On Sperner families in which no 3 sets have an empty
intersection

By H.-D. O. F. GRONAU

1. Introductlon

Let %(r, k) denote the set of all Sperner families & (i.e. X q:Y for all different
X Ye&) on R=[1, r] (the interval of the first r natural numbers with r=3) satisfying

U X,CRfor all X;e& (i=1, ..., k) where C is used in the strong sense. Further-
i=1
more we use the following notations:

Gir, k) = {F:F€9(r, k), U X =R),
XesF

Go(r, k) = {F:F€%(r, k), U X R},

XcF

— g 1 — F 0 — Fi
n(r, k) = max|#|, n*(r, k) = max |7| ‘and n°(r, k) = max, |#].

We notice that ' (r, k)=0 holds for k=r.

n(r, 2) was determined by E. C. MILNER [6] (for the dual case) and later by
A. Brace and D. E. DaykiN [1], and n(r, k) with k=4 was determined by the
author [3].

For n(r, 3) the following two conﬁguratlons are known:

. r‘—l
n(r,3)=|[r—171+1 ' ¢))
ol
r—
n(r,3) = [r;l] . 2

P. FrRaNKL [2] proved (1) for-large enough even » (e.g. for r=>1000) and (2) for
large enough odd r (e.g. fo; r=300). The author [3] showed (1) for =7 and even
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214 H.-D. O. F. Gronau

r=400, and (2) for all odd r with the exception of the following 12 values: 7, 11, 13,
17, 19, 23, 25, 29, 31, 35, 37 and 43.

In the present paper we prove

(1) for r=4, 6, 114 and even r=120 and

(2) for r=11, 17, 23, 29, 35, 43.

We observe that exchanging all X€# by R\ X we get analogous results for
Sperner families in which no 3 sets have an empty intersection.

We shall sharpen Theorem 5 of [3] in the case k=3. There we divided a maxi-
mal family #€%(r, 3) to two families %, and %;, and showed

r—1

|Fol = r——2] and |#| = r—l] ]
2

r—1

In fact |#,| depends on |#,]. For k=3 and even r, |%,|= [r—2]‘ implies |Z;|=1.
2

In section 2 we shall present our main results and give a new type estimation of '
families of sets, which will be used in section 3 to prove a theorem analogous to The-
orem 5 [3]. Finally, in section 4 we shall prove our main result.

2. Main results

Throughout this paper let a= r-2—2] and b=[r;1].
r—1
Theorem 1. 1° n(r, 3)= [r—l] +1 for r=4,6,114 and even r=120,
5 .
r—1
2° n(r, 3)= [r-—l] for r=11, 17, 23, 29, 35, 43,
2

Let r=4. Then n(r,3), n'(r,3) and n°(r,3) exist and it holds n(r, 3)=
=max (n(r, 3), n°(r, 3)).

For #€%°(r, 3) there is an element v€R such that & is a Sperner family on
R\{v}, and it follows by SPERNER’s theorem [7]:

r—1

Lemma 1. #°(r, 3)= [r—l

We ‘shall use the following lemma shown in more general “form in 3%
(Lemma 2).
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Lemma 2. Let #¢%'(r, 3) such that |#|[=n'(r, 3) and max |X | is minimal.
Then |X|=a holds for all X€&Z.
Lemma 3. Let s<—2— be an integer and let % denote an arbitrary family of dnﬁ'er-

ent s-element subsets of R. Finally, let & denote the largest family of (2s)-element
subsets of R such that for every X¢ %! there is at least one palr (Y, Z) of subsets
of Z, satisfying YUZ=X. Then’

ey
G| = S gl _ |7
.|'7f2s —1 Js[ (25]

Proof. Let us consider the following families:
Z.={X:XCR, |X]|=s, X¢F,},
F5={X:XCR, |X|=2s, X¢F5

Then for any Xegf there is no pair (Y, Z) of sets of &, with YU Z=X. For every
such X¢ZF there exist exactly ; (2s] [25; 1] unordered pairs (Y, Z) with

|Y|=|Z|=s and YUZ:X. All these sets are mutually disjoint, i.e., at least (2ss—1] :
s-element subsets belong to %, for every Xc%: '

. -5
~ On the other hand for every s-element set Y of R there exist exactly (r ) )
disjoint s-element sets Z. Hence s

Using |@|£(;]—]%j| and |<?s|=[r]—l97s| we obtain the inequality of
Lemma 3. O S ' ) '

3. An upper bound for r'(r, 3)

Let #c¢%'(r, 3) such that |F|=n'(r, 3) and max {X| is minimal. By Lemma 2,

we have [X|=a for all X¢Z. The numbers p;={{X: X¢&F, |X|=i}| (i=0,...,r)
are called parameters of the family #. yﬁ denotes the canonical Sperner fam11y
(see A. J. W. HiLton [4]).

Now we decompose & to the subfamilies 2,6 and # defined as follows.
— Dis a subfamily of Fwith FP={X: XcFZF, r¢ X}
— E={X: XePA\YD, |X|=r—2a—1}.
— #H={X: XeF 9D, |X|=r—2a}.

5*
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1. It has been proved by A. J. W. HILTON [4] that all X€& with |X|>b belong
t09. ¥$Pisa Sperner family on R\ {r}. Using ( [X|1] = (r _ i) for |X|=a—1 <r_—2_1 .
by LUBELL’s mequahty [5] we obtain

1 1
xézo (r—1 - x%g r—1 xéza [r—1
1 X| XI=a. | g4 IXi=a-1 | |X|

and

9| = |99 = a (r—1}+r—2a .
r—al\ a r—a
2. F={X: XU{r}e#(9Ué&),r¢ X} is a Sperner family of cardinality |&| on
R\{r} and |X|=r—2a—2 holds for all X¢_¢.
By LUBELL’s inequality [S] we obtain

er,[rTl(ll)él’ (r_rt%;ll*z]g and |£1=|f1§(r_r2212];

3. Let Fir={X: RNX€Z};,}. Then QUAUFEF is a Sperner family. We
notice that | X|=r—2a holds forall Xe9U# * and |X| =r—2aholds for all X¢F5*
Clearly, 2U s and #F£* are Sperner famlhes themselves. We have only to show
that there is no pair (Y Z) with Ye &3} and Z¢ QU satisfying YSZ. Let us
assume the contrary. Then there are two sets Y;, Y,€92 with ¥, U Y,=R\ Y. Hence
for the sets Y, Y,, Z¢# it follows Y;UY,UZ=(R\Y)UZ2(R\Y)UY=R, which
is impossible for #€%(r, 3).

f ={X: XU{r}eF(@UH#UF), r¢ X} is a Sperner family on R\ {r}. If 9> qf
and g are the parameters of the famlhes F’, # and F3F, respectively, then g,= q,+1 +

+¢/., holds. By LUBELL’s inequality [5], using ( l]sr 1] for | X |_
we get X

1 1 1

(X|—1 r—2a—1

[IA

1

and

|| |2 |
1) [ r—1
b—1 r—2a—1

By Lemma 3 using |#|=nl(r, 3) and the estimations for 92, € and # we obtain

=1.

las min |X|s=r—2a—1 would imply =0 and, together with 1. and 2., the estimation
XepUw
given in Theorem 2.
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Theorem 2. i
t “nl(r,3) =

- ma a (r—l) r—2a +( r—1 ]+[r—1]2(rv—‘a) 1; Pa
=maxl—ala tr =g Pt s2a—2) T lp—1) 722 [r—l]

a

4.l Proof of Theorem 1

r—1
Clearly, n(r,3)=max |n'(r, 3), [r—l - holds by,;Lemma 1.

1°. Let r be even. Then all a-clement subsets of R\{r} and the set {r} form
a family F¢¥9(r, 3) havmg the cardlnahty [ 1]4—1 -So we have only to show

that the right side of the 1nequahty of Theorem 2 has the value [ a 1] +1, too.

For r=4 it is easy to see that n! @,3)= 4 holds
.Now let r=6, 114 or r=120. . .
The function f(p,,), of which we consider the maximum in Theorem 2 is a linear -

function’ in P.- We have to take the maximum over the intérval [0 ( ;1]], as
an immediate” consequence of A. J. W HiLTONS result [4] which we used-in the
definition of 9. We have f (( 1])=[ra 1]+1 Wé have only’ to show-that thé

factor of p, in f(p,,) is positive (or equal to o), i.e, usmg r—2a=2,

(=) |
. r—a —(r—a) 0 AR ] T (3)
: X : ( a ] Tl ' .
(3).is equivalent to B C o
200—b)(r—b—1)...(r—a+1) _ ..

M(r) = (r—a)a(a—1)...b =1 )
5 35047435882784 '
M©) =7 and M2 = S Tossa70301 ~
Furthermore,
NP FUCAPIE APV RN
M@6t+10) 20 T4 Y T4 (41 )22 — e()
- = g(t)
M@Gi+3) 3 142 142 H% t+% t+%

' t+x . . . ,
is monotonically increasing, because ; is monotonically increasing for fixed

x and y with x<y.
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For t=20 we obtain g(t)ég(20)=%187—666§§—>1. By induction it follows

that M (6t+4)=>1 for r=20. .
Moreover we have

o 1

M@E:+2) 9 t+1 t+1 ‘T3 9 |

= — > — >
MGi+d) 8 t+% H% K g

and

2
M 3 i+l 41 YT s
1
2

_ > -
MGr+4) 2 3 1 T
thy tho -5

which proves M(2¢)=>1 for t=60.
Finally we complet r proof by My _ 59025914157
y pete, our p M(124) ~ 53793208352

2°. In [3] the author proved the following estimation for |EUX#|:|6U#|=

§[2_i) Using our estimation for |{@| we obtain |./|§( 2 J ki + = 2a p,,+

r—a ¥ —
+(2: i] Both, this estimation and the bound given in Theorem 2 are valid for
each [#|. It suffices to show that for every p, one of our upper bounds is less than
(Z; i], because in this case r is odd, i.e. [r;_l =a+1. We distinguish the follow-
ing cases. )
a+3 {(r——l] (r—l] (r_ IJ} [ ]

I. Pa<—3— ail) a1 b1 Then |F|< +1 follows from our
last estimation.

2 b= a3 {(r—l) (r—l]_[r—l)}_22a+3 (r—l]_ a+3 [r—l]

“P=ETF e+ 1) a1 T - T3 a1 L 3 Wb-1)

Then we use the estimation of Theorem 2. First we prove that the factor of p, in.
f(p.) is negative, i.e. .

r—2a 2(r—a) (I:—_—ll]
r—a r—2a [r—l] = 0 ) ‘ : ®)
' : a

(5) is equivalent to |
9(r—>b)(r—b—1)...(a+4) B
2(a+3)a(a—1)...b

N@) =
We have that '

3111
N@r+s) 20 gt ity ©
Ne—~1) — 3 42 t-;-i 2l ¢

3 T3 13 173
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is monotonically increasing by our remark above.

3

6072 _1. From N(11)=7, N@61—1)=<1

6137
10179 -

follows by induction for 2=¢=6. Finally, we get N(43)=-5—9m<1. f(p,) takes

the maximum in the described interval at p,,=-‘-1_§—3 {(;; }] - (;: ;] - (2: }]} ,

consequently. We will complete our proof by showing the following inequality.

For 2=t=5we obtain g’'(t)=g"(5)=

r—1 '

3 2a+3 (r—]) a+3 (r—l]} 3 2 [b—l] a (r—l]

{2 a+rt La )73 Wb-1))a73 3("_+3)(r—1] R U
: a

o3 () -(7)

This inequality is equivalent to

r—1 2(a+3)? [;:%) '
w(r)=(b_1) 1-{—?(-(7_{_—1)~ 1—-(a+1) [r—l) —(r-1)=>=0.
a

(a+3)(@a+1) [lrJ: }) 1

@a+13) [r;l) =73

w(ll) =112> 0.

Furthermore we prove the inequality w'(r)= for r=

=17, 23, 29, 35,43 by referring to the following table:

r 17 23 29 35 43

W) 140 1 154 442 9044
297 2 323 1035 19981.

Using this estimation of w’(r) we get first

() = [;:1) (1+ 2(a+3) (1 2a+13 ))_(r_l)

1 9@+ 1) U 2(@@+3)
_(r—1)2@a-6)
= (b—l) 5arn "D
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then w(17)= 3—1>0 r=17 implies a—6§% and for 2§i§'b';1 we have
L}.li——l =3, Hence for re {23, 29, 35, 43}:
- 2(a— 6) —1yr—ph—1+i
w(r) = (r l) 5@+ D) n 3 ~(r=1)

g(r—l)%%y’-t(r—'l)

| z(r——l)%.’ﬁ——,(r—l) A.

=0 follows. O

5. Concluding remark '

The author conjectures that (1) holds for the remaining even r and (2) holds for ‘
the remaining odd r,i.e. 13, 19, 25, 31 and 37.
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