
On Sperner families in which no 3 sets have an empty 
intersection 
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1. Introduction 

Let 'Sir, k) denote the set of all Sperner families J27 (i.e. Xct Y for all different 
X, Yd on i ?=[ l , r] (the interval of the first r natural numbers with satisfying 
k 
U XtcR for all (¿=1, . . . , k) where c is used in the strong sense. Further-

i = l 
more we use the following notations: 

^{r, k) = {<F: FC), | J X = R}, 

9\r, k) = J k ) , \J X<z R}, 

n(r, k) = max 1^1. n1^, k) = max W\ and n°(r, k) = max \!F\. 

We notice that &1 (r, k) = Q holds for k^r. 
n(r, 2) was determined by E. C. M I L N E R [6] (for the dual case) and later by 

A. BRACE and D . E. D A Y K I N [1], and n(r,k) with k^4 was determined by the 
author [3]. 

For n(r, 3) the following two configurations are known: 

and 

n(r, 3) = 

n(r, 3) = 

1 

№ 
r — 1 

M 
+ 1 (1) 

(2) 

P. F R A N K L [2] proved (1) for large enough even /• (e.g. for r>1000) and (2) for 
large enough odd r (e.g. for r>300). The author [3] showed (1) for r=l and even 
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r>400, and(2)for all odd r with the exception of the following 12 values: 7, 11, 13, 
17, 19, 23, 25, 29, 31, 35, 37 and 43. 

In the present paper we prove 
(1) for r = 4 , 6, 114 and even r ^ l 2 0 and 
(2) for r= 11, 17,23, 29, 35,43. 
We observe that exchanging all X^S? by R\X we get analogous results for 

Sperner families in which no 3 sets have an empty intersection. 
We shall sharpen Theorem 5 of [3] in the case k=3. There we divided a maxi-

mal family 3) to two families J^q and ^ i , and showed 

1 

and 1^1 
•1 

In fact depends on For k=3 and even r, 
r - 1 1 

[¥1 implies 1. 

In section 2 we shall present our main results and give a new type estimation of 
families of sets, which will be used in section 3 to prove a theorem analogous to The-
orem 5 [3]. Finally, in section 4 we shall prove our main result. 

2. Main results 

Throughout this paper let a = [ ~ 2 ~ ] an<^ 6 = • 

r-l 

Ml Theorem 1. 1° n(r, 3)= + 1 far /-=4, 6, 114 and even 120, 

2° n(r, 3)--

r— 1 

M for r = 11, 17, 23, 29, 35, 43. 

Let r^4. Then n(r, 3), n1 (r, 3) and n°(r, 3) exist and it holds n(/•, 3) = 
=max {nx(r, 3), n°(r, 3)). 

For 3) there is an element v£R such that is a Sperner family on 
R\{v}, and it follows by SPERNER'S theorem [7]: 

Lemma 1. n°(r, 3) -
r-1 

M 
We shall use the following lemma shown in more general form in [3| 

(Lemma 2). 
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Lemma 2. Let ^ ^ ( r , 3) such that |Js"[=n1C>3) and max \X\ is minimal. 
Then \X\Sfl holds for all X& 

f 

Lemma 3. Let s be an integer and let J^ denote an arbitrary family of differ-
ent ¿--element subsets of R. Finally, let &2s denote the largest family of (2i)-element 
subsets of R such that for every X£^2* there is at least one pair (Y, Z) of subsets 
of satisfying YUZ=X. Then 

M 

Proof. Let us consider the following families: 

W,={X:X<zR,\X\ = s,X$&t), • 

^* = {X:X<zR, \X\ = 2s, X ^ } . 

Then for any there is no pair (Y, Z) of sets of with YUZ=X. For every 

such Xd-'Fr* there exist exactly y Q5 j = ^ j unordered pairs (Y, Z) with 

|y| = |Z| = i and YUZ=X. All these sets are mutually disjoint, i.e., at least p 5 ^ 
¿-element subsets belong to for every 

On the other hand for every ¿-element set Y of i? there exist exactly K 
disjoint ¿-element sets Z. Hence 5 

Using | ^ | = L r ) - \ ^ 2 s | and = w e obtain the inequality of 
Lemma 3. • V s ' ' 

3. An upper bound for n1 (r, 3) 

Let J ^ ^ ( r , 3) such that \&r\=n1(r, 3) and max \X\ is minimal. By Lemma 2, 
we have \X\ for all X^W. The numbers ¡{X: X ^ , |AT|=i}| (i=0, . . . , r ) 
are called parameters of the family Sr. SfSF denotes the canonical Sperner family 
(see A . J . W . HILTON [4]). 

Now we decompose J5" to the subfamilies S>, S and 2/C defined as follows. 
— 3) is a subfamily of J*" with {X: X^tfP, X). 
— S={X\ \X\^r-2a-\). 
— 3tf={X\ \X\*=r-2a). 

5* 
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1. It has been proved by A. J. W. HILTON [4] that all X £ S F with \ X \ > 6 belong 

to 3 ) . S f 2 > is a Sperner family on i?\{r}. Using ( ^ j 1 ) S j ] for \ X \ ^ a - 1 , 

by LUBELL'S inequality [5] we obtain 

2 "77~iT = 2 7 7 ^ + ^ T T ^ S l , XcyQ _ — f r - l l X&9 | > - n xtsrB i r _ 1 ' i 
[ \ X \ } 1*1—- { a J I*i3—i [ \ X \ ) 

Pa , ~Pa ^ x 

and 
f;1) (:=!) 

I^I a i"1"— 1"! r—2a 
+ pa r — a \ a J r — a 

2 . / = { 1 : Z U { r } £ y ( @ U ^ ) , / - i i r } is a Sperner family of cardinality \S\ on 
i ? \{ r} and \ X \ ^ r - 2 a - 2 holds for all X £ f . 

By LUBELL'S inequality [5] we obtain 

i F / p i T - 1 ' f ^ h " 1  a n d  l S l = l / l H r - 2 a - 2 ) -

{ \ X \ } [ r — 2 a — 2 ) 

3. Let ¿ r t*={X: Then ^ U ^ U ^ L * is a Sperner family. We 
notice that ^ r - 2 a holds for all X £ 3 i \ J ^

 1 and \ X \ = r - 2 a holds for all 
Clearly, ©U^f and are Sperner families themselves. We have only to show 
that there is no pair ( Y , Z ) with and Z £ Q > U J V satisfying Y ^ Z . Let us 
assume the contrary. Then there are two sets Y ± , Y 2 £ 3 > with i^U Y 2 = R \ Y . Hence 
for the sets Y l t Y 2 , Z <E & it follows i^U 7 2 U Z = ( i ? \ y ) U Z i ( J R \ y ) U y = / ? , which 
is impossible for 3). 

f ' = { X : ZU U X r U & S ) , r $ X } is a Sperner family on R \ { r } . If g „ q [ 

and q" are the parameters of the families & and I F ^ , respectively, then qi=q'i+-i + 

+q"+ J holds. By LUBELL'S inequality [5], using ^ ^ for \ X \ 

- J — ^ i 2 L _ + y i 
< ( r - 1 ) - ' x t r ( r - l )  +

x S ? a ( r - 1 \ 

i l J f l J [ \ X \ - l j \r — 2 a — \ ) 

and 
\H\ , | 

+ 1
 x s i . 

[ b - 1 ) ( r - 2 a - l ) 

By Lemma 3 using \ 3 F \ 3 ) and the estimations for 2), £ and J f we obtain 

1 as min \X\^r-2a- 1 would imply ^ = 0 and, together with 1. and 2., the estimation 

given in Theorem 2. 
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Theorem 2. 

-5 max 
Pa 

3) -

_ a _ | > - n r —2a ( r-1 \ (r-l\2(r-a) 
-a { a )+ r-a Pa+{r-2a-2) + {b~l) r-2a 1 - Pa M 

Clearly, n(r, 3)=max 

4. Proof of Theorem 1 

r-1 
n\r, 3), M holds by . Lemma 1. 

1 . Let r be even. Then all a-element subsets of R\{r} and the set {/•} form 

a family 3) having the cardinality So we,have only to show 

that the right side of the inequality of Theorem 2 has the value ^ +1 , too. 

For r = 4 it is easy to see that «*(4, 3 )=4 holds. 
• Now let r=6,114 or 120. . 

The function f(pa), of which we consider the maximum in Theorem 2, is a linear 

function in pa. We have to take the maximum over the interval *)]> a s 

an immediate' consequence of A. J. W. HILTON'S result [4] which we used in the 

definition of 2>. We h a v e / ^ ~ 1 ) ) = ( r ~ + 1. We have only to show that the 

factor of pa in f(Pa) is positive (or equal to o), i.e., using r—2a=2, ' 

2 , Ab-1) ——(r-a)-K 

(3) is equivalent to 
(v1) 0. 

l ( r - w , - t - . ) (r . + 1) • 
(r — a)a(a — l)...b 

35047435882784 

(3) 

(4) 

M( 6) = — and M(124) = 
34511088479301 

Furthermore, 

M(6t+10) _ 210 

M(6t + 4) 

1 3 5 
t+^r 

36 t+2 t + 2 
t+ 3 

t +1 
4 

i + T 

2 ' + 2 
2 

i + T 

1. 

g ( 0 " 

is monotonically increasing, because t ^ r X 

x and y with x~=y. ^ ^ 
is monotonically increasing for fixed 
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For i s 2 0 we obtain g(t)^g(20)= ^ J f f ^ J f >1 . By induction it follows 
that M ( 6 i + 4 ) > 1 for fS20. 99866624 

Moreover we have 

M(6 /+2 ) 9 / + 1 i + 1 i + 3 9 
M(6 /+4 ) 8 3 2 

4 ^ 3 

4- > 1 

and 
_2 

M(6t) 34 / + 1 i + 1 / + T 81 
M(6 i+4 ) 28 3 1 1 64 H— H— t 

4 2 2 
which proves Af(2/)>1 for / a 6 0 . 

_ „ . . , M(114) 59025914157' 
W C C ° m p l e t e ° U r p r ° ° f b y MO24) = 53793208352> L 

2°. In [3] the author proved the following estimation for { S U M | s 

" ( f t l ) ' o u r estimation for we obtain \3F\ — r ° a + ^ ^ + 

(ft l ) ' ®o t '1 ' estimation and the bound given in Theorem 2 are valid for 

each \SF\. It suffices to show that for every pa one of our upper bounds is less than 

^ j j , because in this case r is odd, i.e. [~2~~] = a + 1 - We distinguish the follow-

ing cases. 

^-tMC; !)-(::!)-(;:;))•N-FCL)» 
last estimation. 

. a + 3 lYr — 1") f r - n f r - n i 22a + 3(r-l) a + 3 ( r - n 
2- 3 — U a + l J - L - l J - U - l J ) = T ^ r r l a J 3 — U - l J 

Then we use the estimation of Theorem 2. First we prove that the factor of pa in 
f(pa) is negative, i.e. 

r - 2 a 2 ( r - a ) ( f o - l ) Q 

r — 2a 

(5) is equivalent to 
M 

9 ( r - f e ) ( r - f r - l ) . . . ( * + 4) 
' ( J 2(a + 3)a(a— 1)... b 

We have that 

N(6t+ 5) 210 t+4 t+~2 i + 4 
~g(t) N(6t~ 1) 36 4 4 2 1 
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is monotonically increasing by our remark above. 

For 2 s i==5we obtain 1. F r o m N ( 1 1 ) = ^ - , W ( 6 i - l ) < l 
013/ / 

10179 
follows by induction for Finally, we get TV(43)= < 1 . f(pa) takes 

the maximum in the described interval at pa= 

consequently. We will complete our proof by showing the following inequality. 

(r-!)' / 3 2a + 3 f r - n a + 3 f r - l ) ) l 3 2 J f i - l ) . _ a _ f r - l ) , 
i T - T T T l a J - — l è - l J I { ^ - T ( f l + 3 ) - p T j J + 7 T T l a J + 

+ ( r _ 1 ) + 4 ( a + 3 ) ( ; : ; ) 

This inequality is equivalent to 

2(a + 3)2 

9(a + l) 
l - ( a + l ) (ï=!) MJ - ( r — 1) ^ 0. 

w ( l l ) = 112 s- 0. 

Furthermore we prove the inequality w'(r)= 
( a + 3 ) ( f l + l ) (r-!) • 

(2a +13) J r - l j 

= 17, 23,29, 35,43 by referring to the following table: 

r 17 23 29 35 43 

= 2 for r = 

w'(r) 
140 1 154 442 9044 
297 2 323 1035 19981 

Using this estimation of w'(r) we get first 

2 ( o + 3 ) 2 ( . 2a 
w 

s j r - l j 2(a — 6) 

^ W T T f l 1 

9(a +1) - ( r - 1 ) , 
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then v f ( 1 7 ) a ^ ^ > 0 . r s l 7 implies — — a r i d for 2 s i ^ b — 1 we h a v e 
9 a+1, .8 

r-b-l+i > 3 Hence ^ ^ 

,, 2(a-6) »-1 r - b - l + i 
w ( - r ) - ( r - l ) W T T ) M — T 1'-» 

> 0 follows. • 

5. Concluding remark 

T h e a u t h o r conjectures tha t (1) holds f o r the remaining even r and (2) holds f o r 
the remaining odd r, i.e. 13, 19, 25, 31 and 37. 

WILHELM—PIECK-UNIVERSITÄT 
SEKTION MATHEMATIK- ' ; 
UNIVERSITÄTSPLATZ 1 
DDR—25 ROSTOCK ' , 

References 

[1] BRACE, A. and D. E. DAYKIN, Sperner type theorems for finite sets, Combinatorics, Proc. Conf. 
Combinatorial Math. Inst. Oxford, 1972, pp. 18—37. 

[2] FRANKL, P., On Sperner families satisfying an additional condition, J. Combinatorial Theory, 
v. 20, 1976, pp. 1—11. • ' " " 

[3] GRONAU, H.-D. 0 - F., On Sperner families in which no k sets have an empty intersection, 
/. Combinatorial Theory, to appear. 

[4] HILTON, A. J . W . , Some results on Sperner families I J.' Combinatorial Theory, to appear. 
[5] LUBELL, D., A short proof of Sperner's lemma, J. Combinatorial Theory v. 1 1966, p. 299. 
[6] MILNER, E. C., A combinatorial theorem on systems of sets, J. London Math. Soc., v. 43, 1968, 

pp. 204—206. 
[7] SPERNER, E., Ein Satz über Untermengen einer endlichen Menge, Math. Z., v. 27, 1928, pp. 

544—548. 

(Received March 6, 1978) 


