [6]. By definition, a homomorphism h: — is elementary 
if there is no alphabet I 2 of smaller cardinality than I such that h can be represented 
as h = h2h1, where 

h^. and In: I2 — I*. 

The following theorem is established in [6]. A modified version of it will be 
established also in Section 3 below. 

Theorem 2.3. For elementary homomorphisms h1 and h2, EQiy, h2) is regular. 
One of the most famous problems in formal language theory during recent 

years has been the D O L equivalence problem: given two homomorphisms hL and 
h2 mapping Z* into I* and a word w in I*, decide whether or not 

h[(w) = h'2(w) 

holds for all /'SO. A decision method was given in [2] and [3]. The notion of an 
elementary homomorphism seems to capture the essense of the problem and, con-
sequently, the solution given in [6] avoids many of the difficulties present in the 
earlier solution. As regards the D O L equivalence problem, the reader is referred 
also to [7] and [8]. Clearly, the D O L equivalence problem amounts to deciding 
whether or not the D O L language consisting of all words hi(w), where i s 0 , is 
contained in £(/z1,A2). 

The notion of balance, defined originally in [2], turns out to be very useful in 
discussing the regularity of E(ht, lu). 

Consider two homomorphism hY and h2 defined on I* and a word w in I*. 
Then the balance of w is defined by 

P(w) = lg(hl(w))-lg(h2(w)). 

(Thus, P(w) is an integer depending, apart f rom w, also on hY and h2. We write it 
simply P(w) because the homomorphisms, as well as their ordering, will always be 
clear f rom the context.) This definition is in accordance with [4], the notion of balance 
defined in [2] equals |^(w)| in our notation. 

9 Acta Cybernetica IV/1 
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It is immediate that /? is a homomorphism of I * into, the additive mono id o f 
all integers. Consequently, we can write 

P K w J = fiW+PM 

which shows that the balance of a word w depends only on the Parikh vector of w. 
We say that the pair (h1, h2) has k-bounded balance on a given language L if k 

is an integer s 0 and 

holds for.all-initial subwords.w of the words in L. 
The property of having bounded balance gives a method of deciding h o m o m o r -

phism equivalence, a point exploited in detail in [4]. 
For k^O, we denote by h2) the largest subset of E(h1, lu) such t h a t 

the pair , h2) has ^-bounded balance on Ek (/?j, h2). Clearly, for all k, 

, E ^ h J Q Ek + 1(hlthJ 
and 

'E(hi,hj = U Etih, h2). (2) 
¡ = 0 

The following theorem was established in [8], essentially the same result being, 
contained also in [2]. 

Theorem 2.4. For each and arbitrary homomorphisms h1 and h2 , the lan-
guage E ^ h ^ h z ) is regular. 

The relation (2) and Theorem 2.4 show that E{h±, h2) can always be approxi -
mated by a sequence of regular languages. Note also that lh) = {^} o r 

where I' is the subset of I consisting of all letters a for which h1(a) = h2(a). 
We conclude this section by showing that all languages in FE possess a speciaL 

property. Indeed, consider any language E(h1, li2) = L. By definition, whenever 
Wj and w2 are in L then so is m^h^. This implies that L = L*, i.e., L is a star language 
(a star event in the sense of [1]). The minimal star root of L, i.e., the smallest lan-
guage M satisfying L = M*, consists of all words w of L such that no proper initial 
subword of w is in L. Same results hold true also with respect to languages Ek(ht, fi2). 
These results are summarized in the following 

Theorem 2.5. Every language L in FE is a star language. The subset M. of L> 
consisting of all words w such that no proper initial subword of.w is in L, is the 
smallest language satisfying 

M* = L. 

For each k, h1, h2, E^l^, h2) is a star language. 
Theorem 2.5 shows, for instance, that Ee contains no finite languages with, 

the exception of cp* = {/.}. Since, for any language L and homomorphism It, we 
have h(L*) = {h{L)f, it shows also that even-if we take morphic images of the 
languages of FE, we get only star languages. However, it will be seen in Section 4 
that every recursively enumerable language is obtained by a deterministic gsm mapp ing 
f rom a language in Ee. 
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On the other hand, it is clear tha t 'only star languages of a special type are in 
FE: FE does not even contain all star languages with a finite star root . This follows 
by the next theorem, the proof of which is obvious. 

Theorem 2.6. Whenever a language L in FE contains the words Wj a n d . W2, 
then it contains also the word.w2 . . 

3. Regular equality sets 

We begin this section with two examples. Consider first two homomorph isms 
/?! and h2 mapping {a, b}* into {a}*, defined by 

ftx(a) = h2(b) — a, h2(a) = li^b) = aa. 

It is immediately verified that E ^ , h2) consists of all words w such that the number 
of occurrences of a in w equals that of b in w. Thus, we have here a simple example 
of a context-free nonregular equality set. 

Consider, next, the two homomorphisms g1 and g2 defined by 

g , (a ) = ab, gl(b) = b, gi(c) = a, 

g2(o) = a, g2(b) = b, g2(c) = ba. 

Clearly, E(g1, g2) is now denoted by the regular expression (ab*cUb)*. In this 
case, E(gi,g2) is a regular language possessing no finite star root . 

We now return to the equation (2) and show that E(hx, h2) is regular exactly in 
case the right side can be replaced by a finite union, i.e., 'E(h1} h2) equals one of 
the sets Ek(hx, h2). 

Theorem 3.1. The set E(h1: h2) is regular if and only if, for some k, 

. . E(h1;h2) = Ek(h1,h2). • (3) 

Proof. The " i f ' - p a r t follows by Theorem 2.4. To prove the "only i f ' - p a r t , 
assume that h2) = L is regular. Thus, the homomorphisms hx and h2 are 
equivalent on the regular language L. This implies that the pair (hx, h2) has fc-bounded 
balance on L, for some A: and, thus, (3) holds true. (The implication is established 
in [4]. It follows f rom the observation that if a word w causes a loop in the minimal 
finite automaton accepting L, then P(w) = 0. Thus, an upper bound for the balance 
of initial subwords of the words in L can be computed by considering such words 
only which cause a transition f rom the initial state to one of the final states without 
loops. If n is the number of states in the automaton and 

/ = max{|)S(a)| \a in Z} 
then 

kiSt[(n-1)/2]. 

One can show by examples that this estimate is the best possible in the general 
case.) • 

By Theorems 2.3 and 3.1, we obtain now the following 

9* 
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Theorem 3.2. If hx and h2 are elementary homomorphisms then there exists a 
k such that 

E(lh,h2) = E ^ Jt2). 

Remark. Theorem 3.1 shows the importance of the notion of balance in char-
acterizing the regular sets E(hls h2). We want to point out that we are dealing here 
with a property typical for equality sets which cannot be deduced f rom (2) and 
properties of star languages. More specifically, there are regular star languages L*, 
z's0, satisfying 

Lf QLf+1, for all /, 
and 

. u Lt = L* 
i = 0 

and, furthermore, L**L* for all i, although L* is regular. An example is given by 

L ^ y j a b U . 
j^i 

Thus, Theorem 3.1 cannot be deduced f rom (2) and properties of star languages. 
We want to emphasize that EQi^, h2) may be regular although h1 and hi are 

not elementary, i.e., the converse of Theorem 2.3 is not valid. For instance, define 
# h^a) = a, ht(b) = h^c) = b, 

h2{a) = a, h2(b) = h2(c) = c. 

Then E{hx, h2) = a* although neither fix nor h2 is elementary. 
Apar t f rom the sequence ^ ( / ¡ j , h2), k = 0, 1, ... , there seems to exist no other 

approximating sequence for E(h1, h2) with similar properties (in particular, Theo-
rem 3.1). 

This section is concluded by a result exhibiting a special case in which the lan-
guage -£•(/*!, h2) is always context-free. We point out that it will be shown in Section 5 
that the general problem of determining whether a given language in FE is regular 
(resp. context-free) is undecidable. 

Theorem 3.3. Assume that and h2 are homomorphisms mapping 1" into 
{a}*. Then the language E(li1; h2) is context-free but not necessarily regular. 

Proof. The second assertion follows by the example given at the beginning 
of this section. To show that E( /h , h2) — L is context-free, we assume that 
2={a1, ..., ak) and 

h^a,) = am', h2(ad = a\ i = 1, ..., k. 

We denote d—trii—n t. By a suitable renumbering of the alphabet I , we may 
assume the existence of numbers wiand v, O^u^vsk, such that 

dj is 

0 for 1 / ^ u, 
positive for a + l s i s i ) , 
negative for c + l s i s f i . 
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Consider now the language L i = L C \ a l a t . . . a t . Lx consists of all words w such 
that (i) the letters of the alphabet I occur in w in the " r ight" alphabetical order, 
and (ii) 

du+1xu+l+...+dvxv = (~dv+1)xv+1+ ...+(-dk)xk, (4) 

where x ; denotes the number of occurrences of a i in w. (Note that all the coefficients 
of x ; in (4) are positive.) But the validity of (4) can be checked by a deterministic 
one-counter machine M. Indeed, when reading a letter at with « + 1 = / = y, M 
pushes di copies of the counter symbol, and when reading a letter af with u + l ^ 
^isk, M pops di copies of the counter symbol. Hence, Lx is a deterministic one-
counter language. 

On the other hand, L=C(L X ) , where C denotes the "commutative variant" 
of the language, i.e., C(L,) is the language obtained f rom Lx by taking all permuta-
tions of its words. Because it is easy to see that C(Lj) is context-free, we have 
concluded the proof. • 

4. More general equality sets, their scope 

We now turn to the discussion of the general question of the "size" and typical 
features of the family FE. We show that every recursively enumerable language can j 
be obtained by a deterministic gsm mapping f rom a language in FE. By the remark 
made after Theorem 2.5, homomorphism is not sufficient for this purpose; all 
recursively enumerable languages cannot be obtained as morphic images of languages 
in FE. However, we shall establish the following weaker result: if L„ is a recursively 
enumerable language, then the language (C(L0)J* is a morphic image of a lan-
guage in FE. Here C denotes the commutative variant discussed in the proof of 
Theorem 3.3. 

To understand the technical details in this section, familiarity with the proof 
of Theorem VIII.2.1 in [9] is required on part of the reader. In the examples and 
arguments below, we try to follow the notation of this proof as much as possible. 

We begin with the following simple result. 

Theorem 4.1. Every language in FE is context-sensitive. 

Proof. Consider an arbitrary L = E(hl, h2). Let m be the maximum length 
among the words ¡hia) and h2(a), where a ranges over I . Then L is accepted by a 
linear bounded automaton M whose work tape is a t most m times the length of the 
input w. Indeed, M first writes h^w) and h2(yv) on two tracks, and makes then the 
comparison on its final run. • N 

We now give an example of a language in FE which is not context-free. The 
example also serves the purpose of providing some intuitive background for the 
proof of Theorem 4.2. 

The alphabet I in the example consists of the letters 1, 2, . . . , 18. (Thus, two-
digit numbers are viewed as single letters.) The target alphabet I , will become 
apparent in the following definition of and /i2. In the definition, letters a of I 
are listed in the first row, and the values hx{a) (resp. h2(a)) in the second (resp. 
third) row. 
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1 2 3 4 5 6 7 8 9 

BSc c c £ S ' s; S2' 5 ^ 

B c c' c'E 5 S i S 2 S ' Si 

10 11 12 13 14 15 16. 17 18 

S 2 »Sj S iS*2 ). A Si ss2 A A A 

si 5 S 2 S ' S ' S i Si 

To show that EQi^, is not context-free, we argue as follows. Our ex-
ample is constructed according to the proof of Theorem VI1I.2.1 in [9] f r o m the 
grammar G with the productions 

S ~ ~ S ^ S S z i A., S2 ~~* A, S A.. 

Note that the Szilard language of G is not context-free (cf. [9, p. 185]). This implies 
that L cannot be context-free because the Szilard language of G is obtained f rom L 
by a suitable homomorphism. Indeed, it suffices to erase all letters not "representing" 
applications of productions. (We can also get f rom L the language {a"b"c"\^\} by 
taking first the. intersection with a regular language and then a morphic image. 
The intuitive idea behind this is to apply the four productions in the order they are 
listed above.) • 

We want to emphasize that if we just want an example of a non-context-free 
language in FE then the example given above is unnecessarily complicated. (For 
instance, the distinction between primed and non-primed letters is superfluous f rom 
this point of view. It is, however, quite essential in other arguments because we do 
not want a solution to the Post Correspondence Problem starting f rom the "middle".) 
The above example serves the additional purpose of making the reader familiar 
with the idea behind the proof of the following theorem. 

Theorem 4.2. For every recursively enumerable language £ 0 , one can effec-
tively construct a language £ in FE and a deterministic generalized sequential machine 
M such that £ 0 = A f ( £ ) . 

Proof. Following the notation of [9], we assume that £ 0 is generated by the 
type-0 grammar G=(VN, VT, F), where 

V = VN\JVT = K , ..., ar), F = {P, - 6/11 Si i ^ n), 

VT = {as, ...,ar}, 1 

Denote V' = {a'\a£ V}. Thus, for any word Q over V, we can consider the "primed 
version" Q' obtained f rom Q by replacing every letter a with a'. 

Without loss of. generality, we assume that a1 —% is one of the productions 
in F. (This is done because of the same reason as in the proof of Theorem VIII.2.1 
in [9]: to get the right parity for the length of a derivation. Note , however, that we 
do not have to eliminate the ¿-productions over F as we did in [9].) 
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We now introduce two homomorphisms hx and /?2 mapping I * into where 

I = {1,2, . . . , 2r + 2n + 4, a„ ...,ar}, 

E1 = VUV'U {B,c, c'}. 

Again, the homomorphisms are given by the following table listing (a) and h2 (a) 
below a. In the table, i (resp. j) ranges through the numbers 1, . . . , r (resp. 1, . . . ,« ) , 
and x through the letters as,...,ar. 

x 1 2 3 4 4 + i 4 + r+i 4 + 2 r+j 4 + 2 r + n+j 

X Ba1c c' c X a I at Q) Qj 

x B c c' c' at a[ Pj Pj 

Consider the language L=E(h1,h.2). We denote 

ET= {as, ...,ar}, IN= {1 ,2 ,3 , 5, . . . , 2r + 2n + 4}. 

(Thus, I T and I N are subalphabets of I . The former consists of all "let ters" and, 
the latter, of all "numbers" except 4.) 

Let now M be the deterministic generalized sequential machine which, when 
reading an input word w over I , checks whether w is of the following fo rm: a non-
empty word over XN, followed by exactly one occurrence of the letter 4, followed 
by a (possibly empty) word w' over I T . In the positive case, the output is w', in the 
negative case no output is produced. 

Comparing the construction with the proof of Theorem VIII.2.1 in [9], it is 
now easy to see that L0 = M(L) holds true. Indeed, the above construction differs 
from that in [9] only with respect to the letters 4 and as, ..., ar. But the machine 
M makes sure that the effect of these letters is the same as that of a4 and /?4 in [9]. 
Thus, M outputs exactly the words of the original language L0. Note", in particular, 
that we have X as an output exactly in case X is in L0. L, as every equality language, 
contains X but M does not accept it as an input. • : , • • • - • • • 
Li. 

Remark 1. Let h be the homomorphism mapping the letters of IT into them-
selves and erasing the other letters of I . By the proof above, we get the represen-
tation 

L0 = h(Lf)I^4I*T). . . 

(By an easy modification, 4 can be eliminated.) Thus, every type-0 language.is obtained 
from a language L in FE by intersecting L with a regular language and.then taking 
a morphic image (under a very simple morphism) of the result. This representa-
tion theorem has been obtained by another method by G. Rozenberg (personal 
communication). 

Remark 2. We have already pointed out why there are recursively enumerable 
(in fact, even finite) languages L0 not representable in the form L0 = h(L), where 
h is a morphism and L is in FE. Clearly, by Theorem 4.1, the operation of taking 
intersections with regular languages alone is not sufficient for such a representation 
of recursively enumerable languages in terms of equality languages. As regards 
homomorphisms, the following theorem gives a weaker result. 
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Theorem 4.3. For every recursively enumerable language L 0 , one can effectively 
construct a language L in FE and a homomorphism h mapping every letter either 
to itself or to ). such that 

• (C(LJ)* = h(L). (5) 
Proof. The language L is constructed exactly as in the proof of Theorem 4.2. 

The only additional requirement we have now is that in the original grammar G 
terminal letters occur in productions of the form 2?—b, where B is a nonterminal 
and b a terminal, only. The homomorphism h is defined as in Remark 1 above. 

To prove (5), note first that the right side is included in the left side. This follows 
because if we take one of the letters x=as, ..., ar " too early" to a word in L, then 
the terminal letter x has already been derived according to G. The reverse inclusion 
is obtained by noting that any word w=b1...b, in L3 can be derived by deriving 
first the corresponding nonterminal word B1...Bl. F rom the latter, the terminal 
letters bt can be introduced in any order and, hence, any permutation of w is in 
h(L). Clearly, h(L) = (h (L)f . • 

The following result is now immediate f rom Theorem 4.3. 

Theorem 4.4. For every recursively enumerable star language L0 over a one-
letter alphabet {a}, one can effectively construct a language L in FE and a homomor-
phism h, mapping a into itself and erasing other letters, such that La=h(L). 

It is an open problem whether or not Theorem 4.4 holds true for arbi trary 
recursively enumerable star languages, i.e., whether or not (5) in Theorem 4.3 can 
be replaced by the equation 

L*0=h(L). 

5. Decidability 
I 

In this final section we consider some decision problems for FE, as well as some 
applications to other decision problems, in particular, problems concerning homo-
morphism equivalence. 

Clearly, membership is decidable for languages in FE. Such a language is never 
empty because it always contains ).. An arbitrary Post Correspondence Problem 
PCP defines a language LPCp in FE such that LPCP is infinite if and only if P C P has 
a solution. Hence, infinity is undecidable for languages in FE. Since {A} belongs 
to FE, we see in the same way that the equivalence problem is undecidable for FE, 
i.e., there is no algorithm for determining of two given languages in FE whether or 
not they are the same. 

These results are summarized in the following 

Theorem 5.1. Membership problem is decidable for languages in FE. Emptiness 
problem is trivial but infinity problem undecidable for languages in FE. Given a 
language L in FE, it is undecidable whether L— {/}. Hence, equivalence problem is 
undecidable for FE. 

Note that it is decidable whether a language L in FE equals I*. 

We have already pointed out that in some investigations it is very desirable 
that E(HLT H2) is regular. However, the following theorem shows that this property 
is undecidable. 
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Theorem 5.2. It is undecidable whether a language in FE is (i) regular, (ii) 
context-free. 

Proof. We consider the following modified Post Correspondence Problems P C P 
over an alphabet V 

( a l 9 . . . , « „ ) , (/?i, . . . , /?„)> (6 ) 
where 

ax = BA, fi1 = B, a 2 = C, ps = A, 

and every solution to P C P must begin with the indices 1,2. Furthermore, it is assumed 
that B and A do not occur in any of the words a 3 , . . . , a„, j83, . . . , P„. Clearly, there 
is no algorithm to solve such modified PCP's . 

We argue now indirectly and assume that either (i) or (ii) is decidable. We show 
that we can then solve also the modified PCP. Let (6) be an arbitrary given instance. 
We construct new words 

(a„ + 1 , . . . , a„+m), (Pn + 1, ..., Pn + m) (7) 

over an alphabet consisting of C and letters not in V such that (i) the P C P (7) has 
no solution, and (ii) the language L over the alphabet {«+.!, . . . , n+m) consisting 
of words i 1 . . . i l such that 

Cxii...cLit = t}h...f}hC 

is not context-free. Such a construction is possible along the lines of the example 
given in Section 4. Condition (i) is taken care of by making sure that, for no pair 
of words (<Xj, Pi), / = n + l , . . . , n + m, one of the words is an initial subword of 
the other. 

Let h be the homomorphism defined on the monoid {1, . . . , r i + m}* by 

h(i) = X for i i n, h(i) = i for /' > n. 

Furthermore, let //x and h2 be homomorphisms defined by 

h1(i) = <xl, h2(i) = Pi, i=\,...,n + m. 

Consider the language £•(/?!,//2). 
Assume first that our original given P C P (6) has no solution. Then it is immediate 

by the definition of (7) that E(h1, /z2)={P.}, i.e., E(hx, h2) is regular. 
Assume, next, that the PCP (6) has a solution. In this case, E(hx, h2) consists 

of A and of all words over \ , . . . , n + m of the form 

lvv2vv', 

where 12w' is a solution of (6) and w is in L. Hence, / /(£(// , , hJ)'=L. (Note that 
X is in L.) This implies that E(h1, h2) is not context-free. 

Thus, if either (i) or (ii) in the statement of Theorem 5.2 were decidable, we 
would be solving the modified P C P (6), a contradiction. • 
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Although it is undecidable whether a language in FE is regular, we conjecture 
that the converse is decidable, i.e., it is decidable whether a given regular language 
is in FE. The proof of this conjecture requires results stronger than Theorems 2.5 
and 2.6. (Note that some other similar results can be easily established. For instance, 
whenever a word W', / > 1 , is in a language L in FE, then also w is in L.) 

We have already pointed out the significance of E(HLT H2) in some decision 
problems, notably the problem of homomorphism equivalence. It was conjectured 
in [4] that homomorphism equivalence is decidable for indexed languages. By Theo-
rems 2.2 and 2.3, we get the following partial result. 

Theorem 5.3. It is decidable whether two given elementary homomorphisms 
are equivalent on a given indexed language. 

The fact that E i ^ , ^ ) is.context-free (in situations like the one exhibited in 
Theorem 3.3) is not so easily applicable to decision problems. The reason is that 
inclusion of a given language in a context-free language is, in general, a difficult 
problem. Of course, results corresponding to Theorem 2.2 can be formulated also 
in this case. 

In [4], the following generalization (referred to as the D T O L sequence equiv-
alence) of the D O L equivalence problem was investigated: given two pairs of homo-
morphisms (g j , g2) and (h1, h2) and a word w, decide whether 

g , i - g / t ( w ) = hiL.-..hit(w) 

holds for all words z'x.../, over the alphabet {1, 2}. It was shown in [4] that more 
general DTOL equivalence problems can be reduced to this problem. 

Since the equation (1) is decidable for D T O L languages L, we get the follow-
ing partial result by an argument similar to the one used in the proof of Theorem 2.2. 

Theorem 5.4. The D T O L sequence equivalence problem is decidable for elemen-
tary homomorphisms gt, g2, h1, h,. It is also decidable whether two given elemen-
tary homomorphisms are equivalent on an arbitrary given D T O L language. 

The second sentence of Theorem 5.4 follows also by Theorem 5.3. Tha t Theo-
rem 5.4 cannot be used to solve the DTOL sequence equivalence problem (in the 
same way as the D O L equivalence problem was solved in [6]) is due to the fact 
that the analogous decomposition technique is not valid for D T O L systems. 

6. Conclusion 

Apart f rom their importance in certain decision problems, the languages E(HX, H2) 
seem to be rather interesting also f rom other points of view. We have established 
some of their basic properties. However, there are many open problems. Many 
aspects (such as closure properties) of these interesting languages were not discussed 
a t all in this paper. 
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