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1. Introduction 

1.1 Nondeterminism in computer science 

In computer practice a lot of phenomena have arisen that deviate from the 
deterministic attitude forming the base of traditional programming. These non-
deterministic phenomena may be due to varying reasons. 

Considering the reasons three main types of nondeterminism can be distin-
guished. The first type of nondeterminism is quite independent from the will of 
programmers and its causes are hidden in the construction and functioning of 
computers. Due to this nondeterminism almost every program has some uncertainty 
while execution. These could be caused by power cut, current trouble, machine 
break-down or by any other unforseeable reason. If the computer works in time-
sharing mode the uncertainty further increases and the behaviour of a program 
will depend on the other programs executed alternately with it. Moreover it de-
pends on the memory requirements of the programs, on the number of peripheries 
at disposal, etc. In computers allowing parallel computations further causes of 
uncertainty interfer, namely the speed difference of certain processes and com-
munication, the noise level of the communication channel, the concurrency for re-
sources etc. In interactive mode another type of uncertainty is caused by the 
randomness of interactions affecting the program under execution. 

We may call probability programming the methods that consider the above 
uncertainties and its theory should be based on the usage of the tools of mathe-
matical statistics and those of theory of probability. Random events occuring in 
program execution are handled by these tools. In this type of programming the 
commands do not have a uniquely defined result, only its distribution is known. 
Thus the running of a program can be described by using stochastic process e.g. 
by using either Markov or semi-Markov chains. One of the main aims of the 
theory of such type of programming is to minimalize the expectable number of 
failures. 

The second type of nondeterminism is already connected with the programmer's 
will. The programmer's attitude is still deterministic, but he uses probabilistic 
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methods containing well defined randomness in the solution of some tasks. A wide-
spread method of this type is connected with the use of random number, generator. 
The programming style using this method is deterministic and it also supposes the 
determinism of the computer, however, for the solution of certain tasks it uses 
one of the Monte-Carlo methods. 

The third type of nondeterminism is connected with the essential and logical 
uncertainty enclosed in the solutions of tasks. It embodies two kinds of uncertain-
ties. The first one occurs in such a situation of problem solving when there are more 
alternat ives selecting from which any, the result will be produced without difficulty. 
The second kind of uncertainty is connected with such a situation where only certain 
alternatives lead to correct results but, in advance, we do not know which one. 

A programming style which considers the above mentioned two kinds of un-
certainties suggests a nondeterministic attitude in contrast with the deterministic 
one of the traditional style of programming. The main difference between these 
two kinds of attitudes is that the nondeterministic one considering different kinds 
of choices does riot specify how to make them though the deterministic attitude 
does not leave the question how to make choices (if there are any) unspecified. 
Programming theory connected with the third type of nondeterminism is in the 
focus of our further investigations. 

1.2 Some reasons of interest in nondeterministic programming 

Recently nondeterministic programming has attracted more and more atten-
tion. It provides the programmers to concentrate on some important questions 
about deterministic programs without specifying details irrelevant to the questions 
to be analysed. Thus this programming attitude can be used to reason about deter-
ministic programs. 

The possibility to consider actions not describing their details makes the non-
deterministic programming very useful in the field of Artificial Intelligence, e.g. 
in natural language understanding, in problem solving, in robot planning, etc. 
E.g. it suggests a fractional method of problem solving or robot-planning as follows. 
First a global algorithm — a "global plan" can be designed as a nondeterministic 
program, then, by analyzing this program and completing it with appropriate parts 
we get a concrete deterministic program, i.e. a complete detailed algorithm to 
solve the task. 

One of the most significant reasons why nondeterministic programming be-
comes more and more important is that it plays a significant role in the elaboration 
of the theory of interactive and parallel programming. Most.of its applications are 
connected with this area. See e.g. HOARE ( 1 9 7 8 ) , MILNER ( 1 9 7 3 ) , OWICKI and GRIES 
( 1 9 7 5 ) , PLOTKIN ( 1 9 7 6 ) , e t c . 

In view of aboves it is quite natural that nondeterministic programming plays 
an increasing role in both the theory and practice of programming. 

The aim of our investigation in the present work is the elaboration of a mathe-
matical theory of nondeterministic programming which can handle both syntax 
and semantics by using mathematical tools and provides tools to speak about 
program properties and to prove them. The elaboration of this theory will be done 
by using the approach developed in GERGELY and U R Y ( 1 9 7 8 ) . 
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1.3 Some words on our approach 

The essence of the programming situation to be considered is that beside 
programming language such a new language arises that is suitable to describe the 
properties and the meaning of programs and our expectations towards programs 
in an unambiguous way. Thus this new language is a descriptive one in contrast 
with the programming language which serves to give instruction, i.e. commands. 
To assure unambiguity the descriptive language should have well defined and exact 
semantics beyond the syntax.1 The syntax should be suitable to describe program 
properties and with the power of proof to analyse whether certain features of pro-
grams correspond to the expectations given by the specification, i.e. to analyse the 
correctness of programs. The semantics of the descriptive language should provide 
unambiguous understanding of the meaning of programs, hence it has to be com-
patible with the semantics of programming language. There are two main possibil-
ities to give exact semantics. The first is to characterize programs according to the 
question "what the program does?" the second is to do it according to the question 
"how the programs do it?" 

In programming theories we find the following three approaches for the 
exact handling of semantics: operational, functional and resultative. The first aims 
to give a direct answer to both questions to what and how. The resultative or, in 
other words, axiomatic semantics neglects the question how and characterizes only 
the main properties of the change of data environment of the program produced 
while execution. Functional or, in other words, denotational semantics also gives 
the meaning of programs answering both questions, though it does it in an 
indirect way. 

We wish to elaborate such a theory of nondeterministic programming which 
would be also a useful base for developing the mathematical theory of interactive 
and parallel programming. In order to understand the main features of interaction 
and parallelism in detail the execution processes themselves are to be considered. 
This permits to follow up the specific features connected with the mutual effects 
of the processes (e.g. communication, interaction). Thus operational semantics 
seems to be adequate to our aim. To have this type of semantics first the question 
what has to be answered by the characterization of changes in data caused by the 
execution of program and, secondly, the flow of programming processes in time 
has to be described to have an answer to the question how. 

Thus the theory of programming to be developed has to have such a descrip-
tive language that is capable of describing and characterizing both the data en-
vironment of programs and the time related to program execution. The first re-
quirement is quite familiar with nearly every theory of programming, but not so 
is the time consideration, for programming theories do not consider time explicitly 
except for some of the most recent works. 

Of course in the case of sequential programming the time aspects can be charac-
terized through the change of data without considering time explicitly. However 
this approach is not applicable in those cases where time plays a primary and 
independent role as e.g. in interactive, real time and parallel programming. Therefore 
the programming theory to be developed here will contain tools that also provide 
explicit time consideration. 

3 Acta Cybernetica 
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1.4 The role of classical first order logic in a theory of programming 

To develop a mathematical theory of programming that corresponds to our 
aim the first problem is to introduce such a descriptive language that satisfies the 
above mentioned expectation concerning the characterization of time and data 
and it has to have exact and well defined semantics and appropriate tools to prove 
different statements about the program properties. In the case of sequential deter-
ministic programming the first order classical language was quite satisfactory to be 
a descriptive language for the corresponding theory of programming as it was 
shown in GERGELY and URY ( 1 9 7 8 ) where the frame of classical first order mathe-
matical logic was used to develop the theory of programming. 

In the present work we show that the above mentioned logical frame is sufficient 
to develop the corresponding theory and the first order language can be used in 
the role of the descriptive one for the case of sequential nondeterministic programm-
ing. Why do we prefer the classical first order language? Because 
— it has a well defined exact and transparent syntax and semantics; 
— it has a special branch, the model theory with very strong mathematical methods 

to investigate semantics; 
•— it has a well developed proof theory that offers effective notion of proof and 

effective tools and methods for.proving; 
— it is currently used in the research practice so its use is fairly familiar; 
— it is the simplest one of the languages of mathematical logic by which a programm-

ing language can be investigated since the propositional language is not suitable 
for this. 

So it is justified to try to elaborate the mathematical basis of programming theory 
within the frame of classical mathematical logic that is the most highly developed 
branch of mathematical logic. This is encouraged by the fact that data environments 
of programs can be given without major restriction of generality by first order 
language. 

In this work the mathematical foundations of programming theory, and the 
elaboration of the theory itself is done by strictly keeping to the frame of first 
order logic. 

In the theory both date and time will be explicitly discussed by using first 
order language. 

1.5 A short survey 

Nondeterministic programming is mainly used in the area of Artificial Intelli-
gence and in the investigation of parallel computation as it has already been men-
tioned. In connection .with the first area MANNA (1970) introduces a nondeterministic 
programming language which is very similar to the language to be introduced here. 
It contains both kinds of choices, but it does not allow the description of time 
conditions. 

Several works are devoted to the nondeterminism in connection with parallel 
computation. In the early work of ASHCROFT and MANNA ( 1 9 7 0 ) parallelism has 
already been explained in terms of nondeterminism. Milner handles nondeterminism 
by using oracles. In the case of two computing processes executed parallelly an 
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oracle is such an infinite sequence of 0 and 1 that be however far contains both 
elements 0 and 1. By this oracle the execution of two parallelly computed processes 
can be described so that 0 and 1 denote which process is at work. The theory using 
oracles is described in MILNER ( 1 9 7 3 ) and ( 1 9 7 8 ) . 

A very elegant mathematical theory of the same handling of nondeterminism 
is developed in PLOTKIN ( 1 9 7 5 ) . Developing the theory of programming both MILNER 
and PLOTKIN use denotational description of semantics of nondeterministic prog-
rams. EGLI ( 1 9 7 5 ) also uses this type of the description of semantics. 

An axiomatic definition of semantics is given in OWICKI and GRIES ( 1 9 7 6 ) . 
The parallel programming containing nondeterminism suggests to introduce 

effective nondeterministic elements into the language. The very simple command 
choice S1, S2 has been replaced by the guarded commands introduced in DIJKSTRA 
(1975) . In HOARE ( 1 9 7 8 ) and FRANCEZ et al. ( 1 9 7 8 ) input-output commands are 
added to the guarded ones. Analogical commands are also introduced in MILNER 
( 1 9 7 8 ) . Not depending on the aboves we mention the work of HAREL and PRATT 
(1978 ) where the execution of programs is supposed to be ambiguous and in the 
descriptive language modalities are introduced in order to handle the ambiguity. 
Thus by this descriptive language such statements can be expressed that "there 
exists such a run...", "every run is such...". In this work the semantics is opera-
tional. An analoguous descriptive language is developed in MIRKOWSKA ( 1 9 7 8 ) 
within the frame of algorithmic logic. Summarizing aboves we would like to em-
phasize that so far no work has been engaged in using tools to describe time con-
ditions explicitly. The problem of completeness is discussed only in HAREL and 
PRATT ( 1 9 7 8 ) and MIRKOWSKA ( 1 9 7 8 ) . The previous shows that the introduced 
descriptive language is complete with respect to arithmetics, in the latter it is proved 
that the nondeterministic algorithmic logic is co-complete. We note that these two 
results are really equivalent. 

1.6 What is new and the contents of the work 

The theory of nondeterministic programming is developed strictly within the 
frame of first order classical logic. The semantics of nondeterministic programs is 
described in an operational way by using a special type of games. A descriptive 
language to describe program properties is introduced by using the classical first 
order language. This descriptive language allows to describe and to speak explicitly 
about both time and data. 

Moreover the question of completeness is discussed and a complete calculus 
in the spirit of Floyd and Hoare is introduced. 

The first part including the first three sections contains the conceptual and 
mathematical base providing exact tools to handle nondeterminism. Thus the next 
section is devoted to the main tool of our theory to a special type of games. Section 3 
contains the main notions of classical first order mathematical logic and arithmetic 
and the representation of data and time in the frame of first order logic. Here first 
of all the description of time properties is discussed in details. In Section 4 the basic 
notions and properties of games are introduced within the frame of first order logic. 
A very simple but powerful enough nondeterministic programming language is 
introduced in Section 5. Its semantics is given by using associated games. With 

3« 
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respect to nondeterministic programs many different questions can arise. Some of 
them are given in Section 6. Here we immediately show that an adequate descriptive 
language is needed to answer the questions for each one. Selecting two questions 
in connection with partial and total correctness we give the appropriate descriptive 
language and show that it is complete. In Section 7 we introduce a calculus which 
is analoguous to that of introduced by Floyd and Hcare for the sequential deter-
ministic programming (see details in GERGELY and URY ( 1 9 7 8 ) ) . In Section 8 we 
illustrate the use of the calculus by some examples. Present paper consists of two 
parts. The first one contains the first three sections. 

1.7 Basic conventions 

We use basic notations and concepts of the naive set theory in the usual fashion. 
The notation {x\(p(x)} denotes the set of all x such that <p(x). Both inclusion and 
proper inclusion are denoted by the same symbol c . The empty set is denoted 
by 0. In the case of natural numbers for ordered finite set we use intervals defined 

by [i, / 1 = {k\i=k^j}. The domain and range of a function / are denoted by d o / 
and rg / respectively. f : A-+B denotes that / is a function for which d o f = A 
and rgf=B. A function f : A-+B is injective if for any a, b£A if f(a)=f(b) then 
a=b. It is called bijective if it is injective and f(A)=B. 

The symbol <J,),ej denotes a function / with domain I such that f ( i ) = Si 
for all i£l. Such a function / is called sequence. 

For a non-empty set A let A+ denote the set of all finite non-empty sequences 
formed from the elements of A. AB denotes the set of all functions from A to B. 
co is the least infinite ordinal. \A\ denotes the cardinality of the set A. Moreover 
for informal logic we use "iff" for "if and only i f" and w.r.t. for "with respect to". 

The end of significant units like proofs, definitions etc. is marked by the 
symbol • . 

2. Games 

2.1 More about nondeterminism 

As we have seen the uncertainty in nondeterministic programming is caused 
by two kinds of choices. The first one: from the alternatives one chooses such 
a possible step of a task solution that leads to the result. The other one is when 
each one of the alternative steps may be chosen and the result thus can be reached. 

Having a nondeterministic program its execution can be so imagined that 
there is someone who represents the interests of the program, say Mr. A. He is 
the one who makes the first kind of choices. In opposition there is someone else, 
say Mr. B, representing the circumstances influencing the program execution. He 
is the one who makes the other kind of choices without being influenced by the 
interests of the program. 

Thus we have a situation analoguous to a game situation where two players 
A and B are playing. Player A has to choose so that whatever B chooses the course 
of the game should favour A. This analogy suggests the games to be a useful and 
easily handable tool for our investigation. The games are very close to our intui-



Nondeterministic programming within the frame of first order classical logic 339 

tion because they are widespread. At the same time they clearly represent essential 
nondeterminisms e.g. that of due to the uncertainty of players in the moves of one 
another. This uncertainty is quite analoguous to that of the nondeterministic pro-
gramming. Thus we use an appropriate type of games as the main tool in our theory 
of nondeterministic programming. 

Now let us consider what type of game is adequate to represent the non-
determinism of nondeterministic programming. 

According to the aboves we say that the rules define the circumstances within 
the frame of which a game can be played, i.e. they define the game-frame. A game-
frame still does not possess goals for the players though in the type of games used here 
the goals are well-defined for both players. E.g. such a goal can be either to win, 
or not to lose. Having goals players aspire to win or not to lose within a given 
game-frame. Games considered here are antagonistic in the sense that players try 
to achieve in fact two opposite goals. Beside the goals such rules are to be introduced 
that specify the conditions by which one of the players wins, or loses or the play 
is draw. These conditions can be defined by the appropriate set of those situations 
(or states) that provide the winning (or not losing) of one of the players. In this 
case to achieve his goal the player is to reach the winning situations, i.e. he has 
to make moves providing the appropriate states. The improvement of the positions 
of one of the players at the same time is spoiling the positions of the other one. 
Another possibility is to give a rule specifying a payment function which renders 
a payment to each possible state. This payment is to be received by one of the 
players and is payed by the other one and its sum depends on the situation. More-
over the gain of one of the players and the loss of the other one is equal but opposite 
in sign. Now the winning of each player means to receive the greatest payment. 
Thus the goal of a player is to maximize the payment he receives. 

If we add rules describing the winning conditions to the game-frame we get 
the corresponding game. It is obvious that with respect to a given game-frame a lot 
of games can be defined, which only differ in the winning conditions. 

t 
2.2 Basic notions of games -

s 

Let us consider such a type of game that presumes two players and possesses 
well-defined rules for each of them. A game presupposes a sequence of moves, each 
of which is an occassion for a choice between certain alternatives. 

The rules of the game specify for each move which player does it and what 
his alternatives are. These rules are finitely describable, and are to be known by 
each player. At each move, the player precisely knows what his alternatives are 
and his choice will become immediately known to the other player. Moreover each 
player precisely knows what moves, i.e. what choices have been made previously. 
Thus the players have full information about what has happened in the game so 
far and what else can ever happen, during the course of it. For the latter the rules 
are to specify that no choice can be made by chance (e.g. by a dice). This means 
that each move is deterministic in such a sense that the situation formed after having 
the moves is foreseen in a unique way. A course of game contains a complete sequence 
of choices (moves) made by the players' 



340 T. Gergely and L. IJry' 

Thus the type of games used here consists of the rules that define the circum-
stances of playing and of the goals and rules defining the winning conditions. 

To illustrate the abovesaids let us consider the following version of the well-
known game NIM. First of all let us see its frame. There is a single pile of chips 
containing e.g. 21 chips and there are two players A and B. The two players take 
turns one after the other picking up chips from the pile. At each move, a player 
must take at least one chip and at most three ones. This is the game-frame. If we 
fix the winning circumstances then we get the game of the game-frame. Let us suppose 
that the player who picks up the last chip loses and thus we have got a game. Note 
that this kind of NIM game is often called Last One Loses. Of course we can define 
an opposite game with respect to the same frame, namely we add the following 
rule: the player picking up the last chip wins. By adding another winning condition 
we get a new game. There are a lot of other possibilities. 

A game-frame graphically can be represented by a tree. The nodes of the tree 
correspond to the situations involved in the game. The arcs emanating from a 
given node are the alternatives associated with the corresponding move. A tree 
representing all the possible moves of both players and all the possible corresponding 
situations is called a game-tree or an and/or-tree. A path of the game tree represents 
a play of the corresponding game-frame. The winning condition can be represented 
by a set of paths per players leading to winning. Thus a tree represents a game-frame. 
Marking out the winning paths of both players we get the tree representation of 
a' game of the given game-frame. 

Note that the representability of a game by a tree means that the game is of 
full information, i.e. the players have full information about the course of the 
game because each node of the tree includes the history of its acces since each node, 
except the root, has exactly one predecessive node. 

B -

B -

A -

B 

A 

A 

Fig. 1 
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To illustrate the abovesaids let us see the game-tree (Fig. 1) of the game Last 
One Loses for the case when the players begin with five chips in the pile. The nodes 
are labelled by the number of the remained chips in the pile. At alternate levels 
of depth in the tree, alternate players choose which move to make. To be definite 
we suppose that player A moves first. Each depth level is labelled by the name of 
the player who has the next choice at that level. 

Since the so far mentioned type of game is a basic means of the theory of pro-
gramming to be developed and since we wish to execute the investigation within 
a mathematical frame it is necessary to provide the mathematical definition of 
the basic notions of the games. To introduce games as mathematical objects we 
use their tree representation. 

Let N be the set of natural numbers and let N* denote the set of all finite se-
quences consisting of the elements of N. A denotes the empty sequence. 

Let us take the following functions: 

~ pair: N*XN — N* 

left: N*\{A} - N* 

right: N*\{A}^N 
fO if v = A 

length (v) - yength Qgj-t ̂  + j otherwise 
for any v£N*. 

Intuitively speaking by the use of the function pair we can construct a new 
sequence if we add a natural number to a given sequence from the right side. The, 
functions left and right provide the decomposition of sequences. 

Definition 2.1. A set VcN* is said to be a tree iff the following properties 
hold: 

(0 Aev, 

(ii) if v£V and v^A then left(v)£V. • 

Example 2.2. Let us consider the following tree in graphical representation 
shown in Fig. 2. 

According to our definition this can be represented as the following tree: 
{0, 01, 014, 0148, 015, 02, 026, 0269, 03, 037}, where 0 stends for A. 

The graphical representation of this tree is shown in Fig. 3. • 

Let v, u>6 V. If left (w) = v then w is a successor of v and v is a predecessor of 
w in the tree V. 

The set of all successors of a node v in V is 

Sy(v)= {w£V\ left (w) = v}. 

Let Wa V be such that it satisfies the conditions (i) and (ii) of 2.1. Then W is 
a subtree of V. 
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Definition 2.3. A subtree Wcz V is said to be a path of V iff the function 
left: W\{/1}— W is an injection. 

Definition 2.4. Let V be a tree and C c V. The pair (V, C) is said to be a 
game-frame. • 

The above defined game-frame provides frame for games of two players with 
full information. Let Mr. A and Mr. B be the players. The set C indicates those 
nodes of the tree V in which player A makes moves. Thus a (V, C) game-frame 
provides the following course. The starting point v0=A, for an arbitrary node 

Fig. 2 

0 1 4 8 

vn if v„£C then it is A's turn and he can choose one of the alternatives and the course 
is driven into the corresponding node of Sr(vn). If vn^C then it is B's turn and 
the move is analogous to the above situation. 

A course in the game-frame (V, C) is a path. Along a course there are the follow-
ing possibilities: 

(i) the course is finite, i.e. neither A nor B can move further because the 
corresponding set of successive nodes is empty; 

(ii) the course is infinite, i.e. A and B can move further in every node. 
Thus a game course of the game-frame ( V, C) is a finite or infinite path in the tree V. 

To have a game in the frame of a given (V, C) a winning condition is needed. 
According to the aboves the winning condition can be given as a set of those paths 
in V along which the player, say A, wins. Thus let rA and rB be sets such that 
rA n r B = 0 . We say that rA(rB) is the set of winning paths in V of the player A(B) 
if it contains those paths along which player A(B) wins. If the course of the game 
provides such a path that belongs neither to r A nor to r B we have a play which is 
draw. We note that there is a lot of different possibilities to give the sets r A and 
rB. For example it may be the case when player A aspires not to win as well as 
not to lose. This means that A wishes to prevent the winning of player B. In such 
cases it is quite enough to give the set r B . The set r A is unnecessary because any 
path that does not belong to f B is satisfactory to player A. 

Definition 2.5. Let (V, C) be a game-frame. Moreover, let rA and rB be the 
set of all winning paths of the players A and B respectively. The quadruple 91 = 
=(V, C, f A , rB) is said to be a game of the game-frame (V, C). • 
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A player can move in such a way that he decides in advance which alternative 
he chooses in each possible situation. This means that the player uses a special 
set of rules that tells him what choices he should make for all situations that might 
arise during the course of a game. This set of rules is called a strategy which is 
definable by mathematical tools. 

Definition 2.6. Let (V, C) be a game-frame. A function str defined on C is 
a strategy of player A for the game-frame ( V , C) iff str (v)£Sv(v) for every v£C. 

• 
The other player's strategy can be similarly defined, but we do not need it. 
The function str gives the successor for each vZC and it seems that this depends 

only on v. However, remember that each node v includes its prehistory. 
The strategy of player A defines what move he has to make when he achieves 

a situation v where his turn is the next. From the above definition follows that 
a strategy provides the moves in each possible statement many of which do not 
appear during a game because the player never reaches them if he plays according 
to the given strategy. 

So it is quite natural to define the strategy in a less redundant way, namely 
considering only the subtree that can be potentially arisen by using the strategy. 

Definition 2.7. Let str be a strategy of player A for the game-frame (V, C). 
A subtree Rstrc V is generated by the strategy str iff it has the following properties: 

(i) if v£Cf)R then SRstr(v) = {str(v)} i.e. v has exactly one successor in Rstr 
that is picked up by str, 

(ii) if v£R\C then SRmtr(v) = Sy(v). 
This subtree Rstr is unique. • 

Thus if player A makes moves in accordance with his strategy str, then during 
a course of the game-frame (V , C) any of the paths of Rstr can be realized. However 
since the moves of A are determined by str, player B can choose any of his alterna-
tives. Thus B can realize any of the paths of RstT. According to the aboves it is quite 
natural to define a strategy of the player A for a game-frame (V, C) by means of 
an appropriate subtree of V. 

Definition 2.8. Let (V, C) be a game-frame. A subtree RczV is said to be 
a run of the game-frame iff the following properties hold: 

(i) if v£CP\R then there is a unique successor w of v in R. (I.e. there is a unique 
w£R such that left (w) = v.) 

(ii) if v£R\C then SR(v) = Sv(v). • 

It is obvious that for any run R there exists a strategy str of player A such that 

Note that for a given run R the appropriate function str is not unique because 
while defining it we consider only its subdomaine RC\C and its values on C\R 
can be arbitrary. So far the strategy has been introduced fdr a game-frame (V, C). 
Considering winning conditions, i.e. a game (V, C, TA, TB), we can speak about 
winning strategy or not losing strategy. A strategy of player A is winning (not losing) 
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iff moving accordingly the course of game realizes only paths belonging to r A 
(not belonging to r B ) . I.e. if n c R then (71$ r B ) . 

For the illustration of the so far introduced notions let us see the following 

Example 2.9. Let us consider the game Last One Loses with game-tree given 
in Fig. 1. In this case there is one pile of five chips and players have the alternatives 
to pick up from one to three chips at a move. The frame of this game is the pair 
(V, C), where 

V = {5, 54, 543, 5432, 54321, 543210, 54320, 5431, 54310, 5430, 542, 5421, 54210, 

5420, 541, 5410, 53, 532, 5321, 53210, 5320, 531, 5310, 530, 52, 521, 5210, 520}, 

C = {5, 543, 542, 541, 532; 531, 530, 521, 520, 54321, 54320, 54310, 54210, 53210}. 

The winning condition of the game Last one Loses is as follows: 

r A = {(5, 54, 543, 5432, 54321, 543210), 

(5, 54, 543, 5430), 

(5, 54, 542, 5420), 

(5, 54, 541, 5410), 

(5, 53, 532, 5320), 

(5,53,531,5310), 

(5, 52, 521,5210)}. 

r B consists of all paths not belonging to r A . 

Let us consider the following run R: 

R = {5, 54, 543, 5430, 542, 5420, 541, 5410}. 

A corresponding winning strategy sir of player A is the following: 

V 5 543 542 541 54321 532 531 521 

sir (V) 54 5430 5420 5410 543210 5320 5310 5210 

3. Logic and arithmetic 

3.1 Logic 

We intend to develop the theory of nondeterministic programming within 
the frame of classical first order mathematical logic. To be able to do so we recall 
the basic notions and definitions that we need to reach our aim. 

Definition 3.1. A similarity type 9 is a pair of functions (SR , 9F) such that 
rg 9f<Z(d, rg 9KC<»\{0}, do 9 f f l d o 9 * = 0 and |do • |do The elements 
of do BR and do &F are called relation and function symbols respectively. DR and 
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9f give the arity of symbols. The 0-ary function symbols are called constant 
ones. • 

For the following we fix a similarity type 9 for which = £ do 9R and 
9r(=)=2. 

Definition 3.2. A S-type model 91 is a function on do 9R U do 9F U {0} such that 
(i) 9l(0)=/i is a nonempty set, which is called the universe of the model, 

(ii) 91(е)сэк<еМ for any do 9R, 
(iii) 3 l ( = ) is the diagonal relation on 2A, 
(iv) Щ/): W>A^A for any f£do9F. 
In a special case °А = Щ i.e. if 9F(f)=0 then 9 l ( / ) can be identified with 

an element of A. • 

In general instead of 91 (s) we write s<a where i£do do 9F. A 9-type model 
will always be denoted by a German capital and its universe by the corresponding 
Roman capital. M 9 denotes the class of all 9-type models. 

Now we turn to the definition of the syntax. 

Definition 3.3. Let V be any denumerable set. Let be the minimal set sat-
isfying the following properties: 

(i) K c 7 T , 
(ii) for any n and f£9F

1(n) if r l s . . . , т „ e l j then / (т х , 
The elements of T% are called terms. 

Take Al = {g(r1, . . . , т„) |д£9~ 1 (п) , n£a>, The elements of A% 
are called atomic formulas. 

The set F% of 3-type formulas with variable symbols belonging to V is the 
minimal set satisfying the following properties: 
' (0 A Z c F Z , 

(ii) if <p,\l/£Fl then ( p h ^ d F l , • 
(iii) if q>£FZ then IqXiFg, 
(iv) if <p£Fg and v£V then 3vcpZFg. 
Let Ql be the minimal set satisfying the above conditions (i)—(iii). The elements 

of are called quantifier free formulas. • 

We use the following abbreviations 
a) (рМф for ~\(~\(pA~]\j/), 
b) for A(p), 
c) tp~~ф for 1(1фЛф)Л1(1<рЛф), 
d) \/v(p for ~~|3v~\(p, 

where v£ V and (p,\j/£Fl. 
For any s£Tl{JF$ let Var j denote the set of free variable symbols occur-

ing in s. 
For any v£V, x^Tl and cp(z let <p[ r/v] be the formula obtained from <p by 

replacing every free occurrence of v in (p by т so that there would not be a collision 
between the variable symbols of т and the variable symbols of cp occuring with 
quantifiers. 

Now we define the semantics of the first order language by defining a relation 
N s C M a X i t f -



346 T. Gergely and L. IJry' 

Definition 3.4. Let 91 £M 9 . A valuation of V in 91 is a function q: V— A, i.e. 
a valuation is an element of v A . Now we extend the valuation q to a function 
q: taking: 

(i) q(v) = q(v) for every V\ 
(ii) q{f{xx, ...,xn))=f<a(q(x1), ..., q(x„)) for every n£co, f t ^ f n ) and T1; . . . , 

Instead of q(r) we write x[q]. It is clear that T[q] depends only on the values of 
Var r. So sometimes we use the following notations: 

(i) a variable symbol is often written underlined by a waved line to denote 
its value by a given valuation. E.g. if q is a given valuation then we write x instead 
of q(x); 

(ii) let a£A denote an arbitrary finite sequence of elements from A. For any 
tc Tl supposing that a contains at least as many elements as Var t we write x [a] 
instead of x[q]. 

The validity relation is defined by the following well known 

"Definition 3.5. Let 9i£M 3 be arbitrary. Moreover, let 91 )=&<zF%X.yA be the 
following relation: 

(0 •••, O f ? ] iff (^[<7], ..., xn[q])iQ<a for any atomic formula;. 
(ii) 9tN9(<pVi/0[?] iff 91 ̂ <p[q] and 9it 

(iii) 9 IN 9 (1 <P№ iff <»[?]; 
(iv) 9It=sBv<p[q] iff there is a valuation q*: V—A such that i ' V x M ^ t f t K N » 

and 91 <?[?*]• 

91 \=9<p[q] means that the formula <p is valid in the model 91 by the valuation q. 
In the end 91|=9<p iff for every valuation q£yA, 9 1 1 = 9 • 
So the 3-type first order language |=9) has been defined. If 

it does not cause ambiguity we write f= instead of |=9. 
Now let AxaFl be an arbitrary consistent set of formulas. Restricting Ma 

to Md(Ax) = M3|9( |= Ax} from the language Z,9 we can define a new first 
order language L*x = (Fl, Md(Ax), t= ), which consists of the class of the models 
of Ax only. Further on in this study while an Ax is considered it is always supposed 
to be consistent without claiming this explicitly. 

The notion of definiability plays a main role among the tools of our investiga-
tion. We recall that this notion is used in mathematical logic in two different senses. 
In the first one it is considered when and how new symbols with given properties 
can be added to a fixed language. This is the topic of the Definition Theory. For us, 
however, the other sense which is interested in knowing whether a function or 
a relation given in an arbitrary model can be expressed in a fixed language is more 
useful. We introduced the main definitions corresponding to this second approach. 

Let us fix a language L 3 and let 91 £M 9 be arbitrary. 

Definition 3.6. A partial function g: "A—A is said to be parametrically defin-
able in 91 iff there is a formula <p£ such that 

(i) Var (p — {xt, ...,x„,y, a1; . . . ,am}; 
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(ii) There are a1 , . . . , am£A such that for any 

x£A and y£A, 21 N <p[x, y, S] iff g(x) — y. 

Similarly, a relation Q(Z"A is said to be parametrically definable in 21 iff there 
is a formula (piFl. such that . 

(i) Var (¡p = {x1, . a x , . . . ,am}; 
(ii) There are a1, . . . , am£A such that for any x£A, 21N q>[x, a] iff x£q. , 
A partial function g or a relation Q is definable iff the appropriate <p does not 

contain a/s. • 

We say that the above <p parametrically defines the partial function g or the 
relation Q in 91. 

Now we also fix an Ax<^F%. Let us suppose that for any 9 l £ M d ( A x ) a func-
tion gat: "A-*A (a relation ¡ i a c M ) is given. Take G = {g<i^\£Md{Ax)} {R = 

Definition 3.7. G (or R) is parametrically definable in Ax iff there is a formula 
(p which parametrically defines gn !(or 0ai) in 91 for every 91 £Md(Ax). 

If the set {gai191£ Mdx)} ( { J 21 £Md(Ax)}) is parametrically definable and 
the definition is given by the formula (p then the function symbol g (the relation 
symbol Q) is said to be universally definable in Md(Ax). 

Example 3.8. Let q>£be such that Var cp = {x1, ..., xk, y}, and suppose that 

Ax t= V*!. . . xk My Vz((pA(p[z/y] — y = z) (1) 

If so then in every model 91 of Ax cp defines a partial function in the following 
way: 

(i) x € d o / iff Ax |= 3ycp[x], 

(ii) / (x ) = y iff Ax N <p[x, y]. 
N By (1) this definition is good and thus we use the following abbreviation: 

d 
P a r c ( ? = Vx My Mz(cp/\<p[z/y] — y = z). • 

We say that the above q> parametrically defines G or R. If q> contains no at's 
we omit the adjective "parametrically". 

Remark 3.9. If the above G is definiable in Ax and every is total then a new 
function symbol g "can be added" to BF of arity n with the following new axiom 

AxB: MxM y(y = g(x)** cp(x, y)) 

where cp defines G. So we get a new language Li*', where Ax'=AxU {Axg}. The 
phrase "can be added" means that for any cp^Fl, Ax'l=<p iff Ax\=<p. 

The details see in Section 2 .9 of MENDELSON (1964) . 
A similar fact holds for the above R. 



348 T. Gergely and L. IJry' 

3.2. Arithmetic 

As known arithmetic plays an important role in computer science. It provides 
an unambiguous characterization of any formal language syntax. This permits 
the widespread use of computers since their functioning is based on natural number 
representation. While the numeric use of computers arithmetic plays an important 
role since the data form a structure satisfying the basic features of arithmetic. Arith-
metic is also important to formalize our intuitive concept about discrete time con-
nected with computer functioning. Thus in our investigation of programming 
theory arithmetic plays an important role. Namely, it provides formal tools to 
characterize sequences which prove to be useful in the study of program properties. 

Let t] be the type of arithmetic, i.e. do rjR = {=}, dorjF={0, 1, + , •} and 
i iF(0)=»jF(l)=0, > ? F ( + ) = f / f ( . ) = 2. 

For the axiomatization of the arithmetic we choose the well-known Peano 
axioms: 

= ~1 (y + 1 = 0) 
d 

A2=V+ 1 = w + l — v — w 
d A3 =v + 0 = v 

A4=V + (W+1) = (D + W)+1 

AB=v-0 = 0 
d 

Ae=v(w+1) — (v-w) + v 

A 7„ = <p [0/Y] A V v (<p q> [Y +1 /v]) ^ V vcp 

Take I={Altp\<p£F% and v£ Var (pj. The set of Peano-axioms is 

PA = {A/10 ^ i ^ 6 } U / . 

For detailed analysis of PA see e.g. MENDELSON ( 1 9 6 4 ) . 

As usually we use the following abbrevations 

x^y instead of 3 z ( z + x=y), 

x<y instead of 'x^yA lx=y. 
We recall that for every infinite cardinal there are at least continuum number 

of non-isomorphic models of that cardinality of PA. For every <$l£Md(PA) its 
smallest submodel Ac satisfies PA and these submodels are isomorphic to each 
other and they are called standard models of PA. We would like to consider only 
standard models but unfortunately that is impossible at a first order language because 
there is no first order formula describing exactly the standard part of the models 
of PA. Thus if we are interested whether a first order formula is valid then we must 
consider not only standard models but nonstandard ones as well. 

As usually 91 denotes the fixed standard model of PA and N stands for its 
universe. 

For handling of non-standard models see e.g. ROBINSON (1966 ) . 
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3.3 The role of time in the theory of programming 

As mentioned already in Introduction often not only the output result of a 
computing process is significant, but its temporal course too. Thus we would like 
to develop such a theory of nondeterministic programming that handles both data 
and time explicitly by the help of first order tools. 

The representation of data within the frame of first order logic is straightfor-
ward; it can be done by the universe of the classical models. However relations 
and functions of the models correspond to data properties and to their possible 
changes respectively. Thus from the point of view of data computers are represented 
by the models of first order languages. Thus the previously mentioned representa-
tion neglects the explicit time representation. How to represent time is a question 
that should be looked at in details. But the functioning of computers is controlled 
by an "inner clock" so the change in data happens in time. 

We assume that a change in data corresponds to a command which is executed 
for a timecycle of the machine. Let us denote the set of these disjoint time intervals 
by T. From theoretical point of view the time intervals of T can be considered as 
time moments supposing that the change takes place infinitely fast. We also assume 
that a machine works as long as it is needed i.e. as long as it is required by the 
program. This means that a machine itself can work infinitely long never stopping 
due to a break-down. However it stops only if it is required by the program and 
by this the program execution terminates. Let us consider the simplest case when 
there are only assignment statements. 

The execution of a program on a machine is but the execution of assignment 
statements step by step i.e. iteratively. The transition of states of the machine rep-
resenting the change in data is defined by the transition function. This function 
can be defined by induction on T as follows. In case we already know the state 
S, of the machine at moment t then the state at the next moment i + 1 can be defined 
by the state S, using the concrete command that is to be executed in the moment t. 
To describe this by mathematical tools the closeness of the transition function 
under iteration (recursion) must be ensured. 

Thus to represent time an arbitrary structure can be used which provides 
the starting moment, the generation of the next moment and the induction by 
succession. For example if we take a{(0, 0), ( ', l)}-type structure X = (T, 0 , ' ) on 
which the induction works well then this can be used to represent time. Here T 
represents the set of time moments. Note that further on it will be also supposed 
that on the set of time moments T the usual addition and multiplication are also 
considered and the time moments are in order. 

Thus to represent discrete time the use of the structure 91 = (N, 0, 1, + , •) 
of natural numbers is obvious. However our main standpoint is to use classical 
first order language to describe models. Thus we cannot restrict ourselves to the 
standard model but any model X of an appropriate first order axiomatization 
of is allowed. Consequently beside N, which is very close to our intuition, very 
strange sets of time moments are allowed as well. Especially such sets T in which 
"infinitely large" (or non-standard) time moments also occur. 

As usual the theories of programming developed so far use either implicitely 
or explicitely the set of natural numbers N to represent time. 
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So our assumption that the structure representing time has to satisfy only one 
condition, namely the axiom scheme of induction, seems not to be very close to 
our intuition. Thus let us go into a bit more details. 

Our first notion is purely theoretical. If the iteration is the essence of programm-
ing then to represent time any such model can be chosen that provides to follow 
the changes done by iteration. So on this structure the induction must be allowed. 
Hence developing a theory of programming we have no reason to introduce further 
restriction for time (e.g. to suppose that time moments belong to N). 

If we have a practical look at it then the situation seems to be totally different. 
Namely, in practice there exists no procedure containing non-standard number 
of steps. So the "infinitely large" time moment seems to be a fiction. However, if 
we consider the history of mathematics this opinion can be dissipated. That is, 
infinitesimal values play an important role in the history of mathematical analysis 
but their reason for the existence was only recently observed by A . ROBINSON 
and his followers. 

Non-standard analysis is applied in computer science as well. It provides some 
very effective methods to solve differential and integral equations. 

In order to develop a theory of programming being able to analyse the real 
situations of programming practice there is no reason to restrict it to the considered 
notions of "standard and real" machines and time. It is not our aim, of course, to 
investigate machines with non-standard time. Nevertheless if we have a theory of 
programming which can handle non-standard time as well then the execution of 
a program being correct within the frame of this theory will be correct in any machine 
with any type of time, especially in the machines with standard time. 

Indeed well written and well used programs, in our opinion, can be executed 
in machines with arbitrary type of time, though programmers having developed 
the programs know absolutely nothing about this. This is so because programmers 
write down programs thinking in first order language though always imagining 
the standard time (i.e. the set N) to it. These impressions, fortunately are not em-
bedded in the programs! 

It may seem that the first order language is not sufficient to think about pro-
grams for it might provide far too many restrictions. However we have proved in 
GERGELY and U R Y ( 1 9 7 8 ) that within the frame of classical first order logic for the 
sequential and deterministic programming a theory of programming of unified 
attitude can be developed and this frame fully satisfies the solution of the tasks 
of a programming theory. Present work shows that this frame is completely satis-
factory for developing a theory of non-deterministic programming as well. 

Now we give the mathematical description of the programming situation. Let 
9 be an arbitrary similarity type containing the type q of arithmetic (r/c!)). In-
tuitively 9 provides the name of those relations and functions which have to be 
understood by the computer. The properties of relations and functions are de-
scribed by the set of formulas AxczF%. The set of axioms Ax expresses the ex-
pectations with respect to data and "hardware". Intuitively we always suppose 
that PAczAx i.e. the computer "understands" the arithmetic in the form of Peano 
axinmatization. 

According to the above saids it is clear that at least two sets are needed to charac-
terize a computer: — the set A of possible data and the set T of possible time 
moments. We intend to speak of both time and data in a first order language. Since 
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time and data are of different entities it is advisable to distinguish their languages 
while describing a computer. This could be done by the use of a two sorted first 
order language, where the first sort corresponds to time and the second one to 
data. If different data types were allowed then we need a many sorted first order 
language. The mixed sorted functions and relations describe the connection be-
tween time and data. 

For the sake of simplicity let us stick to the frame of the classical (one sorted) 
first order language and to describe time we use the same language as for data 
representation with the only difference that a new unary relation symbol £ is intro-
duced. By this we supply our models with an inner time supposing that time can 
be modelled by data. Of course not each data type can be satisfactory for this aim, 
e.g. the Boolean data type is not. 

Already in this approach we seem to meet the advantages provided by the ex-
plicit handling of time. Therefore, it was not necessary to introduce and use the 
many-sorted first order language. 

To describe time we introduce a new unary relation symbol £ (£ do S and let 
us add £ to the type S. So, we have #* = $U{(i, 1)}. Expectations with respect 
to time beyond data would be given by a set of axioms Ax* (Ax cz Ax* с t%). Of 
course the set Ax* is larger than the set of axioms Ax expressing the expectations with 
respect to data. To formalize the minimal properties expected from time we intro-
duce the following notations £*(x)=Bf (x^ /A( ( i ) ) (where the relation symbol s 
is the ordering used in PA), 

B0 = (*(0), 

The fulfilment of the formulas B0 and Bx provides that the set of time moments 
is not empty. The induction under (* can be formalized as follows: 

B2ip = [(p(0)AVx(C(x)Axp(x) - ср{х+Щ - Ух(Г(х) - <?(*))• 

Bx and B'2v s provide the closing under addition and multiplication. 
According to the abovesaids with respect to time we always suppose that £* 

satisfies PA*, where 
PA* = {B0, B1}{J{BbfWdFl,, x€Var q>}. 

Definition 3.10. A set of formulas Ax*cF[* is said to be a 3-type system if 
PA* a Ax*. siC is a model with inner time Тш of the system Ax* if ll^Ax* and 

Examples 3.11. (i) Let Ax=PA and Ax* = PAU{\/xC(x)}UPA*. In this 
case any model 4i^Md(PA) will be the model of Ax* if С is interpreted by the 
universe A itself. The model 2Г provided by such a way will be evidently a model 
of Ax* with inner time A. 

(ii) Let т1 = т2 be a Diophantine equation which has no solution in N, but 
PA&LT^YZ. L e t AX* = PAUPA*U{\/XC*(X)-~1-C1(X) = T:2(X)}. U s i n g t h e m e t h -
od of (i), from a model 4i£Md(PA) a model Ul' can be arisen, which would be 
a model inner time of Ax* if the equation т г =т 2 has no solution in A. 

4 Acta Cybernetica 
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(iii) Let Ax*=PAUPA*, and let 216Md(PA) be arbitrary. 
It is obvious that if ( would be interpreted by the standard part of the model 

21 (i.e. by N) then the model 21' arisen by using the method of (i) would be a model 
of Ax* with inner time N. • 

Remarks 3.12. (i) In Definition 3.10 it would be satisfactory to claim that 
Ax* h- PA*. Thus in Definition 3.11 (i) Ax* = PAU{Vx((x)} would be enough. 

(ii) Intuitively speaking a 9-type system Ax* provides the description of the 
hardware of a computer. It fixes those features that characterize the static (Ax) 
and the dynamics of the computer. Ax* may have a lot of models which 
are usually different but it does not completely define a machine. However only 
those features of machines are interesting in our investigation that are true in 
every model of Ax*. • 

3.4 Recursive definability 

Let Ax* be a 9-type system. A fairly often used method of implicit definition 
is the recursive one. In order to understand this situation in the case when Ax* 
refers to time we need the following. Let g be a new k-ary relation symbol not 
occuring in 9* (g$do9*). Let <p(g) denote the inclusion <p€.Fa*u{((!ifc)} i.e. cp(g) 
is a formula of the syntax the type of which is the extention of 9* with the /c-ary 
relation symbol g. Moreover we need a tool by which we can reduce a formula of 
Fa*u{(.<>,k)} t o a formula of Fjf*. For this the following type of substitution can 
be used. 

Definition 3.13. Let <p€ ¿T*u{re j t )} and let F^ with Var / = {.x ,̂ . . . , xk}. Let 
cp[yjg] be defined by the following way: 

(i) if g does not occur in q> then <P[XIQ] = <P, 
(ii) if <p = g (rlt...,rk) then <?[*/<?] = «L 

(iii) if <p = <p1()<p2 where <) is either A or V then <P[XIQ\ = (PI[XIQ\QVAXIQI 
(iv) if <p=l\l/ then <p\xle]= labile], 
(v) if (p = Qvij/ then <p[x/g] = Qv\l/[x/g] where Q is either V or 3. • 

We are interested whether the equation g-*-*<p(g) has a solution in Ax* i.e. 
whether a formula x£Fa* exists such that 

Ax* |= x** VlxlQl 

In this case we say that x is a solution of the recursive equation g-*(p(g) in Ax*. 
Moreover for some types of formulas in F^tu{(e,k)} there exists a minimal 

solution of the above recursive equation. 

Definition 3.14. A formula <p£ia*u((0,fc)} w ' t h Var <p={xlt ..., is a pedigree 
formula iff there is a formula i//6/"j/»(J{(Si4)} such that 

(i) AX*\=9* CP~\L/\ 
(ii) I¡j has the form I/' = I/'0VI//1, where g does not occur in ip0 and the symbols 

~1 and V do not act on g in i 
(iii) all occurences of g in ip contain only variable symbols; 
(iv) bounded variable symbols of ip are distinct from each other. • 
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The forthcoming theorem shows the recursive definition to be allowed, pro-
vided that we make only "positive" statements. This latter is contained in condi-
tion (ii) of the above definition of pedigree formula. It is needed in recursive defini-
tion to consider only already existing objects and not to speak about such that 
have not occured so far but may do so sometimes in the future. So for example 
we cannot say which objects should not belong to a recursively defined set. So the 
condition (ii) provides the constructive feature of the recursive definability. The 
conditions (iii) and (iv) are merely technical. If a formula <Рб^Г*и((еД)} satisfies 
conditions (i) and (ii) then it is already a pedigree formula, of course with another 
ф as if q> satisfied conditions (iii) and (iv) as well. 

Theorem 3.15. For any pedigree formula <р€ з̂'*и{(еД)> there exists a formula 
X^Fl* such that 

(i) Var /1()=Var <p; 
(ii) Ax*\=x<i>*—<pixjg] i-e- X<p is a solution of the recursive equation owp(o) ; 

(iii) if x is any other solution of the recursive equation, i.e. it is a formula of 
such that Ax* )= х~-*(р[х/ в] then Ax*t=x<p~~X> i-e- X? is the minimal solution. 

Sketch of the proof It is similar to that of Theorem 3 . 4 in GERGELY and U R Y 
( 1 9 7 8 ) . It uses the fact, that there is a formula ф — ф0Чф1 such that the properties 
(i)—(iv) of Definition 3.14 hold. By using the property (i) and the following fact: 
if Ax*|= for any срх, (p.2d /Т»и{(е>Д)} then for any with exactly к vari-
able symbols: 

Ax* \=^<PMQ]**<PMe] 

to prove the theorem it is enough to construct such a formula x<p that Ax* И x 
.xje]- The idea of the construction is that xv is either ф0 or it builds up from 

ф0 applying фг (-many times. The building up of x<p can be done similarly to that 
o f GERGELY a n d U R Y ( 1 9 7 8 ) . • 

Abstract (to Part 1) 

Nondeterministic programming play an increasing role in the theory of programming. This 
role is discussed in Section 1 together with the role of classical first order logic in developing a 
theory of programming. Two kinds of nondeterminism are considered: any and every. The un-
certainty in programs that use both any and every is quite analogous to that of game situations. 
So in our theory games are the centre of interest. The basic constructions of games are introduced 
in Section 2. The theory will be built within the frame of classical first order logic. The basic notions 
and constructions needed to develop this theory are given in Section 3. 
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