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1. Introduction

In this paper we deal with effective solvability of the equivalence of frontier-
to-root tree transducers. T. V. Griffits has shown in [2] that the equivalence problem
is unsolvable for A-free nondeterministic generalized sequential machines which
are special frontier-to-root tree transducers, so the equivalence of the nondeter-
ministic frontier-to-root transducers is unsolvable, too. Then in a natural way one
can raise the question whether the equivalence of deterministic frontier-to-root tree
transducers is solvable. We show the answer is in the affirmative. The proof is based
on the proof of the solvability of equivalence problem for A-free deterministic
generalized sequential machines given by F. Gécseg (unpublished result). M. Steinby
has called the author’s attention to the fact that this result can be employed for
minimalization of deterministic frontier-to-root tree transducers. In section 4 we
give an algorithm for the minimalization.

A systematic summary of further results concerning frontier-to-root and root-
to-frontier tree transducers can be found in [1], where they are called bottom -up
and top-down tree transducers, respectively.

2. Notions and notations

Let X={xy, .-« X5 ...} Y={¥1, c.s Y, ...} and Z={z,, ..., z, ...} be countable
sets of variables kept fix in this paper. Denote by X, the subset {x, ..., x,} of X.
Consider a nonvoid set F and a mapping v of F into the set of all nonnegative inte-
gers. The pair (F, v) is called a type. Then the set Tx(X) of polynomial symbols over
X of type F is defined in the following way: '

(a) for each x (x€X), x€ Tx(X), :

(b) if fEF, v(f)=k(=0), and py, ..., p, € Tp(X) then f(py, ..., p) € T (X),

(c¢) the polynomial symbols over X of type F are those and only those which

we get from (a) and (b) in finite number of steps.
Now we define the depth d(p) of p€ Tr(X) as follows:
(@) if p=x (x€X) then d(p)=0, ,
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(b) if p=f (f€ F) and v(f)=0 then d(p)=0, .

(© if p=f(prs --r 20 (v(f)=k=>0) then d(p)=max (d(p)li=1, ..., k)+1.

.In the literature elements of T(X) are called trees, or, in a more detai[ed form,
F-trees.

Next we define the frontier fr(p) of a tree p€ Te(X) in the following way:

(@ if p=x (x€X) then fr(p) =x,

©) if p = .p) (()=F then fr(p) = Frp). (a0
We notice that if p=f and v(f )=0, then fr(p)=2, where . denotes the empty word
over X.

We can define the set sub (p) of subtrees of pc Tp(X) as follows:

(@ if p=x (x€X) thei -sub(p) = {x},

(b) if p=f(ps, ... P (V(f) =k) then

sub (p) = U(sub (Pli =1, ..., k)U{p}.
Let sub(p)=sub (A\{p} be the set of proper subtrees of a tree pETF(X)

Next we define the concept of a substitution. Let p€T¢(X,) be an arbitrary
treeand T,, ..., T, S Tx(X,). Then p[Ty>x,, ..., T,—x,] is the set of trees obtained
by replacing every occurrence of xy,...,x, by a tree in T3, ..., T,, respectively.
Formally,

@ if p=x;, (x;€X ) then p[T} - x¢, ..., T, > x,] =T1;,

(by if p= f(pl, v D) (v(f)=k) then p[T,—»x,....T,~x,] =

={f(:, ""ﬁk)lﬁiépi[Tl =Xy s Ty =X} i =1, ., k).

Let Ty, T,ET, F(X ) be arbitrary subsets and x;€X,. Then the x;-product
T,-x;T, of Ty by T, is the set of trees which can be obtained by replacmg every
occurrence of x; in some tree from T}, by a tree in T;.

Let TP "-—{x} and for every k>0

le, x,; :le—l, X; X; T1~
Obviously,
Ty xT,= {P[{xl}—’xl, cos Xy Xioys TerXg, {x;+1}"x;+1, o (X} x)pE Tz}-
Let us note that a smgleton will also be denoted by its element
Let (F, v) and (G, u) be fixed finite types. Moreover, let 4 be a finite set of
states.
A frontier-to-root rewriting (FR) rule i is determined by a trlple of the following

two forms:
(a) (x,a,q), where x€X, acAd and -q€Ty(Y),
(b) (f((ala z1)s -ovs (Qgs Zk)) a Q) where fC€F, v(f) =k,

- (a5, 20€AX {z} (=1, .., k), acd and g€Te(Y"Z).
In the sequel we write the FR rules -in- the form x-aqg and f(alzl, s Qi Zy)—aq,
respectively.

A root-to-frontier rewriting (RF) rule is-given by a triple of the following forms:

(a) (a,x,q) where acAd, xcX and q€Tq(Y),

) (a,f(ze5 0520, q) where acd, fE€F, v(f)=k and geT;(YUAXZ)).
Further on we wrlte the RF rules in the form ax—q and af(zq, ..., z,) —>q, respec-
tively.

By a frontier-to-root tree (FRT) transducer we mean a system A= (F A,G, A, %),
where A’ is a subset of A4 called the set of final states and- X' is a finite-set of FR rules.
Since X is finite thus there is a number » such that the set of symbols x, for which
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there exists a rule in X~ with left hand side x, is a subset of X,,. Similarly, there exists
a number m such that right hand sides of rules from Z get into 4XT;(Y,,U Z).
Then we can restrict ourselves to X, and Y,,,.

For each acA4 and p€T:(X,), the set of all a-translations of p, denoted by
A, (p), is defined as follows: '

@@ if p=x;, (1=i=n), then W, (p)={g|x;—~aqel},

() if p=f(ps,...»pd) (v(f)=k) then

Q[a(p) = {qlf(alzls ...,aka) g aqez’ qEq[“)Ial(pl) T 215 eees QIak(pk) - Zk]}-
An FRT transducer U is deterministic (DFRT transducer) if
(a) for all x;€X,, there is at most one rule with left hand side x;,
(b) for all f¢ F and a,, ..., a,€ 4, there is at most one rule with left hand side
flayzy, ..., a.2).

By a root-to-frontier tree (RFT) transducer we mean a system U=(F, 4, G, 4", 2),
where A’ (& A) is the set of initial states and X is a finite set of RF rules. Similarly,
in this case we can be restricted to X, and Y,, for some » and m. '

For each acA4 and peTr(X,), the set of all a-transiations of p, denoted by
A (p), is defined as follows:

(@ if p=x; (1=i=n) then U, (p) = {glax; - g€Z},

() if p=f(p,...r) (v(f)=k) then

W, (p) ={qlaf (z1, ..., 20) = 4(...,az;, .. )€Z, q€q]..., Uz(p,) ~az;, .1}
An RFT transducer U is deterministic (DRFT transducer) if

(a) for all x;¢X, and a€ A, there is at most one rule with left hand side ax;,

(b) for all fe F (v(f)=k) and a€ 4, there is at most one rule with left hand side

af (215 - 24)s :

(c) A’ is a singleton.

Let W=(F, 4, G, A’, ) be a FRT (RFT) transducer and p€ T'x(X,). The trans-
lations of p induced by W, denoted by W(p), is the set U (W, (p)lacA’).

We define the rransformation induced by U to be the relation {(p, ¢)|p€ Tr(X,),
q€A(p)} from Tx(X,) into T(Y,,).

If A is a deterministic FRT (RFT) transducer, then for each p€ T+ (X,) at most
one element is in A(p). Therefore, the transformation induced by U is a (partial)
mapping from Tp(X,) into T;(Y,,), and it is denoted by U, too. This mapping is
called the mapping induced by .

Let U=(F, 4,G, A’ ¥ ;) and B=(F, B, G, B’, 2p) be FRT (RFT) transducers.
We say that U and B are equivalent if and only if ¥l and B induce the same trans-
formation. The FRT (RFT) transducer U is minimal if and only if for all FRT (RFT)
transducer €=(F, C, G, C’, Z) equivalent to A, |4|=1|C| holds.

We say that U is a minimal transducer belonging to B if and only if 2 and B are .
equivalent and U is minimal.

3. The equivalence of deterministic frontier-to-root tree transducers
Let A=(F, 4,G, A", 2,) and B=(F, B, G, B’, ) be deterministic frontier-to-
root tree transducers such that the mappings induced by U and B are from 7,(X,)

into T;(Y,). Let us construct, for the states a€ 4 and b€ B, two DFRT transducers

W = (F, 4, B, ', Z,U{% — a%)) |
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and
B =(F,B,G, B, 2;U{# —bx}.

Then A* and B® induce mappings from TR(X,U {#}) into T(Y,U {4 D.
We define the #-depth d(p) of a tree p€ Tp(X,) in the following way:
(@) if p=x; (1=i=n) then d(p) is undefined,
(b) if p= % then d(p)=0,
(©) if p=f(py, ... p0) (v(f)=K) and d(p;) (i=1, ..., k) are undefined then d(p)
is undefined,
(d) if p=f(p1> ....p) (v(f)=k) and one of d(p;) (I=i=k) is defined, then
d(p)=max (d(p)|d(p;) is defined, 1=i=k)+1. -
Let T be the set of all trees p€ Tr(X,) for which both 2((p) and B(p) are defined.
Take a tree p€T and an arbitrary subtree pcsub (p). Let P€Tp(X, U {#}) be
the tree obtained by replacing a fix occurrence of p by 4. Obviously, § contains
exactly one symbol # on its frontier and p =p - p, where p - p denotes the #-product of
p by p. Since p€ T, there exist exactly one state of 4 and B denoted respectively by
A and Bj, such that both QIA‘_,(ﬁ) and ‘BB‘_’@) are defined.

The following two lemmas hold under these notations.

Lemma 1. For each p€ T and p€sub (p),

A(p) = A, (p)- A7 (P)
and

B(p) = By, () B ()
hold.

Proof is obvious.
Next let |4|=M and |B|=N.

Lemma 2. Let p€T be an arbitrary tree and p€sub (p). Then there exists
a tree 1€ Tp(X,U {4 }) containing exactly one symbol # on its frontier such that
d(ty<MN, d(t)<2MN—1 and p-t¢T. ,

Proof. First we give a tree i, for which d(f)<MN. Construct a sequence
tyy ..., L, ... Of trees as follows: Set z,=p. Then consider the sequence ¢, ..., q,
of maximal length, for which g,=t,, ¢;=4# and ¢;€sub (g;_,) (i=1, ..., ). If I<MN
then d(¢t)<MN, and in this case let i=¢,. Otherwise, we can find two indices
jand k such that 0=j<k=/and 4,,=A,,, B;,=B,, . Thenlet ¢, , be the tree obtained
from 1, by replacing the subtree g; in f, by g,. It is clear that d(¢,,,)<d(z,). Thus,
continuing this process in a finite number of steps we arrive at the desired tree 7.
If d(¥)<2MN—1 then let =17. In the opposite case there exists a sequence gy, ..., §;
of subtrees of I with /=MN, #¢sub(g), ¢,€X, and g;€sub(g;_y) (=1, ...,10).
We construct a tree 7 from f by means of the sequence ¢y, ..., g, in the same way
as 7 has been constructed from p. The tree f contains less occurrences of symbols
from F than 7 does. It follows that the procedure can be continued till the depth
of the resulting tree is not less than 2MN—1. The constructed tree satisfies the
conclusions of Lemma 2.
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Notice that if the frontier of A4P(P) contains the symbol 4, then it occurs
in the frontier of WAA4P(r). Similar statement is valid for B3?(p) and B(¢).

Lemma 3. Letp€ Tand d(p)=4MN. Then there exist trees py, P, Ps, Pa» Ps» Pe€
€T (X,U{4}) such that p,, ps, ps, ps, Pg contain exactly one symbol 4 in their
frontiers. Moreover, p=p;-p.‘Ps-ps-Ps-ps, d(p)=1 (i=2,3,4,5 and
d(py-ps-ps*ps-ps) =4MN. Finally, the following equations hold:

AP: = A(Pl'Pz) =

Aprorrn = Aprpersrsd = A(pr-pe-papaps) = %
By, = Bpype) = Borpevs) = Blorpevans) = Biorpapspars) = bs
A(p) = Wa(py) - Wa(p2) - Wa(py) - W () - U5 (05) - A (o),
B(p) = B, (p) * B3 () - B (ps) - B (py) - B (p5) - B (po)-

Proof. Let p be an arbitrary subtree of p with depth 4MN. Then there exists
a sequence ¢, ..., ggyny Of trees with go=p and g;€sub(q;_,) (=1, ...,4MN).
Consider the pairs of states (4,,, B,) (i=0, ..., 4MN). Obviously, there exist indices
JisJosrJasJasjs (AMN=j,=>jp=>jy=>j,>j;=0) having the same pairs of states.

Let p,=q;,. Construct the tree p, by replacing the subtree g; , in the tree
g;, by the symbol # (k=2, 3, 4, 5). Finally, let ps be the tree obtained from p by
replacing its subtree g;, by #. From the construction and Lemma 1, it is clear that

the trees py, ps, Ps, Ps, Ps, Pe constructed in this way satisfy the conditions of
Lemma 3.

Let L=max (d((p)), d(B(p))|peT, d(p)=6MN) and K=4(L+2) MN.

Lemma 4. Take a tree p€T. Moreover, let p;, ps, Ps, Pas Ps, Pe€ Tp(X,U {3}
be trees and a€ 4 and b€ B states satisfying the conditions of Lemma 3. If W(p) =B (p)

and d(U°(p,-ps-pe)) is undefined, then there is a tree pc7, for which d(p)<K
and A(p)=B(p).

Proof. Let S be the set of trees with minimal depth satisfying the conditions
of Lemma 4. Let p(€S) be a tree which has minimal number ‘of occurrences of
symbols from F among all trees in S. Assume that d(p)=K.

The. 4-depth of the tree B®(ps-p,-ps-ps) is defined and d(B(p;))=0, for
otherwise

W(py- ps Ps- D5 Ps) = U(p) # B(p) = S8(1’1'173'‘P4'P5'Ps)
or

A(py-pa+ Pa D5 De) = WU(p) # B(p) = B(py- Pz Ps Ps* Pe)
holds, which contradicts the minimality of p. Next we define a tree ¢, for which
d(t)<3MN-—1 and d(t)<2MN—1."

First we consider the sequence Gos > @1 of subtrees with maximal length for
which qy=p,*ps-ps, ;= # and qL€sub (qi v (=1, ..., ). Then for each g; there is
exactly one state a;€ 4 such that A3 (g;,) is defined. Let i be the maximal index, for
which' d(2,(¢)) is undefined. Since 9%, (g0)=(ps-ps-ps), A(A(p, - ps- Pe)) is
undefined and A}, (g,)= # thus 0=i=/—1 holds. Now we consider the tree ¢, given
by Lemma 2 for the tree p and the subtree p;+p,-ps-q;. Let q;=f(ry, ..., re)
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(v(f)=k). Then there exists an index j (1=j=k) such that r;=g;,,. Let us construct
the tree r; from r; in exactly that way as the tree 7 has been constructed from the
tree p in the proof of Lemma 2.

Furthermore, let 7, be the tree arlslng from the tree f(ry, ..., r; j-1s FisFig1s-ns Tp)
in the same way as the tree ¢ has been obtained from the tree  in Lemma 2 Let
t=t,-t,.

Consider the tree g=p,-p5*'-t, where pi*1={p,}k+** Tt is clear that g€7T,

A(g) = A (1)

B(g) = B, (p) - (B (pe))“** - B* (1)

hold by Lemma 1. Since d(W(g))=L and d(B(g))>L thus A(g)=B(g). But
d(q)<K, which contradicts the minimality of p.

Lemma 5. Let p€T be a tree for which A (p)=B(p). Assume that there exist
trees p{, P4, Da> D1, Ph, Pe€ Te(X,U {3 }) and states acA and b€B satisfying the
conditions of Lemma 3. If d(A*(p; - p; « pg)) is defined, then there exists a tree p€ T
such that d(p)<K and A (p)=B(p).

Proof. Let S be the set of trees with minimal depth satisfying the conditions
of Lemma 5. Let p (€ S) be a tree which has minimal number of occurrences of symbols
from F among all trees in S. Assume that d(p)=K.

Let ¢ be the tree given by Lemma 2 to the tree p and the subtree p; - p; - ps - ps - ps.
We introduce the following notations:

and

and

Py =DPi*Ps-Ps» P2=Di» DPs=Di» Pa=Ds
U(p) = a1, Bo(P) =11,
Wi (py) = g2, B(po) = 12,
As(ps) = g3, Bi(py) =13,
A(py) = qa>» Bb(py) = 1y,
We(t) =q,, B(t) =7,

First let us illustrate the idea of the proof in a special case. Assume that v(f)=1
and p(g)=1 for all f€¢ F and g€G. Then the DFRT transducers U and B may be
considered as deterministic generalized sequential machines.

In Figure 1 we indicate the trees p, W(p), B(p). Now let us consider the trees

=p,-ps-t and A(), B@) (I=1,...,L+1) (see, Figure 2).

Since A (1)=B(r,) (I=1, ..., L+1), thus Figure 2 shows that the same tree is
constructed in two different ways. As it appears from Figure 2, and it can be readily
verified, too, g,=7,+g, and ry=g,+7,. The idea behind the proof of Lemma 5 is
similar, but more involved.

The #-depth of Bb(p;-p;-pe) is defined, for otherwise, by Lemma 4, there
exists a tree p¢ T, for which d(p)<K and U (p)=B(p) hold contradicting the mini-
mality of p. Since both d(U*(p,-p;-ps)) and d(B°(p,-ps-p,)) are defined thus all
the trees g,, ¢, g4 and r,, r,, r, contain the symbol = in their frontiers. Moreover,
by the note following Lemma 2, the frontiers of the trees g, and #, contain it, too.
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Assume that d(g,)=d(r,)=0. Then

WU(p) = ¢y G5+ qa = WPy~ Ps- Do) -
and

B(p) =ry+r3-ry = B(py- s Po)-
ie. W(py+ps-pa)=B(py-ps-py), which is a contradiction.

173

In the same way we obtain that if El(q3) d(ry)=0, then U(p,-ps-py)=

#=B(p, * Ps - Py), Which is impossible.
Now we consider the trees

t,=p+ph-t and s;=py-piet (1=0,...,L+1).
By Lemnﬁa 1, it follows that .
A1) = g1+ 934y, B@) =1y 13Ty, ‘
NGs)=q1-94-34, BG)=r-r5Fy, (1=0,...,L+1).
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Since d(2,), d(s;)<K thus A (t,) B(t;) and U(s) = Q3(s,) (=0, ..., L+1). If exactly
one of d(q.) and d(r, is equal to zero, say d(g,)=0 and d (rp)=0, then

d(U(ty41))<d(B(2L4+1), consequently, QI(t,_H)#%(tLH) which contradicts the
minimality of p. It means that the following equalities are true:

d(QI(t,)) =d(@)+(—1)d(g2)+d(g: g2)
d(%(t,)) =d(F)+(-1)d(r)+d(r,-rs) (I =L,L+1).
This implies that d(g,)=d(r,) >0. Similarly, we get that d(g,)=d(r;)=0.

and

The tree A (2, 1) is obtained from the trée g, by replacing all occurrences of the
subtree # by the tree g;-gLf*?, while B(¢,,,) is given by replacing all occurrences
of # in 7, by the tree r,-ri+?.

We have that d(g,) =L, d(F)=L and d(g, - q-+**)>L, d(r;-r&**)>L. Thus the
equality Q[(t“l):%(t“l) implies that r,-r&ticsub(g,-g%*Y) or g, -gitic
¢sub (ry - rE*Y). '

Assume that r; - rX+1csub (g, - g5*"!). Let j be the minimal number, for which
riry*tlesub (qp- gd). Since r, - ri+1€sub (91-95*") and d(r,-ri*Y)>d(g;- o) thus
2=j=L+1.

Let g, be the tree obtained from the tree G- g3 by replacmg all occurrences of
rir >+1 by the symbol #. Therefore, r, - Y-g,=q;-qf and ry -1yt sub (). Since
jis m1n1mal it follows that r; - r “e{ sub (q1 - g4~ 1. On the other hand reretleg,=
=¢,-q4*-q, and 1, - “({sub (92). Therefore, g, - g~€sub (r, - rf*h).

Let ¥, be the tree glven from r1 rs** by replacing all occurrences of ¢,-gf~*
by the symbol #, Thus G q r1 -rE*Y and g, - qi~'¢ sub (F,). It means that
G gd T Ga=qi g4 e ' ]

Next we -show that g,-gf{~'¢sub (F,+g,) holds, too. Indeed, if g,-gi~'¢
€sub (r2 «d»), then g, - g§ ~*€sub (g,) because of ¢, - qg“ ¢ sub (F,) and 7, ¢ sub (g, - g§~Y).
Thus, in 4 qi~* - g, there exists a subtree g, - g4 ~*, which is not a subtree of ry - r&+1.
But this is impossible since in this case one can show that r, - rL+1¢sub (g, - g4~ ).
Therefore, one have

Fygs = ¢s.

Since (¢, 1)=B(t,,) thus

rerEtPe =g gt Gy =i qd - g T Gy =y T Gy gyt 1,

‘Furthermore, r,-rE+ is not a subtree of any of the trees g4, g, 72, F4. Thus the
preceding equallty implies

ry = qz'qg'ﬂ_j‘q‘;-
We have U(t)=B(,). Thus q,-G,=r, Fy=r;+Gs-ge+~7-g,. Therefore,
) Gy =r1Gor qFI
Using the equality 2 (z)=B(z,) we get
G1° Qo qs = 11+Go (Fo-Go)" 177 (Fy+G2) + G,

—_— = (= = NLil—j_ =
ryeFpeTg =T1+ry-Go(F2-qo) Jq,.
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“This implies that r,-g,-Fa=r;-r,. Furthermore, from the equalities ()= %(t,)
/=0, ..., L+1), by induction, we obtain # «(gs-F)t* =r +(Go-F5)"-r,. Since

2§d(QI(P1 P2°Ds* 1)) L, thus d(r;-(q.- "2)")>d("1 gs+7y) = d(ry-15) = d(ro).
Therefore, ry- (g, -T3)t¢ sub (r,), implying

oo = Fy.

Now consider the trees s;=p, - pt -t (I=0, ..., L+1). Thenr, - rE+1€sub (g; - g5+
because of 7,=g,-g5*'~7-4,. In the above way we get that there are trees gs, F3
and a number i 2=i=L+1) such that

GL=r q3 qL+1 i
gs = T3+qs,
Since p is minimal thus P
A(py-pa) = B(py-py) and  W(py-pa-pg) = B(p1+p2- Po)s
‘I1'Q4=r1'.7'4 and Gr° ot qs =T1 Vo ly.

The first equality implies that ry«ry=r, G, (Fo+G)**19.¢,. Consequently,
ry can differ from g,-(Fy-g,)“*'~7/-q, in the tree r, only, i.e. whenever # isa
subtree in one of them then the corresponding subtree in the other one should be
r, or #. By the above second equality we get

FieGo ooty =r1 Gy (Fo Q)"+ 9« (F2q2) - g4
Thus r; and g, « (F, - §o)*+*~7 - g, can differ only in r, - r,. Thus, by r, - r,%#,, We have
. L =‘?2'(72-"i2)1‘+1_j'q.4-
Similarly, using the trees p, - p, and p, - p5 - p,, We obtain
. ra =qs-(Fa-Gg)-+t-q,.
Therefore, Gy« (Fy-Go)"+ ™7+ qa=qs+ (F3+ )"+ '+ g, implying
) ‘b‘(fz";lz)l‘ﬂ_j =gy (F3-Go)" 70
Finally, using the above equalities, we get
G192 Gs Qs =T1+qo(Fo )" 7o (F2+q0) " G5+ g =
=11 (Go Fo) Go- (For Q)" oqy-qy = "'1'"2"73'(73"?3)1‘“4‘('_‘3“73) gy =
=ry ety (G3-Fa) o+ (Fa Go)* 1 g =1y oTaergery,

ie., AW(p)=B(p) contradlctmg our assumption.
Similarly, we arrive at a contradiction by assuming

gy g5 TrEsub (ry-rgtYh).
This means that the depth of p is smaller than K ending the proof of this lemma.
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Theorem 6. The equivalence problem of deterministic frontier-to-root tree
transducers is effectively solvable.

Proof. Consider two arbitrary DFRT transducers U =(F, 4,G, 4", Z,) and
B=(F, B, G, B’, Zp). The set of all trees p, for which A(p) and B(p) are defined,
is a regular set of trees, which can be given effectively (see, Corollary 3.12. in [1]).
Thus, the problem whether or not the domains of mappings induced by U and B
are equal is solvable. If they are not equal, then the transducers are not equivalent.
In the opposite case, by Lemmas 4 and 5 it is sufficient to check whether their trans-
lations coincide on a finite number of trees. This ends the proof of Theorem 6.

Finally, we present a result concerning the equivalence problem in a special
class of deterministic root-to-frontier tree transducers.

Let M be the set of deterministic root-to-frontier tree (DRFT) transducers.
A=(F, 4, G, A’, X) with the following property: if af(z,, ..., z)—~q is in X (v(f)=
=k, k=0), then there are states a, , ..., a,€ 4 such that g€ To(YU {(a;, z)li=1, ..., k}).
For such DRFT transducers one can prove Lemmas 1—5. Thus we have

Theorem 7. The equivalence problem of DRFT transducers in M is effectively
solvable.

4, Minimalization of DFRT transducers

Take a DFRT transducer A=(F, 4, G, A’, Z,) such that the mapping induced
by U is from Tp(X,) into T;(Y,). Moreover, let p be an arbitrary tree, for which
A(p) is defined, i.e., pe U~ (T;(Y,,)) In this case for any p€sub (p) of the form
p=f(p1, ..., pr) or p=x;, there is exactly one rule in X, denoted by o(p) such
that if o(p)=f(a12;, ..., @ 2,)~Azq then

Q[Aﬁ(p) = q[‘ual(pl) T2y eees Q'Iak(pk) g Zk]’

Lemma 8. Let peA~1(T((Y,,)) and p€sub (p) be arbitrary. Then there exist
a p’€ A (Tx(Y,)) and a p’€sub (p’), such that ¢(F)=0(p’) and d(p’)<2|4|.

Proof. Let jp denote the tree obtained by replacing the subtree p in p by 2.
Let p’ be the tree given by Lemma 2 to the tree p and its subtree p. Assume, that
p=f(p1, ---» Px). Let us construct the tree j; from p; (i=1, ..., k) in exactly that
way as the tree f has been constructed from the tree p in the proof of Lemma 2
(i=1, ..., k). Let p’=f(Py, .., Pr) and p’=p"- p’. From the construction it is clear,
that the trees p” and p’ satisfy the conditions of Lemma 8. A similar argument can
be used in the case p=x;.

" Let L=max (d(A(p) | pe A YT (Y.), d(p)<2|A4]). ‘

Lemma 9. There exists 2 minimal DFRT transducer B=(F, B,G, B’, Z) be-
longing to A such that if x;—~bg or f(b,z,...,b,2)~>bq is in Xy then d(g)=L.

and

Proof. Let B be 2 minimal DFRT transducer belonging to . Assume that there
exist p€ B~1(T;(Y,)) and p€sub (p) such that the depth of the right hand side of
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a(p) is greater, than L. We show that d(B(p)) is undefined, where p is obtained
by replacing p in p by . .

Indeed, by Lemma 8, there exist trees p” and p’, p’, for which p’=p’-p’, o (p)=
—o(F), p'E€B-N(T,(¥,)) and d(p)<2|B|=2]4].

By the note following Lemma 2, if d(B(p)) is defined then so is d(B(§")). But
d(B(p))=d(B(p))+d(B(p")). Furthermore, by our assumption d(B(p))>L.
Thus d(B(p’))>L which is a contradiction since B(p)=W(p’) and d(p’)<2|B|=
=2|4}.

Now for all 6=f(b,z,, ..., b,z) ~bg and o =x;~bq with d(g)>L, let us replace
o in Xy by 6=f(b,z,, ..., b z;)~by, and &=x;—~by,, respectively, and denote the
resulting set of rules by Xz. Then the DFRT transducer B=(F, B, G, B’, X)) is
equivalent to B, completing the proof of Lemma 9.

Theorem 10. There exists an algorithm for determining to any DFRT trans-
ducer A=(F, 4, G, 4", 2,) a minimal DFRT transducer belonging to 9.

Proof. Let |A|=M and L=max (d(UA(p))|pe A~ (T;(Y)), d(p)<2M). Then
for a minimal DFRT transducer belonging to 21, it holds that the number of its
states is less than or equal to M. Furthermore, by Lemma 9, we can assume that
the depths of right hand sides of rules of a minimal DFRT transducer belonging to 2
are less than or equal to L. But there is only a finite number of DFRT transducers
satisfying these two assumptions. This means that it is enough to check only for
finitely many DFRT transducers whether they are equivalent to 2.

After determining all such DFRT transducers equivalent to U, we choose one
of them with minimal number of states.
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