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Let Gt, G2 be two graphs. Let F(GX) = {xj, . . . , xn}, V(G2) = {y,, ..., v,„} be the 
sets of points, E(Gj), E(G2) the sets of edges. The definition of the strong product 
_H=G1XG2, is the following: 

V{H) = {(x;, y j ) | x,.€ K(G,), yj€ V(G2)} 
E(H) = {((x ;, yj), (xk, y,))| either x ; = xk and (yj, y,)eE(G2) 

or (Xi, xJiEiGj) a n d yj = y, 

or (xt,xk)eE(G,) and ( j j , y,HE(Gj}. 

The sets {(x;, yj)\xi fixed, yj£V(G2)} will be called raws, the sets {(x;, ^Oj.^fE ^(G,), 
yj fixed} will be called columns. There are some trivial estimations for the chro-
matic number of the product. Let / ( G ) denote the chromatic number of the graph 
G, we have then the following inequality (see e.g. [1], [2]) 

max (/(GO, Z(G2)) ^ Z ( t f ) s Z(GX) • Z(G2). 

The upper bound is sharp, in the sense, that we have equality in many cases, for in-
stance if in both Gl and G2, the chromatic number equals to the clique number. 
(The clique number is the maximum cardinality of complete subgraphs.) In this 
.sense the lower bound is not sharp. In the following we give a better lower estimation. 

Let us denote by K2 the single edge, we have then: 

Theorem 1. y,(K2XG)^y_(G) + 2. 

Proof. We give an indirect proof. Let / ( G ) = k. Let us suppose that we have 
•coloured the product K2XG in k+l colours. 1, 2, . . . , k+ 1. In this case we can 
•colour G as follows. Let us denote the points of K2 by a and b. Then we can colour 

F(G) with the smaller one of the colours of (a, x•) and (b, x,) if this minimum is 
smaller than A:. If this minimum equals k, then we colour xt byk — l. This colouring 
is a good colouring of G. In fact, the pairs with minimum k or k — 1 cannot be adja-
cent, since this would give a complete graph on 4 points, coloured in three colours, 
which is a contradiction. This way we have a colouring of G with k — 1 colours and 
this contradicts our assumption that x(G)=k. So we have proved the theorem. 
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In the case when / ( G ) = 2 our lower bound coincides with the upper bound, 
so this is a trivial case. 

COROLLARY. If both GX and G , have at least one edge, then 

/ ( G X X G 2 ) S maxfcCGJ, / ( G 2 ) ) + 2. 

Next we examine the case / (G, )=/ (G 2 ) = 3. 

Theorem 2. The product of any two odd circuits longer than 3 can be col-
oured with 5 colours. 

Proof. Let us denote the circuit of length m by Cm. One can easily see that 
the colouring of C5XC3 shown on Fig. 1 with 5 colours is a good colouring. 

1 2 3 4 5 

4 5 1 2 3 

2 3 4 5 1 

5 1 2 3 4 

3 4 5 1 2 

Fig. l 

F o r C 5 X C 2 ( + i ( /=-2) , we can d o the fo l lowing (see Fig . 2). 

1 2 3 4 5 

4 5 1 2 3 

2 3 4 5 1 

5 1 2 3 4 

3 4 5 1 2 

/ - 1 times 

Fig. 2 

The first 5 columns are coloured in the same way as in X , and we repeat the 
colouring of the 4th, and 5th columns /— 1 times. This trivially gives a good colouring. 
In the case of C2k+1xC2i+1 2) first we colour C 5 x C a + 1 , then we repeat the 
colouring of the 4th and 5th rows k— 1 times. 

Remark 1. Consider the graph K2X.C-a. It has 10 points. In a 5-coIouration of 
this graph, a colour can occur at most twice, therefore each colour must occur 
exactly twice. So if one row contains all 5 colours then so does the other. Moreover 
one can easily check that if one row is coloured say (1 2 3 4 5) then the other is 
either (3 4 5 1 2) or (4 5 1. 2 3). 

Theorem 3. C5 X C5 can be coloured with 5 colours essentially uniquely. 

Proof. We show, that we can colour C 5XC 5 with 5 colours only so, that in 
every row we use all the 5 colours. Suppose, indirectly that we have found a colouring, 
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in which for instance in the first row colour 5 does not occur. Then in the second 
row; colour 5 must occur twice by Remark 1. Continuing the colouring, in the 
third row we cannot have 5, in the fourth row we must find it twice, in the fifth row 
we cannot have number 5, which is impossible. 

So suppose that the first row is coloured 1 2 3 4 5 by Remark 1 we may as-
sume that the second row is coloured (4 5 1 2 3). The third row is therefore either 
(1 2 3 4 5) or (2 3 4 5 1). The first possibilty cannot occur, because the above 
argument applies to the columns as well, therefore the colours of the first column 
must be different. Going on similarly we get that the fourth and fifth rows are 
(5 1 2 3 4), (3 4 5 1 2). 

In the sequel we present a characterization of graphs which give a five-
colourable product with C6. Before stating the theorem we need the following 
definition. 

A homomorphism of G into H is a mapping cp: V(G) V(H) for which we 
have that whenever (x, y)£E(G) then (<p(x), <p(y))£E(H). 

Theorem 4. Let G be a graph, for which *(<?)>2. Then /(GxC5) = 5 if and 
•only if there is a homomorphism of G into C5. 

Proof. I. We know that we have a 5-colouring for C 5XC 5 . Let us take a 
homomorphism cp of G into C5. Let K(G), then (0 (u) (- and we colour the 
row vX C5 in the same way as the cp(v)th row of C 5XC 5 . This colouring is obviously 
.good because of the definition of homomorphism. 

II. For the proof of the "only i f " part we introduce the 5-colouration graph 
of C5 . We define the k-colouration graph of G in the following way. Let k^y(G). 
The vertices of the fc-colouration graph are the different colourings of G with k 
given colours (which need not occur all in the colouring) and two vertices a, b are 
adjacent if and only if GXK2 can be coloured with k colours so that the colouring 
•of the first row corresponds to a, and the colouring of the second row corre-
sponds to b. 

Lemma 1. The 5-colouration graph of C5 has the following structure. There 
are 5! colouration with 5 colours in which every colour occurs exactly once. Those 
-colourations form 4! pentagons. The remaining colourations form a bipartite graph. 

The proof of this Lemma is straightforward from the proof of Theorem 3. 
Continuing the proof of Theorem 4, assume that we have a 5-colouring of 

GX.C5. Every row vi X C5 expresses a 5-colouring of the pentagon and this 5-colour-
ing corresponds to a point in the 5-colouration graph. We take the mapping ip. for 
which q>(vt) is this point of the 5-colouration graph, this mapping cp will be a homo-
morphism of G into the 5-colouration graph. Lemma 1 gives the structure of the 
5-colouration graph of the pentagon and this graph has a homomorphism \]/ into 
the pentagon (obviously). Now the mapping 1¡/cp is a homomorphism of G into the 
pentagon, and this is what we wanted to show. 

From the generalization of the above theorem, one can get the next theorem: 

Theorem 5. Let k^yXG), and assume that G has 'at least one edge. Then for 
a graph H we have x(GXH)^k if and only if H has a homomorphism into the 
^-colouration graph of G. 
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Proof. I. The rows of the product are copies of the graph G. So if H X G is k col-
oured then the colouring of a row vXG corresponds to some vertex of the ^-coloura-
tion graph. This defines a homomorism of H into the ^-colouration graph of G. 

II. Conversely, assume that H has a homomorphism <p into the A:-colouration_ 
graph of G. Then colour the row vXG as in the colouration (p{v). 

A very simple argument shows that if we take the product A „ X C a + 1 (K„ is. 
the complete «-graph) then the chromatic number of this product decreases as k 
increases, but for k > n we always get z(A r

nXC2 t + 1)=2« +1 . In particular,. 
X ' № X C t t + i ) = 7. One can have the feeling that if we take the product of odd circuits 
with 3-chromatic graphs with girth (the length of the shortest circuit in the graph) 

larger than 3, we can get smaller chromatic number for the 
product, probably only 5. We show some examples which 
contradict to this tendency. 

Lemma 2. Let a(G) denote the maximum number of 
independent points in G. Then for any G and k, we have 
the inequality: 

2a(GxC 2 k + 1) ^ (2k+l)a(G) . 

Proof. The maximum number of independent points 
Fig- 3 in GXK2 is the same as in G. Summing this for all edges 

of C2k+1 the inequality follows. 
Let P5 denote the Petersen-graph shown in Fig. 3. It is obvious that / (P 5 ) = 3. 

Then we have the following theorem. 

Theorem 6. The chromatic number of the product P5 X C 2 / + 1 is always greater 
than 5. 

Proof. We have <x(P5)—4. From Lemma 2 we get the inequality: 

a(P 5 XC 2 I + 1 ) ^ 2 ( 2 / + l ) . 

We show that here the equality cannot hold. Suppose it does. Then equality holds 
in the proof of Lemma 2 on all edges of C 2 / + 1 . 

Let us consider the independent vertices in the first row of the product PbXC2l+i. 
Let its number be / ( / = 0 , 1, 2, 3, 4). We can choose from the second row at most" 
4—/independent vertices. Since equality holds in the proof of Lemma 2, we have 
precisely 4 —/ vertices from the second row. From the third row we must choose f 
independent vertices again. Continuing this procedure from the (2/),h row we must 
choose 4—/vertices. From the (2/+l) s t row we must choose/vertices because this 
row is the neighbour of the (2/),h row, but this is the neighbour of the first row too, 
se we must choose 4—/ vertices from the (2/+l) s t row. This is possible only i f 
f=4—f, f=2. It can be easily seen that if we take in Pb two independent vertices, 
then they uniquely determine the maximal independent set which contains these 
vertices. In the case f—2 this gives that in every (2z'-t-l)st row ( /< / ) we have the 
same two vertices. But this excludes any vertices in the (2/+l) s t row because it is-
the neighbour of both of the first and (2/),h row. Thus we get 

a ( ? 5 X C 2 l + 1 ) < 2 ( 2 l + l). 
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From this and from the well-known inequality 

\V(G) | 
a(G) X(G). (1) 

We get that / ( P 5 X C 2 i + 1 ) > 5 for any /. 
Let us take the "generalized Petersen-graph", P13, seen in Fig. 4. 
One can easily see that x(Pi3) — 3- The length of the shortest circuit is 7. For 

this graph we have the following theorem: 

Theorem 7. For any k z(A3XC2fe+1)=> 5. 

Proof. Let us consider the maximal number 
of independent vertices in P13. In the outer and 
the inner circuit there can be at most six independ-
ent vertices. We show that if we have in the outer 
circuit six independent vertices, then we can have 
in the inner circuit at most four vertices. The outer 
six independent vertices exclude their six inner 
neighbours (seei Fg. 5a). 

It is essentially unique to choose six independent 
vertices in the outer circuit. The remaining seven 
vertices in the inner circuit consist of one iso- Fig. 4 
lated vertex and from three independent edges and 
from this graph we can choose at most four independent vertices (as it is indicated 
in Fig. 5a). 

We can argue similarly in the case when we have six independent vertices in the 
inner circuit (see Fig. 5b). Thus a(i ,

13) = 10. Using Lemma 2 we have the following 
inequality: 

cc(P13XC2k + 1)S(2k+\)-5. 
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From this and using inequality (1) we have: 

So we have proved the theorem. 

Problems. 1. Give a better lower bound for the / {Gi X G2) if / (Gj) , / (G 2) 
are larger than 3. 

2. Prove that for any large gone can find Gx and G2, for which / (G 1 )= / (G 2 ) = 3, 
the girth of both graphs is larger than g but / ( G 1 X G 2 ) s 6 . 

3. It would be interesting to determine the structure of the ^-colouration graphs 
of some classes of graphs, to get similair results as in Theorem 4. 

Reference 

[1 ] BERGE, C . , Graphs and hypergraphs, North Holland, 1973. 
{2]' BOROWIECKI, M., On chromatic number of products of two graphs, Colloq. Math., v. 25, 1972, 

pp. 49—52. 

(Received April 12, 1978) 


