Modal logics with function symbols

By K. TétH

We prove completeness theorems for modal logics with function symbols.
These logics are generalizations of the well-known non-classical logical systems.
Our work was deeply influenced by a paper of K. ScHUTTE [2].

§ 1. Preliminaries

We shall use the following symbols: parantheses, commas, variables, function
symbols, relation symbols, logical symbols (~, A, O, ‘v’) The set of terms is
defined by the usual recurrence:

(i) If x is a variable, then x is a term. _
(ii) If f is an n-ary function symbol and t,, ..., 7, are terms, then f(t, ..., 7,)
is also a term. In the case of n=0 the parantheses will be omitted.

The set of atoms is defined in the standard way: if r is an n-ary relation symbol
and 1y, ..., 7, are terms, then r(zy,...,7,) is an atom. Also, definition of the set
of formulae is well-known:

(i) If o is an atom, then & is a formula.
(i) If o, # are formulae, then so are (LAH), ~« and .
(iii) If & is a formula and x ‘is a variable, then Vxo/ is a formula.

We shall use the abbreviations: (V&) for ~(~ALA~B); (F—~HB) for
~(~BNA);, (A for ~O~f; Ixof for ~Vx~sf. Parantheses will be
omitted if no. confusion -can occur. If 2¢ is a formula or term x is a-free variable
(defined in the well-known way) and 7 is a term, then 2[x/t] will denote the result
of substitution of z for x everywhere in #. By a classical model 4 we shall
mean a function if it associates

(i) a non-empty set |4| to 0 (zero),
(ii) a function fA |A]"—~14] to each n-ary function symbol f,
(i) a relation r,< |A4|* to each n-ary relation symbol r.

4+
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Definition. By a modal model we mean a quintuple (S, N,O,R, P) where
S is an arbitrary set, NC S, 0€ S, RESX S, P is a function with domain S and
P(A4) is a classical model, provided A€S, furthermore |P(A4)|S|P(B)| if
A, BES, ARB.

Definition. A modal model is simple if for every m-ary function symbol f,
there exists a function f with domain {J |P(4)|, such that f, is a restriction
A€s

of f to |P(A4)| where A€S.

Definition. If |P(4)|=|P(B)| for every A, BES, ARB, then the model is
called stable.

Let (S, N, O, R, P) be a modal model. By an interpretation we mean a function
k such that to each variable k associates an element of U |P(A)].

Let a model (S N, O, R, P) and an interpretation k be given. By a valuation
x a partial function is meant with the followmg properties:

® »(x, A)=k(x) if A4¢S and x is variable such that k(x)€|P(A)|
(i) s (f(t1, coor T)s A)—fP(A)(x(tl,A) x(r,,,A)) if 4¢S and 1, ..., 7, are
terms such that for every variable x occuring in any of them, k(x)E |P(A)|
(iii) %(r, A) is undefined if A€S and there exists a variable x in the term
© such that k(x)¢ |P(4)|.

Let &/  be an expression (i.e. a term or formula) and assume ‘a model
(S, N, O, R, P) is given. Let us fix AES and an interpretation k. We say that
AcH, (A) if for every variable x occuring free in =/ we have k(x)€|P(A4)|.

Let A€ S, o be a formula and k an interpretation. We define the satisfaction rela-
tion A= of[k] by the following clauses:

(i) Ae=r(ty, ..., t)IK] if and only if 7y, ..., 7,€#(4) and rp(x(ty, A), ...
ey % (T, A)); :
(i) A=(LAB)[k] if and only if A= k] and A= B[k];
(ii) A= ~ofk] if and only if L€H(4) and A= L[k] does not hold;
(iv) A= O[k] ifand only if A€N and forevery B€ S, ARB implies B= «Z[k];
(v) A=VxH[k] if and only if for every interpretation k’, such that
k' (x)€|P(4)| and K'(y)=k(p) if y#x, we have A=/ [&7.

We put # into the set of relation symbols with the following meaning:

A= F(ty, t)k] if and only if 1, 1,€#(A4) and x(ty, A)=k(1,, A), ie.
# denotes the identity.

Let o be a formula, (S, N, O, R, P) a modal model and k an 1nterpretat10n .
o isvalid in (S, N, O, R, P) under the interpretation k if O=[k].

The reader can consult with [1] for notions and notations not explained here.
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§ 2. Modal logics

To give a modal logic we have to give a classical formula J” with the properties:

(i) no free variable occurs in 7,

(i) Z is in the classical language of the following non-logical symbols: o, O-ary
function symbol; n, unary relation symbol; r, binary relation symbol; i, binary
relation symbol.

This classical formula, called parameter of the logic, is meant to formalize
a property of the structure (S, N, O, R) provided (S, N, O, R, P) ‘is a model
of the intended modal logic.

If we restrict ourselves to modal logic with only simple/stable models then we
call them simple/stable modal logics.

Let a modal logic be given. A formula ./ is satisfiable if there exist a model
(S, N, O, R, P) and a interpretation k such that:

(1) (S, N, O, R, P) is simple/stable if the given logic is simple/stable;

(if) the parameter of the logic is valid in the classical model 4 defined by:
|Al=S, O4=0, ny(B)=BeN, if B,Ce¢S then r, (B,C)«BRC and
i4(B,C)=B=C; .

(i) O= k).

A formula & is a tautology if ~.«7 is not satisfiable.
In this paper we treat some special logics, the parameter of which is an arbitrary
(may be empty) conjunction of the following formulae:

K1. \7’ xn(x)

K2. Vxr(x, x)

K3. V,\Vy‘v’z(r(\ WAr(y, 2)->r(x, 2))AV x(n(x)—~ Vy(r(A »—=n(»)).

These logics will be axiomatized with suitable subsets of the following axioms:

Al A-ANA

A2, ANB-A

A3,  (A—~B)~(~ (%/\‘6)—»~((€/\&1))
A4, Vx(A~>B)>(VxA +VxB)

A5, o —-VYxse/ where x is not free in of; -
Ab.a. Vxsod —~ol[x/y] where y is a Varlable and it is free with respect to
x in &/;

A6.b. Vxof —»M[x/r] where t is a term and it is free with respect to x in
o/ and & is a classical formula;
A7. O(L ~B)~(0L ~0B)
AS. D(« ~«&f) if K1 appears in the parameter of the logic as a conjunct;
A9. O~ if K2 is a conjunct in the parameter of the logic;
Al10. O -0 Dﬂ if K3 occurs in the parameter of the logic;
All. VxF(x, x)
YxVy(F(x, )~ (Lx/y]~ )
DA =V xV (I, »)~0OI(x, »)
Do =V xV y(~ F(x, )0~ F(x, y)) if 4 occurs in the logic;
A12. vYxD«/—-0OVxe if the logic is stable.
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If the logic is simple, then axioms Aé6.a and A6.b are replaced by the more
general axiom.

A6. Vxsof —+sf[x/t] where t.is a term free with respect to x in o and &
is arbitrary.

We fix the following rules of inference:

R1. From & and of -# we infer 8.
R2. From & we infer Vx</.
R3. From & —~% we infer O/~ 04%.

This last rule can be used in a logicin which V x(r (0, x) A7 — 7 [0/x])is a tautology,
where J is the parameter of the logic. This holds for K1, K2, K3.
The notion of derivability is used in the usual sense (denotation: |-).

Theorem 1. (Soundness.) Let a modal logic be given. If a formula & is
derivable in this modal logic, then it is a tautology.

Proof. Trivial.
§ 3. Metatheorems
The proofs of metatheorems will only be sketched.

Assertion 1. Every tautology of classical sentential logic is derivable.

Proof. A1—A3 and R1 is a complete formalization of classical sentential logic.

Assertion 2. - O(#4A\B)—~0OLNDOB. -

Proof. — ANB—~A (classical theorem)
- O(ZAB)—~0OA (R3)
- ANB~B (classical theorem)
O AB)—O% (R3)

H(O(HNB)~ OL)~((O(A AB)~ O Z)~(O(Z AB)~ DA N1 B))
(classical theorem)

- O(LAB)~ OLAOB (RI)
Assertion 3. O/ AOZ—»O(LADB).
Proof. \-oA ~(B—~AN\B) (classical theorem)
O ~0O(B—~ALN\B) (R3)
- D@~ ANB)~(OB—~D(SNB))  (AT)
O ~(0B ~ 0(~4 \B)) (by classical theorems)
FOLADB~O(LNB) (by classical theorems)
Assertion 4. - OV 0%~ 0(£V B).
Proof. —A~ANB" (classical theorem)
O ~0O(V B) (R3)
0%~ 0N B) (similarly)

—02VOB~0(LVB) (by classical theorems)
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Theorem 2. If o/ —~%# and % -~ then .o/ can be replaced by £ in
an arbitrary formula without loss of its derivability.

Proof. One can proceed by induction from the following facts:
of ~% implies that + ~P—~of
of ~%# implies that +AANEC~BAE and HEAA-CNB
&/ —~% implies that + O/~ 0%
t-of ~% implies that |~V xsf —~V x4.

Assertion 5. A8 and R3 can be omitted if the following rule is added to the
system: If &/ then O«

Proof. (a) Let /. Since +—A—~((B—~B)—~/) implies +(B—-B)~A,
by R3, we have +—O(#—~%)—~0O«. By A8, —O(#—~%), ie., ..

(b) Let . —~4, then — O(/ ~%). By A7, — O/ —~0%. But - ~, s0
— O(« ~ ) holds. )

Assertion 6. OV xo/~VxO.

Proof. —Vxod~oA (A6.a)
FOVxe ~Of (by R3)
FVYxOVxe ~VxOof (by R2 and A4)
FOVxA -VxOVxed (A5)
FOVxe -VxOHA (by classical theorems)

Assertion 7. - { Vxof - Vx} .

Proof. +~A>Ix~A (from Aé6.a)
FO~S—-03x~A (by R3)
FiVxel—hof (by classical theorems)
Vx>V xhof (similarly).

" § 4. Completeness theorems

A set of formulae « is consistent if for every &, ..., #,€a, ~(A...A,)
is not a theorem.
We introduce the following notation: «*={«/: O/¢a}.

Theorem 3. Let o be a consistent set of formulae and assume o* =0. If
{Bea, then a*U {4} is consistent.

Proof. Assume the contrary, i.e. atU{#} is not consistent. Then there exist
&y, ..., ot such,that — ~(LA... AL, APB). It means that — A .. A~ ~B
(using the hypothesis a* =@ and that +— ~«&/ implies + ~(&A%) for arbitrary
" %). By R3, we obtain + OsA4A... AQA,~O~%B, ie. - ~(OLA...AOL,A | B).
This contradicts the assumption, that « is consistent.
If o is a set of formulae, then let us denote the set of variables occuring in
o by II(a). '
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Definition. Let o be a set of formulae a is complete if the followmg condi-
tions are satisfied:

(i) « is consistent;

(i) If o/ contains variables from II(x) only, then either «/€a or ~of€q;

(iii) Let o/ contain variables from II(x) only and let x be the only variable
occuring free in . If Ixca then there ex1sts a such that a€ll(e)
and a is free for x, moreover /[x/a]€a.

Theorem 4. Let o be a complete set of formulae. Then

() €a and o ~FBca imply B€u;

(i) L ANBca if and only if &/€a and H<a;

(iif) Vxse/€a if and only if for every a€ll(x) free for x we have M[x/a]Eoz
where x is the only variable occuring free in 7.

@) If a*U{«/} is consistent and &/ contains variables from H(a) only,
then {/€a.

Proof. (i) If B then ~%¢€a by completeness. But it means o is not
consistent since — ~ (/A (s ~B)A ~B).

(i) Since +~(LANBN~L), + ~(LNBN~B) and + ~(LNBN~
~(ZN\B)) hold, it is trivial.

(i) +~(Vxg A ~L[x/a)), so if Vxoca, then L[x/alca. Conversely,
if Yxef¢a, then ~Vxe/€a by completeness, i.e. Ix~f€a. Thus
there exists a€II(«) such that ~/[x/a)€a, ie., «[x/a]§ a.

(v) If (o ¢a, then O~f€a, by completeness, and ~€at. But it
means otU{«/} is not consistent since + ~(HFN\~).

Theorem 5. If o is consistent, then there exists a complete § such that «C 8.

Proof. 1t is easy by using the following three lemmata since we can assume that
the set of variables has enough elements.

Lemma A, Let a be consistent. Then at least one of «U{«/} and ol {~s/}
will also be consistent. .

Proof. Suppose both aU{s/} and aU{~«/} are inconsistent; that means
there exist %,, ..., 8,6a for which + ~(%AN.. ANB,NA) and + ~(B,N\...AB, A
A~sf). Then + ~(GAL)~(~(GN~A)~~F) entails + ~(BN..AB,) so
o is inconsistent. This completes the proof of Lemma A.

Lemma B. If a¢II(xU{«}) and o« is consistent, then ol {Ixof-f[x/a]}
is also consistent.

Proof. Suppose the contrary. Then there exist &4, ..., &, €a such that
- ~(A .. N, NS Xt ~L[x[a])). By applymg R2 we arrive at ~( A
AN ~(3x&¢/\ Va~sl[x/a])). Since +~@xLAVa~sL[x/a]), we have
N(MI/\ .Af,) which contradicts the assumptions. This completes the proof of
Lemma B.
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_Lemma C. If «, is consistent and «,&a,,, for every n, then |J a, is also
R . ' . n=1 .
consistent.

Proof. Trivial.

Definition. The system of sets of formulae M is said to be complete 1f the
following conditions are satisfied:

(i) Each a€M is complete. -

@) If acM, a* =0 and o A€, then there exists BEM such that a+U
U{#}E8B. ‘

(iit) If the logic has equality symbol, then

(@) If a, peM, acll(x)NII(B), then there exist natural numbers n, m=0
and sets of formulae ay, ..., a,, By, .--; BmEM such that o,=p;, a,=a, B.=8,
GEH((IO),&?' ¢0 and ai+ gai+1(i:03 . ’n 1) ﬂl ¢ﬂ and Bl :ﬁl+1(l'— sm= 1)

) If of #0, af Soyy, (=0, ...,n=1), B =0, BFSPis (i=0, ...,m—l),
o, =f,., then there exist y,, ..., y,€ M such that y =0 and y# &v;,,(0=0, ..., k—1)
and either yo=ay, .=, Or Yo=P0, Ve =0, are true.

Theorem 6. If « is complete, then there exists a complete system of sets of -
formulae M such that ac M.

Proof. Let My={a}. Assume that M, is a set of complete sets of formulae.
Let BeM,, =0, § L€B. Then, to (B, ) we associate a set of variables. This

set is disjoint from. |J II(y) and different pairs have disjoint associated sets of
veM,
variables. There exists a complete set y such that 'yEM,,+1, ﬁ*U{d}Cy and

HNJI(B) is associated to the pair (B, &). It is trivial, that U M, is a complete
’ : n=0

system of sets of formulae.

Theorem 7. (Completeness Theorem.) Let us suppose that a simple non-stable
and equality free modal logic is given. If a formula & cannot be derived then
~&f is satisfiable.

Proof. We can assume without loss of generality, that no free variable occursin /.
Since not &, we have not & i.e., {~} is consistent. There exists a complete
set of formulae « and a complete system of sets of formulae M. such that ~o/ca
and a€M.

Let us define the following notions: N={B: BeM and B+=0}; if B,yeM,
then /3Ry<:>((ﬁ+ Sy and B*=#0) or (B*=9 and y=p)); |P(B)|={r: all variables
occuringin t arefrom II(B)}; fp(ﬂ)(‘rl, vy T =f(t15 ..., T,) Where 14,..., T,£|P(B)];
rp(ﬂ)(rl, s T (g5 . T)EP If 14, .., T,€|P()|. It is easy to see that (M, N, a,

R, P) is a simple model.

Let k£ be an interpretation and x the corresponding valuation. The following
two assertions can easily be proved by a simple induction.

If t€#,(B), pEM, then x(z, f)=1[xy, ..., X, /k(x), ..., k(x,)] where xi,..., X,
are all the variables occuring in 1, and t[xy, ..., X,/71, ..., T,] is the result of the
substitutions [x;/7q], ..., [x,/7,] executed simultaneously. :
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If Be#(B), BEM and x,, ..., x, are all the variables occuring in £, then
Bi=Blklo Blx,, ..., X, /k(x), ..., k(x,)]€B. Hence, if for every a, k(a)=a, then
o= ~&f[k]. Let us suppose that # contains variables only from IT(B), where
B is a complete set. ,

If 4, then Z¢cB, since in the opposite case we have ~ZB¢p, ie. B is
inconsistent.

Ki. If Q(#—2) is an axiom, then for every BeM, (B —~RB)cP provided
no variable occurs in #. Thus, f* =0 and N=M.

K2. Let B be an arbitrary formula for which #¢g+. From [O%¢p and
OB —~BcP we infer BEP, ie. B*S B, BRE.

K3. Let BRy and yRS, moreover ZE€f+. Then DOBEP, OB~ D OHBEPB,
so OO%cph. By definition of R, O0B€y and £#¢cd follow. We obtain BRO.
Let B¢N, then for some %, O#<p. If PRy then OHB€y, so yEN.

This completes the proof of Theorem 7.

In what follows we assume that a non-stable modal logic with equality is given.
Let M be a complete system of sets of formulae, let N and R be defined analo-
gouosly to the ones in the proof of the previous theorem. We denote the reflexive
and transitive closure of R by R.

By these notations we redefine the third clause.of the last definition in the
following simple way:

(iii)” If the logic has equality symbol, then

@ If a, BeM, acll()NII(B) then there exists ycM such that yRa, yRf
and a€lII(y). ‘

(b) If «, B,7¢M, «Ry and BRy, then either aRB or BRa is true; in other
words, R is trichotom on the set {u«: aRy}.

We prove some simple assertions:
Assertion 8, If SRy, then IT(B)S M (y).

Proof. Trivial. _
Assertion 9. If BRy and a, beII(f), then S(a, b)€BeF(a, b)Ey.

Proof. If PRy, then OSF(a,b)V ¢ #€B. If BRy and y=B, then B+ =0,
e.g O~ €B. If o is replaced by ,, then O~ —~0OF(q, b€ and so
OS(a, b)ep. That means SF(a, b)cp* and F(a, b)€y by induction.

If ~4(a, b)EB, then by an analogouos argument we can obtain the other
direction. This completes the proof the Assertion 9. '

Let a, b be two variables. a=b if and only if there exist o, f, 7€M and c€II(y)
such that yRa, yRB, £(a, c)€a and £(b,c)€B. Obviously, = is a reflexive and
symmetric relation. We shall prove that it is transitive, as well.

e

Assertion 10. If yRa, yRB, c€I1(y), #(c, a)€a and H(a, b)€B, then SF(c, b)Ep.

Proof. 1t is clear, that acII(«)NII(B). By (iii)’ there exists 6¢é M such that
acIl(5) and SRa, RB. Also by this definition we have either yRé or SRy. By
Assertion 8 either a, c€I1(0) or a, c€II(y) and so either #(c, a)€é or F(c, a)€y.
In both cases F{(c, a)cp by Assertion 9. Then F(c, b)€f by transitivity of equality.
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Assertion 11, Let o« RB; (i=1, ...,n) and a,HRﬁ, (i=1, ...,n). There exists
a k such that 1<k<n+1 and akRa for every i (1<1<n+1), furthermore,
there exists an / such that 1=/=n+1 and «Re, forevery i (1=i=n+1).

Proof. Readily follows by definitions.
Assertion 12. The relation = is transitive.

Proof. Assume a=b and b=c. Then, thereexist d,e and oy, o3, By, B, B3, Ps -
such that «; RB,, a; RB;,.#(d, a)€ B,, F(d, b)E By, dEIT (%)), %3 RB5, a3 RBy, A (e, b)EBs,
Fe, ¢)€B,, eIl (n). By (iii)’ (a), there exists an a, such that «,Rpf,, «,Rp;,
bel(a). By the previous assertion, for some i, o;Ra; (j=1,2,3) and o;Rp;
(j=1, 2, 3, 4). Itis known, that dcIT(a,), b€ IT(ay), e€II(x5). Let f be that variable
among (of d, b, e), which is in IT(x;). We have #(a, d)py, F(d, b)Ep,, F(b, e)€B;,

- F(e, ©)€P,. By Assertion 10, we obtain F(a, f)€P,, £(f, c)¢p,, that means a=c.

‘Assertion 13, If a, b€II(f) and a=bd, then SF(a, b)cp.

Proof. Let B,=PB,=p. Since a=b there exist B,, 5, %6 M and c€II(x)
such that S(a, c)€B;, F(b, c)€B;, 0y RP,, 2, RPs. By (iii) (a) there exist «, and
oy for which oleﬁl,alRﬁz, de(a,), asRBs, azRP,, BET (x5). By Assertion 11,
there exists an i such that o;RB; (j=1, 2,3, 4). Obviously #(a, a)Eﬂl, S(a, c)Eﬁz,
J(c, b)ePs, F(b, b)ep,. Let d be that “variable among a, b, ¢ which is in IT(x,). -
Applying Assertion 10, we have #(a,d)€B, and F(d, b)ep,, ie. F(a, b)EP.

Theorem 8. (Completeness Theorem. ) Let a non-stable modal logic with equality
be given. If o7 is not derivable, then ~ .o is satisfiable.

Proof. Let M be a complete system of sets of formulae, N, R as defined in the
proof of Theorem 7. Let us define P by the following causes: for feM
|P(B)|={a: acII(B)}, where a={b:a=b}; if ay,...,a,, aclI(f), then

fP(ﬁ)(al’ At 6,,) il j(f(ala ceey an), a)Eﬁ9

(By definition of completeness, this function is defined and it is unique by last
assertion.) rpy(ay, .., @)1 (@, ..., a,)€B. For an arbitrary B¢ M, (M, N, B, R, P)
is a model.

If A 6 is an axiom of the given logic, then this model is simple. We have to prove
that

if ay, ..., a,, a€II(B), by, ..., b,, b€ (y), a1 =by, ..., a,=b,, (f(a,, ..., a,), a)¢ B
and f(f(bl, <oy by), B)EY, then a=b. Let 1=i=n be glven By definition of = and
clause (i)’ () we can assume that B,=8, f,=y, o, RB1, 0, RBs, s RBs, 2aRB;,
a3Rﬂ33 aRRBAI’ a; EII((XI) j(an C)EB2’ CEH(a2)> ](C bl)€ﬁ35 b; EH(“I&) Let Vi denote
the first element among «,, ,, &z under R. Using methods from proofs of Assertion
9—13, we get c€ll(y), F(a;, c)EP, .f(c,, b)Ey, le,B, y;Ry. Since for every
i,y;RB, applying (iii)’ (b) we obtain that there exists an i such that y;Ry; for every .
By Assertion 8, for this i we have ¢, ..., ¢,€II1(y;). So there exists a ¢ for which
F(fley, ..., ), €)€y;. Generalizing the method used in proof of Assertion 9, we
arrive to £ (f(e;, -, ¢a)s €)€B and F(f(cy, ..., ), c)€y. From #(f(ay, ..., a,), a)¢p
and F(f(by, ..., by), b)Ey, it follows that #(a,c)epf, £(b,c)€y and so a=b.



300 K. Téth

Let k be an interpretation and » the corresponding valuation. If for a varjable
x, k(x)€|P(B)|, then k(x)NII(B)=0. Let x*ck(x)NII(B). We extend the opera-
tion * for arbitrary expressions: X ™= Y=A[xy, ..o XnfXT, - X5), Where  x;, ..., X,
are all the variables occuring in 2. By a simple induction, the following statements
are easy to prove

(i) %(z, )=a and acIl(B)=F(*, a)eP; -
(i) If o contains variables from I1(f) only then fE= d[k]oﬂ*G B.

From (ii) the theorem follows.

§ 5. Connections with classical logics

Let us suppose that a modal logic is, given; i.e., the sets of relation symbols,.
function symbols and set of variables are fixed. We also suppose that the following
symbols do not occur in these sets: o, s, n,r, p, i, z, z’. Furthermore the parameter

T of this logic is fixed. Also we know if this loglc is simple, stable or so.

Now we define a classical theory. The language of this theory contains all the
relation symbols and function symbols of the modal language but if a symbol has
arity m in the modal language we use it with arity m+1 in the classical one. Also
we shall use the following symbols: ¢: 0-ary function symbol, s and n both
unary relation symbols, r,p, i all of them are binary relation symbols, and two
new variables: z and z’.

We define a mapping [ ] from the set of modal expressions into the set of
classical ones: .

(i) if x is a variable, then [x]=x;

@) [f(ty, oo t)]=S(7d, -, [1m), 2) If f is an m-ary function symbol in
the modal language, 7, ..., 1, are terms;

@ii) [r(zy, ..., tl=r(t4ls ..., [1), 2) if r is an m-ary relation symbol in the
modal language, 7, ..., T, areterms; in particular [£ (7, T,)]=i([7,),[72));

(iv) [~AL]= ~[L]; [ NB]=[LIN[B];

) [Vxo]= VX(p(x, z)~[]);

(i) [OL]=V2'(r(z, 2') ~[][2/2'])An(2).

Let o7*=p(x;, 2)A...Ap(x,,, 2)A[], where x,, ..., X,, are all the free variables
of .

Let M be a classical model in which the following formulae are vahd .
s(o) s(z)~3xp(x, 2); px, 2)Ar(z, 2)~p(x, 2'); s(2)Ar(z, 2) ~5(z'); s(z)~p(f(xy, ...

. Xm, 2), z) for every function symbol.

Let O0=0y, S={a: a€|M| and sy(a)}, N={a:a€S and ny(a)}, aRb=a,beS
and ry(a, b), |P(a)|={b: pu(b, @)}, if a€ S, for ay, ..., a,€|P(a)|, fpu(ay, ..., G)=
=fu(ay, ..., a,,a) and gpay, ..., a,)=qu(a,, ..., ay,, a). A

It is obvious, that by these definitions (S, N, O, R, P) is a modal model.

Let k& be an interpretation for M such that k& associates an element of S to
z and z’, and k associates an element of | J |P(a)| to every variable other then

acs

z or z'. Itis clear, that k is also an interpretation for (S, N, O, R, P). Let the
corresponding valuations be K in M and % in (S, N, O, R, P).
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Theorem 9. Let t be a term, & a formuld and suppose z,z° do not occur
in them. Then

(@) %(t, k(2))=K([z]), provided x(z,k(z)) is defined;
(i) k(2)E= Lkl ME k).

" Proof. The easy induction is left to the reader.
'Now we give the inverse of the mapping
M~(S,N, O, R, P). '
Let (S, N, O, R, P) be an arbitrary modal model. We define
M| = su(aLejs IP(@)]); .0y =0; sy(d)< acs;

ny(@)< a€N; py(a,b)= beS and a€|P(b)l;
ru(a, by a,b€S and aRb, iy(a, by a=b;

few(ay, ...sa,), if a€S and ay,...,a,c|P(a)
arbitrary element of |P(a)| otherwise;

fM(aly ceey Qs a)={

gu(ay, ..., a,, a)e qP(a)(als vees ).

Theorem 10. Let A, B classical models and [A|C |B|. There are the same
symbols in the 1anguages of 4 and B the only exeption is s, which is used only
in the language of B as a unary relation symbol. Let

falay, ..., a,) =fglay, ...;a,), if ay,.., a,€|A|;
qA(ala-~-aam)<=>q(a1v7~-'9am)’ lf al’-">am€|A|;
SB(b)@ bElAI.

We define the mapping s on the set of formulae not containing the symbol s:
H(L)=sf, if o isan atom;
H(ANB)=H (A)N\H(B)
H(~A)=~H(A)
H (N xl) =N x(s(x)~H ().
Let k& be an interpretation the range of which is in |A4|. Then

A= of[k]e Bi= H(L)[K].
Proof. Trivial.

If M—{S,N, O, R, P) is the mapping defined above T is the parameter of
the logic, then we have:
(i) the modal model has property 7 if and only if Mk #(T);
(i) the modal model is simple if and only if for every function symbol f

M V%, V%,V 2V 2 (p(x1, 2)Ap (%1, 2N ... AP(Xy, DA P (X, 2)) ~
g i(f(xly LR ] xmaz)s f(xl, ey xmaz,)));
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(iii) the modal model is stable if and only if
M = V22 (s@)As@) = Yx(p(x,2) = p(x, 2))).

Let &/ be a modal formula and assume a modal logic is given. The for-
mula & is satisfiable (in modal sense) if and only if the following formula is clas-
sically satisfiable: s(0)A(s(2)—3xp(x, 2))AVxVzVz' (p(x, 2)Ar(z, 2)—~p(x, Z)A
AV 2Y 2 (s(2)Ar(z, 2) =~ sZ)DAVZV Xy, ooy VX (5G2) = P(/i (s v s Xy, 2), 2))A
AV 2V Xy o VX (8@ =P (fi (rs -y Xs D), DIANPAFLANH (T )N\ ¥[2/0], where
Ji» ---» S are all the function symbols occuring in &; £ is true if the logic is not
simple, otherwise it is the following:

k -
./\1 (Vxq, ... VX, V2V 2/ (p(x15 2)A (s 2)N . AP (X DA P (Kmys 2) — i(f(xy5 -
i=
et xm;’z)’ f(x19 ey xmjs Z’)));
& is true if the logic is not stable, otherwise it is the formula

VzVZ' (s(2)As(z) = Vx(p(x, 2) - p(x,2)).
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