
Nondeterministic programming within the frame
of first order classical logic, Part 1

B y T . GERGELY a n d L . U R Y

1. Introduction

1.1 Nondeterminism in computer science

In computer practice a lot of phenomena have arisen that deviate from the
deterministic attitude forming the base of traditional programming. These non-
deterministic phenomena may be due to varying reasons.

Considering the reasons three main types of nondeterminism can be distin-
guished. The first type of nondeterminism is quite independent from the will of
programmers and its causes are hidden in the construction and functioning of
computers. Due to this nondeterminism almost every program has some uncertainty
while execution. These could be caused by power cut, current trouble, machine
break-down or by any other unforseeable reason. If the computer works in time-
sharing mode the uncertainty further increases and the behaviour of a program
will depend on the other programs executed alternately with it. Moreover it de-
pends on the memory requirements of the programs, on the number of peripheries
at disposal, etc. In computers allowing parallel computations further causes of
uncertainty interfer, namely the speed difference of certain processes and com-
munication, the noise level of the communication channel, the concurrency for re-
sources etc. In interactive mode another type of uncertainty is caused by the
randomness of interactions affecting the program under execution.

We may call probability programming the methods that consider the above
uncertainties and its theory should be based on the usage of the tools of mathe-
matical statistics and those of theory of probability. Random events occuring in
program execution are handled by these tools. In this type of programming the
commands do not have a uniquely defined result, only its distribution is known.
Thus the running of a program can be described by using stochastic process e.g.
by using either Markov or semi-Markov chains. One of the main aims of the
theory of such type of programming is to minimalize the expectable number of
failures.

The second type of nondeterminism is already connected with the programmer's
will. The programmer's attitude is still deterministic, but he uses probabilistic

334 T. Gergely and L. IJry'

methods containing well defined randomness in the solution of some tasks. A wide-
spread method of this type is connected with the use of random number, generator.
The programming style using this method is deterministic and it also supposes the
determinism of the computer, however, for the solution of certain tasks it uses
one of the Monte-Carlo methods.

The third type of nondeterminism is connected with the essential and logical
uncertainty enclosed in the solutions of tasks. It embodies two kinds of uncertain-
ties. The first one occurs in such a situation of problem solving when there are more
alternat ives selecting from which any, the result will be produced without difficulty.
The second kind of uncertainty is connected with such a situation where only certain
alternatives lead to correct results but, in advance, we do not know which one.

A programming style which considers the above mentioned two kinds of un-
certainties suggests a nondeterministic attitude in contrast with the deterministic
one of the traditional style of programming. The main difference between these
two kinds of attitudes is that the nondeterministic one considering different kinds
of choices does riot specify how to make them though the deterministic attitude
does not leave the question how to make choices (if there are any) unspecified.
Programming theory connected with the third type of nondeterminism is in the
focus of our further investigations.

1.2 Some reasons of interest in nondeterministic programming

Recently nondeterministic programming has attracted more and more atten-
tion. It provides the programmers to concentrate on some important questions
about deterministic programs without specifying details irrelevant to the questions
to be analysed. Thus this programming attitude can be used to reason about deter-
ministic programs.

The possibility to consider actions not describing their details makes the non-
deterministic programming very useful in the field of Artificial Intelligence, e.g.
in natural language understanding, in problem solving, in robot planning, etc.
E.g. it suggests a fractional method of problem solving or robot-planning as follows.
First a global algorithm — a "global plan" can be designed as a nondeterministic
program, then, by analyzing this program and completing it with appropriate parts
we get a concrete deterministic program, i.e. a complete detailed algorithm to
solve the task.

One of the most significant reasons why nondeterministic programming be-
comes more and more important is that it plays a significant role in the elaboration
of the theory of interactive and parallel programming. Most.of its applications are
connected with this area. See e.g. HOARE (1 9 7 8) , MILNER (1 9 7 3) , OWICKI and GRIES
(1 9 7 5) , PLOTKIN (1 9 7 6) , e t c .

In view of aboves it is quite natural that nondeterministic programming plays
an increasing role in both the theory and practice of programming.

The aim of our investigation in the present work is the elaboration of a mathe-
matical theory of nondeterministic programming which can handle both syntax
and semantics by using mathematical tools and provides tools to speak about
program properties and to prove them. The elaboration of this theory will be done
by using the approach developed in GERGELY and U R Y (1 9 7 8) .

Nondeterministic programming within the frame of first order classical logic 335

1.3 Some words on our approach

The essence of the programming situation to be considered is that beside
programming language such a new language arises that is suitable to describe the
properties and the meaning of programs and our expectations towards programs
in an unambiguous way. Thus this new language is a descriptive one in contrast
with the programming language which serves to give instruction, i.e. commands.
To assure unambiguity the descriptive language should have well defined and exact
semantics beyond the syntax.1 The syntax should be suitable to describe program
properties and with the power of proof to analyse whether certain features of pro-
grams correspond to the expectations given by the specification, i.e. to analyse the
correctness of programs. The semantics of the descriptive language should provide
unambiguous understanding of the meaning of programs, hence it has to be com-
patible with the semantics of programming language. There are two main possibil-
ities to give exact semantics. The first is to characterize programs according to the
question "what the program does?" the second is to do it according to the question
"how the programs do it?"

In programming theories we find the following three approaches for the
exact handling of semantics: operational, functional and resultative. The first aims
to give a direct answer to both questions to what and how. The resultative or, in
other words, axiomatic semantics neglects the question how and characterizes only
the main properties of the change of data environment of the program produced
while execution. Functional or, in other words, denotational semantics also gives
the meaning of programs answering both questions, though it does it in an
indirect way.

We wish to elaborate such a theory of nondeterministic programming which
would be also a useful base for developing the mathematical theory of interactive
and parallel programming. In order to understand the main features of interaction
and parallelism in detail the execution processes themselves are to be considered.
This permits to follow up the specific features connected with the mutual effects
of the processes (e.g. communication, interaction). Thus operational semantics
seems to be adequate to our aim. To have this type of semantics first the question
what has to be answered by the characterization of changes in data caused by the
execution of program and, secondly, the flow of programming processes in time
has to be described to have an answer to the question how.

Thus the theory of programming to be developed has to have such a descrip-
tive language that is capable of describing and characterizing both the data en-
vironment of programs and the time related to program execution. The first re-
quirement is quite familiar with nearly every theory of programming, but not so
is the time consideration, for programming theories do not consider time explicitly
except for some of the most recent works.

Of course in the case of sequential programming the time aspects can be charac-
terized through the change of data without considering time explicitly. However
this approach is not applicable in those cases where time plays a primary and
independent role as e.g. in interactive, real time and parallel programming. Therefore
the programming theory to be developed here will contain tools that also provide
explicit time consideration.

3 Acta Cybernetica

336 T. Gergely and L. IJry'

1.4 The role of classical first order logic in a theory of programming

To develop a mathematical theory of programming that corresponds to our
aim the first problem is to introduce such a descriptive language that satisfies the
above mentioned expectation concerning the characterization of time and data
and it has to have exact and well defined semantics and appropriate tools to prove
different statements about the program properties. In the case of sequential deter-
ministic programming the first order classical language was quite satisfactory to be
a descriptive language for the corresponding theory of programming as it was
shown in GERGELY and URY (1 9 7 8) where the frame of classical first order mathe-
matical logic was used to develop the theory of programming.

In the present work we show that the above mentioned logical frame is sufficient
to develop the corresponding theory and the first order language can be used in
the role of the descriptive one for the case of sequential nondeterministic programm-
ing. Why do we prefer the classical first order language? Because
— it has a well defined exact and transparent syntax and semantics;
— it has a special branch, the model theory with very strong mathematical methods

to investigate semantics;
•— it has a well developed proof theory that offers effective notion of proof and

effective tools and methods for.proving;
— it is currently used in the research practice so its use is fairly familiar;
— it is the simplest one of the languages of mathematical logic by which a programm-

ing language can be investigated since the propositional language is not suitable
for this.

So it is justified to try to elaborate the mathematical basis of programming theory
within the frame of classical mathematical logic that is the most highly developed
branch of mathematical logic. This is encouraged by the fact that data environments
of programs can be given without major restriction of generality by first order
language.

In this work the mathematical foundations of programming theory, and the
elaboration of the theory itself is done by strictly keeping to the frame of first
order logic.

In the theory both date and time will be explicitly discussed by using first
order language.

1.5 A short survey

Nondeterministic programming is mainly used in the area of Artificial Intelli-
gence and in the investigation of parallel computation as it has already been men-
tioned. In connection .with the first area MANNA (1970) introduces a nondeterministic
programming language which is very similar to the language to be introduced here.
It contains both kinds of choices, but it does not allow the description of time
conditions.

Several works are devoted to the nondeterminism in connection with parallel
computation. In the early work of ASHCROFT and MANNA (1 9 7 0) parallelism has
already been explained in terms of nondeterminism. Milner handles nondeterminism
by using oracles. In the case of two computing processes executed parallelly an

Nondeterministic programming within the frame of first order classical logic 337

oracle is such an infinite sequence of 0 and 1 that be however far contains both
elements 0 and 1. By this oracle the execution of two parallelly computed processes
can be described so that 0 and 1 denote which process is at work. The theory using
oracles is described in MILNER (1 9 7 3) and (1 9 7 8) .

A very elegant mathematical theory of the same handling of nondeterminism
is developed in PLOTKIN (1 9 7 5) . Developing the theory of programming both MILNER
and PLOTKIN use denotational description of semantics of nondeterministic prog-
rams. EGLI (1 9 7 5) also uses this type of the description of semantics.

An axiomatic definition of semantics is given in OWICKI and GRIES (1 9 7 6) .
The parallel programming containing nondeterminism suggests to introduce

effective nondeterministic elements into the language. The very simple command
choice S1, S2 has been replaced by the guarded commands introduced in DIJKSTRA
(1975) . In HOARE (1 9 7 8) and FRANCEZ et al. (1 9 7 8) input-output commands are
added to the guarded ones. Analogical commands are also introduced in MILNER
(1 9 7 8) . Not depending on the aboves we mention the work of HAREL and PRATT
(1978) where the execution of programs is supposed to be ambiguous and in the
descriptive language modalities are introduced in order to handle the ambiguity.
Thus by this descriptive language such statements can be expressed that "there
exists such a run...", "every run is such...". In this work the semantics is opera-
tional. An analoguous descriptive language is developed in MIRKOWSKA (1 9 7 8)
within the frame of algorithmic logic. Summarizing aboves we would like to em-
phasize that so far no work has been engaged in using tools to describe time con-
ditions explicitly. The problem of completeness is discussed only in HAREL and
PRATT (1 9 7 8) and MIRKOWSKA (1 9 7 8) . The previous shows that the introduced
descriptive language is complete with respect to arithmetics, in the latter it is proved
that the nondeterministic algorithmic logic is co-complete. We note that these two
results are really equivalent.

1.6 What is new and the contents of the work

The theory of nondeterministic programming is developed strictly within the
frame of first order classical logic. The semantics of nondeterministic programs is
described in an operational way by using a special type of games. A descriptive
language to describe program properties is introduced by using the classical first
order language. This descriptive language allows to describe and to speak explicitly
about both time and data.

Moreover the question of completeness is discussed and a complete calculus
in the spirit of Floyd and Hoare is introduced.

The first part including the first three sections contains the conceptual and
mathematical base providing exact tools to handle nondeterminism. Thus the next
section is devoted to the main tool of our theory to a special type of games. Section 3
contains the main notions of classical first order mathematical logic and arithmetic
and the representation of data and time in the frame of first order logic. Here first
of all the description of time properties is discussed in details. In Section 4 the basic
notions and properties of games are introduced within the frame of first order logic.
A very simple but powerful enough nondeterministic programming language is
introduced in Section 5. Its semantics is given by using associated games. With

3«

338 T. Gergely and L. IJry'

respect to nondeterministic programs many different questions can arise. Some of
them are given in Section 6. Here we immediately show that an adequate descriptive
language is needed to answer the questions for each one. Selecting two questions
in connection with partial and total correctness we give the appropriate descriptive
language and show that it is complete. In Section 7 we introduce a calculus which
is analoguous to that of introduced by Floyd and Hcare for the sequential deter-
ministic programming (see details in GERGELY and URY (1 9 7 8)) . In Section 8 we
illustrate the use of the calculus by some examples. Present paper consists of two
parts. The first one contains the first three sections.

1.7 Basic conventions

We use basic notations and concepts of the naive set theory in the usual fashion.
The notation {x\(p(x)} denotes the set of all x such that <p(x). Both inclusion and
proper inclusion are denoted by the same symbol c . The empty set is denoted
by 0. In the case of natural numbers for ordered finite set we use intervals defined

by [i, / 1 = {k\i=k^j}. The domain and range of a function / are denoted by d o /
and rg / respectively. f : A-+B denotes that / is a function for which d o f = A
and rgf=B. A function f : A-+B is injective if for any a, b£A if f(a)=f(b) then
a=b. It is called bijective if it is injective and f(A)=B.

The symbol <J,),ej denotes a function / with domain I such that f (i) = Si
for all i£l. Such a function / is called sequence.

For a non-empty set A let A+ denote the set of all finite non-empty sequences
formed from the elements of A. AB denotes the set of all functions from A to B.
co is the least infinite ordinal. \A\ denotes the cardinality of the set A. Moreover
for informal logic we use "iff" for "if and only i f" and w.r.t. for "with respect to".

The end of significant units like proofs, definitions etc. is marked by the
symbol • .

2. Games

2.1 More about nondeterminism

As we have seen the uncertainty in nondeterministic programming is caused
by two kinds of choices. The first one: from the alternatives one chooses such
a possible step of a task solution that leads to the result. The other one is when
each one of the alternative steps may be chosen and the result thus can be reached.

Having a nondeterministic program its execution can be so imagined that
there is someone who represents the interests of the program, say Mr. A. He is
the one who makes the first kind of choices. In opposition there is someone else,
say Mr. B, representing the circumstances influencing the program execution. He
is the one who makes the other kind of choices without being influenced by the
interests of the program.

Thus we have a situation analoguous to a game situation where two players
A and B are playing. Player A has to choose so that whatever B chooses the course
of the game should favour A. This analogy suggests the games to be a useful and
easily handable tool for our investigation. The games are very close to our intui-

Nondeterministic programming within the frame of first order classical logic 339

tion because they are widespread. At the same time they clearly represent essential
nondeterminisms e.g. that of due to the uncertainty of players in the moves of one
another. This uncertainty is quite analoguous to that of the nondeterministic pro-
gramming. Thus we use an appropriate type of games as the main tool in our theory
of nondeterministic programming.

Now let us consider what type of game is adequate to represent the non-
determinism of nondeterministic programming.

According to the aboves we say that the rules define the circumstances within
the frame of which a game can be played, i.e. they define the game-frame. A game-
frame still does not possess goals for the players though in the type of games used here
the goals are well-defined for both players. E.g. such a goal can be either to win,
or not to lose. Having goals players aspire to win or not to lose within a given
game-frame. Games considered here are antagonistic in the sense that players try
to achieve in fact two opposite goals. Beside the goals such rules are to be introduced
that specify the conditions by which one of the players wins, or loses or the play
is draw. These conditions can be defined by the appropriate set of those situations
(or states) that provide the winning (or not losing) of one of the players. In this
case to achieve his goal the player is to reach the winning situations, i.e. he has
to make moves providing the appropriate states. The improvement of the positions
of one of the players at the same time is spoiling the positions of the other one.
Another possibility is to give a rule specifying a payment function which renders
a payment to each possible state. This payment is to be received by one of the
players and is payed by the other one and its sum depends on the situation. More-
over the gain of one of the players and the loss of the other one is equal but opposite
in sign. Now the winning of each player means to receive the greatest payment.
Thus the goal of a player is to maximize the payment he receives.

If we add rules describing the winning conditions to the game-frame we get
the corresponding game. It is obvious that with respect to a given game-frame a lot
of games can be defined, which only differ in the winning conditions.

t
2.2 Basic notions of games -

s

Let us consider such a type of game that presumes two players and possesses
well-defined rules for each of them. A game presupposes a sequence of moves, each
of which is an occassion for a choice between certain alternatives.

The rules of the game specify for each move which player does it and what
his alternatives are. These rules are finitely describable, and are to be known by
each player. At each move, the player precisely knows what his alternatives are
and his choice will become immediately known to the other player. Moreover each
player precisely knows what moves, i.e. what choices have been made previously.
Thus the players have full information about what has happened in the game so
far and what else can ever happen, during the course of it. For the latter the rules
are to specify that no choice can be made by chance (e.g. by a dice). This means
that each move is deterministic in such a sense that the situation formed after having
the moves is foreseen in a unique way. A course of game contains a complete sequence
of choices (moves) made by the players'

340 T. Gergely and L. IJry'

Thus the type of games used here consists of the rules that define the circum-
stances of playing and of the goals and rules defining the winning conditions.

To illustrate the abovesaids let us consider the following version of the well-
known game NIM. First of all let us see its frame. There is a single pile of chips
containing e.g. 21 chips and there are two players A and B. The two players take
turns one after the other picking up chips from the pile. At each move, a player
must take at least one chip and at most three ones. This is the game-frame. If we
fix the winning circumstances then we get the game of the game-frame. Let us suppose
that the player who picks up the last chip loses and thus we have got a game. Note
that this kind of NIM game is often called Last One Loses. Of course we can define
an opposite game with respect to the same frame, namely we add the following
rule: the player picking up the last chip wins. By adding another winning condition
we get a new game. There are a lot of other possibilities.

A game-frame graphically can be represented by a tree. The nodes of the tree
correspond to the situations involved in the game. The arcs emanating from a
given node are the alternatives associated with the corresponding move. A tree
representing all the possible moves of both players and all the possible corresponding
situations is called a game-tree or an and/or-tree. A path of the game tree represents
a play of the corresponding game-frame. The winning condition can be represented
by a set of paths per players leading to winning. Thus a tree represents a game-frame.
Marking out the winning paths of both players we get the tree representation of
a' game of the given game-frame.

Note that the representability of a game by a tree means that the game is of
full information, i.e. the players have full information about the course of the
game because each node of the tree includes the history of its acces since each node,
except the root, has exactly one predecessive node.

B -

B -

A -

B

A

A

Fig. 1

Nondeterministic programming within the frame of first order classical logic 341

To illustrate the abovesaids let us see the game-tree (Fig. 1) of the game Last
One Loses for the case when the players begin with five chips in the pile. The nodes
are labelled by the number of the remained chips in the pile. At alternate levels
of depth in the tree, alternate players choose which move to make. To be definite
we suppose that player A moves first. Each depth level is labelled by the name of
the player who has the next choice at that level.

Since the so far mentioned type of game is a basic means of the theory of pro-
gramming to be developed and since we wish to execute the investigation within
a mathematical frame it is necessary to provide the mathematical definition of
the basic notions of the games. To introduce games as mathematical objects we
use their tree representation.

Let N be the set of natural numbers and let N* denote the set of all finite se-
quences consisting of the elements of N. A denotes the empty sequence.

Let us take the following functions:

~ pair: N*XN — N*

left: N*\{A} - N*

right: N*\{A}^N
fO if v = A

length (v) - yength Qgj-t ̂ + j otherwise
for any v£N*.

Intuitively speaking by the use of the function pair we can construct a new
sequence if we add a natural number to a given sequence from the right side. The,
functions left and right provide the decomposition of sequences.

Definition 2.1. A set VcN* is said to be a tree iff the following properties
hold:

(0 Aev,

(ii) if v£V and v^A then left(v)£V. •

Example 2.2. Let us consider the following tree in graphical representation
shown in Fig. 2.

According to our definition this can be represented as the following tree:
{0, 01, 014, 0148, 015, 02, 026, 0269, 03, 037}, where 0 stends for A.

The graphical representation of this tree is shown in Fig. 3. •

Let v, u>6 V. If left (w) = v then w is a successor of v and v is a predecessor of
w in the tree V.

The set of all successors of a node v in V is

Sy(v)= {w£V\ left (w) = v}.

Let Wa V be such that it satisfies the conditions (i) and (ii) of 2.1. Then W is
a subtree of V.

342 T. Gergely and L. IJry'

Definition 2.3. A subtree Wcz V is said to be a path of V iff the function
left: W\{/1}— W is an injection.

Definition 2.4. Let V be a tree and C c V. The pair (V, C) is said to be a
game-frame. •

The above defined game-frame provides frame for games of two players with
full information. Let Mr. A and Mr. B be the players. The set C indicates those
nodes of the tree V in which player A makes moves. Thus a (V, C) game-frame
provides the following course. The starting point v0=A, for an arbitrary node

Fig. 2

0 1 4 8

vn if v„£C then it is A's turn and he can choose one of the alternatives and the course
is driven into the corresponding node of Sr(vn). If vn^C then it is B's turn and
the move is analogous to the above situation.

A course in the game-frame (V, C) is a path. Along a course there are the follow-
ing possibilities:

(i) the course is finite, i.e. neither A nor B can move further because the
corresponding set of successive nodes is empty;

(ii) the course is infinite, i.e. A and B can move further in every node.
Thus a game course of the game-frame (V, C) is a finite or infinite path in the tree V.

To have a game in the frame of a given (V, C) a winning condition is needed.
According to the aboves the winning condition can be given as a set of those paths
in V along which the player, say A, wins. Thus let rA and rB be sets such that
rA n r B = 0 . We say that rA(rB) is the set of winning paths in V of the player A(B)
if it contains those paths along which player A(B) wins. If the course of the game
provides such a path that belongs neither to r A nor to r B we have a play which is
draw. We note that there is a lot of different possibilities to give the sets r A and
rB. For example it may be the case when player A aspires not to win as well as
not to lose. This means that A wishes to prevent the winning of player B. In such
cases it is quite enough to give the set r B . The set r A is unnecessary because any
path that does not belong to f B is satisfactory to player A.

Definition 2.5. Let (V, C) be a game-frame. Moreover, let rA and rB be the
set of all winning paths of the players A and B respectively. The quadruple 91 =
=(V, C, f A , rB) is said to be a game of the game-frame (V, C). •

Nondeterministic programming within the frame of first order classical logic 343

A player can move in such a way that he decides in advance which alternative
he chooses in each possible situation. This means that the player uses a special
set of rules that tells him what choices he should make for all situations that might
arise during the course of a game. This set of rules is called a strategy which is
definable by mathematical tools.

Definition 2.6. Let (V, C) be a game-frame. A function str defined on C is
a strategy of player A for the game-frame (V , C) iff str (v)£Sv(v) for every v£C.

•
The other player's strategy can be similarly defined, but we do not need it.
The function str gives the successor for each vZC and it seems that this depends

only on v. However, remember that each node v includes its prehistory.
The strategy of player A defines what move he has to make when he achieves

a situation v where his turn is the next. From the above definition follows that
a strategy provides the moves in each possible statement many of which do not
appear during a game because the player never reaches them if he plays according
to the given strategy.

So it is quite natural to define the strategy in a less redundant way, namely
considering only the subtree that can be potentially arisen by using the strategy.

Definition 2.7. Let str be a strategy of player A for the game-frame (V, C).
A subtree Rstrc V is generated by the strategy str iff it has the following properties:

(i) if v£Cf)R then SRstr(v) = {str(v)} i.e. v has exactly one successor in Rstr
that is picked up by str,

(ii) if v£R\C then SRmtr(v) = Sy(v).
This subtree Rstr is unique. •

Thus if player A makes moves in accordance with his strategy str, then during
a course of the game-frame (V , C) any of the paths of Rstr can be realized. However
since the moves of A are determined by str, player B can choose any of his alterna-
tives. Thus B can realize any of the paths of RstT. According to the aboves it is quite
natural to define a strategy of the player A for a game-frame (V, C) by means of
an appropriate subtree of V.

Definition 2.8. Let (V, C) be a game-frame. A subtree RczV is said to be
a run of the game-frame iff the following properties hold:

(i) if v£CP\R then there is a unique successor w of v in R. (I.e. there is a unique
w£R such that left (w) = v.)

(ii) if v£R\C then SR(v) = Sv(v). •

It is obvious that for any run R there exists a strategy str of player A such that

Note that for a given run R the appropriate function str is not unique because
while defining it we consider only its subdomaine RC\C and its values on C\R
can be arbitrary. So far the strategy has been introduced fdr a game-frame (V, C).
Considering winning conditions, i.e. a game (V, C, TA, TB), we can speak about
winning strategy or not losing strategy. A strategy of player A is winning (not losing)

344 T. Gergely and L. IJry'

iff moving accordingly the course of game realizes only paths belonging to r A
(not belonging to r B) . I.e. if n c R then (71$ r B) .

For the illustration of the so far introduced notions let us see the following

Example 2.9. Let us consider the game Last One Loses with game-tree given
in Fig. 1. In this case there is one pile of five chips and players have the alternatives
to pick up from one to three chips at a move. The frame of this game is the pair
(V, C), where

V = {5, 54, 543, 5432, 54321, 543210, 54320, 5431, 54310, 5430, 542, 5421, 54210,

5420, 541, 5410, 53, 532, 5321, 53210, 5320, 531, 5310, 530, 52, 521, 5210, 520},

C = {5, 543, 542, 541, 532; 531, 530, 521, 520, 54321, 54320, 54310, 54210, 53210}.

The winning condition of the game Last one Loses is as follows:

r A = {(5, 54, 543, 5432, 54321, 543210),

(5, 54, 543, 5430),

(5, 54, 542, 5420),

(5, 54, 541, 5410),

(5, 53, 532, 5320),

(5,53,531,5310),

(5, 52, 521,5210)}.

r B consists of all paths not belonging to r A .

Let us consider the following run R:

R = {5, 54, 543, 5430, 542, 5420, 541, 5410}.

A corresponding winning strategy sir of player A is the following:

V 5 543 542 541 54321 532 531 521

sir (V) 54 5430 5420 5410 543210 5320 5310 5210

3. Logic and arithmetic

3.1 Logic

We intend to develop the theory of nondeterministic programming within
the frame of classical first order mathematical logic. To be able to do so we recall
the basic notions and definitions that we need to reach our aim.

Definition 3.1. A similarity type 9 is a pair of functions (SR , 9F) such that
rg 9f<Z(d, rg 9KC<»\{0}, do 9 f f l d o 9 * = 0 and |do • |do The elements
of do BR and do &F are called relation and function symbols respectively. DR and

Nondeterministic programming within the frame of first order classical logic 345

9f give the arity of symbols. The 0-ary function symbols are called constant
ones. •

For the following we fix a similarity type 9 for which = £ do 9R and
9r(=)=2.

Definition 3.2. A S-type model 91 is a function on do 9R U do 9F U {0} such that
(i) 9l(0)=/i is a nonempty set, which is called the universe of the model,

(ii) 91(е)сэк<еМ for any do 9R,
(iii) 3 l (=) is the diagonal relation on 2A,
(iv) Щ/): W>A^A for any f£do9F.
In a special case °А = Щ i.e. if 9F(f)=0 then 9 l (/) can be identified with

an element of A. •

In general instead of 91 (s) we write s<a where i£do do 9F. A 9-type model
will always be denoted by a German capital and its universe by the corresponding
Roman capital. M 9 denotes the class of all 9-type models.

Now we turn to the definition of the syntax.

Definition 3.3. Let V be any denumerable set. Let be the minimal set sat-
isfying the following properties:

(i) K c 7 T ,
(ii) for any n and f£9F

1(n) if r l s . . . , т „ e l j then / (т х ,
The elements of T% are called terms.

Take Al = {g(r1, . . . , т„) |д£9~ 1 (п) , n£a>, The elements of A%
are called atomic formulas.

The set F% of 3-type formulas with variable symbols belonging to V is the
minimal set satisfying the following properties:
' (0 A Z c F Z ,

(ii) if <p,\l/£Fl then (p h ^ d F l , •
(iii) if q>£FZ then IqXiFg,
(iv) if <p£Fg and v£V then 3vcpZFg.
Let Ql be the minimal set satisfying the above conditions (i)—(iii). The elements

of are called quantifier free formulas. •

We use the following abbreviations
a) (рМф for ~\(~\(pA~]\j/),
b) for A(p),
c) tp~~ф for 1(1фЛф)Л1(1<рЛф),
d) \/v(p for ~~|3v~\(p,

where v£ V and (p,\j/£Fl.
For any s£Tl{JF$ let Var j denote the set of free variable symbols occur-

ing in s.
For any v£V, x^Tl and cp(z let <p[r/v] be the formula obtained from <p by

replacing every free occurrence of v in (p by т so that there would not be a collision
between the variable symbols of т and the variable symbols of cp occuring with
quantifiers.

Now we define the semantics of the first order language by defining a relation
N s C M a X i t f -

346 T. Gergely and L. IJry'

Definition 3.4. Let 91 £M 9 . A valuation of V in 91 is a function q: V— A, i.e.
a valuation is an element of v A . Now we extend the valuation q to a function
q: taking:

(i) q(v) = q(v) for every V\
(ii) q{f{xx, ...,xn))=f<a(q(x1), ..., q(x„)) for every n£co, f t ^ f n) and T1; . . . ,

Instead of q(r) we write x[q]. It is clear that T[q] depends only on the values of
Var r. So sometimes we use the following notations:

(i) a variable symbol is often written underlined by a waved line to denote
its value by a given valuation. E.g. if q is a given valuation then we write x instead
of q(x);

(ii) let a£A denote an arbitrary finite sequence of elements from A. For any
tc Tl supposing that a contains at least as many elements as Var t we write x [a]
instead of x[q].

The validity relation is defined by the following well known

"Definition 3.5. Let 9i£M 3 be arbitrary. Moreover, let 91)=&<zF%X.yA be the
following relation:

(0 •••, O f ?] iff (^[<7], ..., xn[q])iQ<a for any atomic formula;.
(ii) 9tN9(<pVi/0[?] iff 91 ̂ <p[q] and 9it

(iii) 9 IN 9 (1 <P№ iff <»[?];
(iv) 9It=sBv<p[q] iff there is a valuation q*: V—A such that i ' V x M ^ t f t K N »

and 91 <?[?*]•

91 \=9<p[q] means that the formula <p is valid in the model 91 by the valuation q.
In the end 91|=9<p iff for every valuation q£yA, 9 1 1 = 9 •
So the 3-type first order language |=9) has been defined. If

it does not cause ambiguity we write f= instead of |=9.
Now let AxaFl be an arbitrary consistent set of formulas. Restricting Ma

to Md(Ax) = M3|9(|= Ax} from the language Z,9 we can define a new first
order language L*x = (Fl, Md(Ax), t=), which consists of the class of the models
of Ax only. Further on in this study while an Ax is considered it is always supposed
to be consistent without claiming this explicitly.

The notion of definiability plays a main role among the tools of our investiga-
tion. We recall that this notion is used in mathematical logic in two different senses.
In the first one it is considered when and how new symbols with given properties
can be added to a fixed language. This is the topic of the Definition Theory. For us,
however, the other sense which is interested in knowing whether a function or
a relation given in an arbitrary model can be expressed in a fixed language is more
useful. We introduced the main definitions corresponding to this second approach.

Let us fix a language L 3 and let 91 £M 9 be arbitrary.

Definition 3.6. A partial function g: "A—A is said to be parametrically defin-
able in 91 iff there is a formula <p£ such that

(i) Var (p — {xt, ...,x„,y, a1; . . . ,am};

Nondeterministic programming within the frame of first order classical logic 347

(ii) There are a1 , . . . , am£A such that for any

x£A and y£A, 21 N <p[x, y, S] iff g(x) — y.

Similarly, a relation Q(Z"A is said to be parametrically definable in 21 iff there
is a formula (piFl. such that .

(i) Var (¡p = {x1, . a x , . . . ,am};
(ii) There are a1, . . . , am£A such that for any x£A, 21N q>[x, a] iff x£q. ,
A partial function g or a relation Q is definable iff the appropriate <p does not

contain a/s. •

We say that the above <p parametrically defines the partial function g or the
relation Q in 91.

Now we also fix an Ax<^F%. Let us suppose that for any 9 l £ M d (A x) a func-
tion gat: "A-*A (a relation ¡ i a c M) is given. Take G = {g<i^\£Md{Ax)} {R =

Definition 3.7. G (or R) is parametrically definable in Ax iff there is a formula
(p which parametrically defines gn !(or 0ai) in 91 for every 91 £Md(Ax).

If the set {gai191£ Mdx)} ({ J 21 £Md(Ax)}) is parametrically definable and
the definition is given by the formula (p then the function symbol g (the relation
symbol Q) is said to be universally definable in Md(Ax).

Example 3.8. Let q>£be such that Var cp = {x1, ..., xk, y}, and suppose that

Ax t= V*!. . . xk My Vz((pA(p[z/y] — y = z) (1)

If so then in every model 91 of Ax cp defines a partial function in the following
way:

(i) x € d o / iff Ax |= 3ycp[x],

(ii) / (x) = y iff Ax N <p[x, y].
N By (1) this definition is good and thus we use the following abbreviation:

d
P a r c (? = Vx My Mz(cp/\<p[z/y] — y = z). •

We say that the above q> parametrically defines G or R. If q> contains no at's
we omit the adjective "parametrically".

Remark 3.9. If the above G is definiable in Ax and every is total then a new
function symbol g "can be added" to BF of arity n with the following new axiom

AxB: MxM y(y = g(x)** cp(x, y))

where cp defines G. So we get a new language Li*', where Ax'=AxU {Axg}. The
phrase "can be added" means that for any cp^Fl, Ax'l=<p iff Ax\=<p.

The details see in Section 2 .9 of MENDELSON (1964) .
A similar fact holds for the above R.

348 T. Gergely and L. IJry'

3.2. Arithmetic

As known arithmetic plays an important role in computer science. It provides
an unambiguous characterization of any formal language syntax. This permits
the widespread use of computers since their functioning is based on natural number
representation. While the numeric use of computers arithmetic plays an important
role since the data form a structure satisfying the basic features of arithmetic. Arith-
metic is also important to formalize our intuitive concept about discrete time con-
nected with computer functioning. Thus in our investigation of programming
theory arithmetic plays an important role. Namely, it provides formal tools to
characterize sequences which prove to be useful in the study of program properties.

Let t] be the type of arithmetic, i.e. do rjR = {=}, dorjF={0, 1, + , •} and
i iF(0)=»jF(l)=0, > ? F (+) = f / f (.) = 2.

For the axiomatization of the arithmetic we choose the well-known Peano
axioms:

= ~1 (y + 1 = 0)
d

A2=V+ 1 = w + l — v — w
d A3 =v + 0 = v

A4=V + (W+1) = (D + W)+1

AB=v-0 = 0
d

Ae=v(w+1) — (v-w) + v

A 7„ = <p [0/Y] A V v (<p q> [Y +1 /v]) ^ V vcp

Take I={Altp\<p£F% and v£ Var (pj. The set of Peano-axioms is

PA = {A/10 ^ i ^ 6 } U / .

For detailed analysis of PA see e.g. MENDELSON (1 9 6 4) .

As usually we use the following abbrevations

x^y instead of 3 z (z + x=y),

x<y instead of 'x^yA lx=y.
We recall that for every infinite cardinal there are at least continuum number

of non-isomorphic models of that cardinality of PA. For every <$l£Md(PA) its
smallest submodel Ac satisfies PA and these submodels are isomorphic to each
other and they are called standard models of PA. We would like to consider only
standard models but unfortunately that is impossible at a first order language because
there is no first order formula describing exactly the standard part of the models
of PA. Thus if we are interested whether a first order formula is valid then we must
consider not only standard models but nonstandard ones as well.

As usually 91 denotes the fixed standard model of PA and N stands for its
universe.

For handling of non-standard models see e.g. ROBINSON (1966) .

Nondeterministic programming within the frame of first order classical logic 349

3.3 The role of time in the theory of programming

As mentioned already in Introduction often not only the output result of a
computing process is significant, but its temporal course too. Thus we would like
to develop such a theory of nondeterministic programming that handles both data
and time explicitly by the help of first order tools.

The representation of data within the frame of first order logic is straightfor-
ward; it can be done by the universe of the classical models. However relations
and functions of the models correspond to data properties and to their possible
changes respectively. Thus from the point of view of data computers are represented
by the models of first order languages. Thus the previously mentioned representa-
tion neglects the explicit time representation. How to represent time is a question
that should be looked at in details. But the functioning of computers is controlled
by an "inner clock" so the change in data happens in time.

We assume that a change in data corresponds to a command which is executed
for a timecycle of the machine. Let us denote the set of these disjoint time intervals
by T. From theoretical point of view the time intervals of T can be considered as
time moments supposing that the change takes place infinitely fast. We also assume
that a machine works as long as it is needed i.e. as long as it is required by the
program. This means that a machine itself can work infinitely long never stopping
due to a break-down. However it stops only if it is required by the program and
by this the program execution terminates. Let us consider the simplest case when
there are only assignment statements.

The execution of a program on a machine is but the execution of assignment
statements step by step i.e. iteratively. The transition of states of the machine rep-
resenting the change in data is defined by the transition function. This function
can be defined by induction on T as follows. In case we already know the state
S, of the machine at moment t then the state at the next moment i + 1 can be defined
by the state S, using the concrete command that is to be executed in the moment t.
To describe this by mathematical tools the closeness of the transition function
under iteration (recursion) must be ensured.

Thus to represent time an arbitrary structure can be used which provides
the starting moment, the generation of the next moment and the induction by
succession. For example if we take a{(0, 0), (', l)}-type structure X = (T, 0 , ') on
which the induction works well then this can be used to represent time. Here T
represents the set of time moments. Note that further on it will be also supposed
that on the set of time moments T the usual addition and multiplication are also
considered and the time moments are in order.

Thus to represent discrete time the use of the structure 91 = (N, 0, 1, + , •)
of natural numbers is obvious. However our main standpoint is to use classical
first order language to describe models. Thus we cannot restrict ourselves to the
standard model but any model X of an appropriate first order axiomatization
of is allowed. Consequently beside N, which is very close to our intuition, very
strange sets of time moments are allowed as well. Especially such sets T in which
"infinitely large" (or non-standard) time moments also occur.

As usual the theories of programming developed so far use either implicitely
or explicitely the set of natural numbers N to represent time.

350 T. Gergely and L. IJry'

So our assumption that the structure representing time has to satisfy only one
condition, namely the axiom scheme of induction, seems not to be very close to
our intuition. Thus let us go into a bit more details.

Our first notion is purely theoretical. If the iteration is the essence of programm-
ing then to represent time any such model can be chosen that provides to follow
the changes done by iteration. So on this structure the induction must be allowed.
Hence developing a theory of programming we have no reason to introduce further
restriction for time (e.g. to suppose that time moments belong to N).

If we have a practical look at it then the situation seems to be totally different.
Namely, in practice there exists no procedure containing non-standard number
of steps. So the "infinitely large" time moment seems to be a fiction. However, if
we consider the history of mathematics this opinion can be dissipated. That is,
infinitesimal values play an important role in the history of mathematical analysis
but their reason for the existence was only recently observed by A . ROBINSON
and his followers.

Non-standard analysis is applied in computer science as well. It provides some
very effective methods to solve differential and integral equations.

In order to develop a theory of programming being able to analyse the real
situations of programming practice there is no reason to restrict it to the considered
notions of "standard and real" machines and time. It is not our aim, of course, to
investigate machines with non-standard time. Nevertheless if we have a theory of
programming which can handle non-standard time as well then the execution of
a program being correct within the frame of this theory will be correct in any machine
with any type of time, especially in the machines with standard time.

Indeed well written and well used programs, in our opinion, can be executed
in machines with arbitrary type of time, though programmers having developed
the programs know absolutely nothing about this. This is so because programmers
write down programs thinking in first order language though always imagining
the standard time (i.e. the set N) to it. These impressions, fortunately are not em-
bedded in the programs!

It may seem that the first order language is not sufficient to think about pro-
grams for it might provide far too many restrictions. However we have proved in
GERGELY and U R Y (1 9 7 8) that within the frame of classical first order logic for the
sequential and deterministic programming a theory of programming of unified
attitude can be developed and this frame fully satisfies the solution of the tasks
of a programming theory. Present work shows that this frame is completely satis-
factory for developing a theory of non-deterministic programming as well.

Now we give the mathematical description of the programming situation. Let
9 be an arbitrary similarity type containing the type q of arithmetic (r/c!)). In-
tuitively 9 provides the name of those relations and functions which have to be
understood by the computer. The properties of relations and functions are de-
scribed by the set of formulas AxczF%. The set of axioms Ax expresses the ex-
pectations with respect to data and "hardware". Intuitively we always suppose
that PAczAx i.e. the computer "understands" the arithmetic in the form of Peano
axinmatization.

According to the above saids it is clear that at least two sets are needed to charac-
terize a computer: — the set A of possible data and the set T of possible time
moments. We intend to speak of both time and data in a first order language. Since

Nondeterministic programming within the frame of first order classical logic 351

time and data are of different entities it is advisable to distinguish their languages
while describing a computer. This could be done by the use of a two sorted first
order language, where the first sort corresponds to time and the second one to
data. If different data types were allowed then we need a many sorted first order
language. The mixed sorted functions and relations describe the connection be-
tween time and data.

For the sake of simplicity let us stick to the frame of the classical (one sorted)
first order language and to describe time we use the same language as for data
representation with the only difference that a new unary relation symbol £ is intro-
duced. By this we supply our models with an inner time supposing that time can
be modelled by data. Of course not each data type can be satisfactory for this aim,
e.g. the Boolean data type is not.

Already in this approach we seem to meet the advantages provided by the ex-
plicit handling of time. Therefore, it was not necessary to introduce and use the
many-sorted first order language.

To describe time we introduce a new unary relation symbol £ (£ do S and let
us add £ to the type S. So, we have #* = $U{(i, 1)}. Expectations with respect
to time beyond data would be given by a set of axioms Ax* (Ax cz Ax* с t%). Of
course the set Ax* is larger than the set of axioms Ax expressing the expectations with
respect to data. To formalize the minimal properties expected from time we intro-
duce the following notations £*(x)=Bf (x^ /A((i)) (where the relation symbol s
is the ordering used in PA),

B0 = (*(0),

The fulfilment of the formulas B0 and Bx provides that the set of time moments
is not empty. The induction under (* can be formalized as follows:

B2ip = [(p(0)AVx(C(x)Axp(x) - ср{х+Щ - Ух(Г(х) - <?(*))•

Bx and B'2v s provide the closing under addition and multiplication.
According to the abovesaids with respect to time we always suppose that £*

satisfies PA*, where
PA* = {B0, B1}{J{BbfWdFl,, x€Var q>}.

Definition 3.10. A set of formulas Ax*cF[* is said to be a 3-type system if
PA* a Ax*. siC is a model with inner time Тш of the system Ax* if ll^Ax* and

Examples 3.11. (i) Let Ax=PA and Ax* = PAU{\/xC(x)}UPA*. In this
case any model 4i^Md(PA) will be the model of Ax* if С is interpreted by the
universe A itself. The model 2Г provided by such a way will be evidently a model
of Ax* with inner time A.

(ii) Let т1 = т2 be a Diophantine equation which has no solution in N, but
PA<^YZ. L e t AX* = PAUPA*U{\/XC*(X)-~1-C1(X) = T:2(X)}. U s i n g t h e m e t h -
od of (i), from a model 4i£Md(PA) a model Ul' can be arisen, which would be
a model inner time of Ax* if the equation т г =т 2 has no solution in A.

4 Acta Cybernetica

352 T. Gergely and L. IJry'

(iii) Let Ax*=PAUPA*, and let 216Md(PA) be arbitrary.
It is obvious that if (would be interpreted by the standard part of the model

21 (i.e. by N) then the model 21' arisen by using the method of (i) would be a model
of Ax* with inner time N. •

Remarks 3.12. (i) In Definition 3.10 it would be satisfactory to claim that
Ax* h- PA*. Thus in Definition 3.11 (i) Ax* = PAU{Vx((x)} would be enough.

(ii) Intuitively speaking a 9-type system Ax* provides the description of the
hardware of a computer. It fixes those features that characterize the static (Ax)
and the dynamics of the computer. Ax* may have a lot of models which
are usually different but it does not completely define a machine. However only
those features of machines are interesting in our investigation that are true in
every model of Ax*. •

3.4 Recursive definability

Let Ax* be a 9-type system. A fairly often used method of implicit definition
is the recursive one. In order to understand this situation in the case when Ax*
refers to time we need the following. Let g be a new k-ary relation symbol not
occuring in 9* (g$do9*). Let <p(g) denote the inclusion <p€.Fa*u{((!ifc)} i.e. cp(g)
is a formula of the syntax the type of which is the extention of 9* with the /c-ary
relation symbol g. Moreover we need a tool by which we can reduce a formula of
Fa*u{(.<>,k)} t o a formula of Fjf*. For this the following type of substitution can
be used.

Definition 3.13. Let <p€ ¿T*u{re j t)} and let F^ with Var / = {.x ,̂ . . . , xk}. Let
cp[yjg] be defined by the following way:

(i) if g does not occur in q> then <P[XIQ] = <P,
(ii) if <p = g (rlt...,rk) then <?[*/<?] = «L

(iii) if <p = <p1()<p2 where <) is either A or V then <P[XIQ\ = (PI[XIQ\QVAXIQI
(iv) if <p=l\l/ then <p\xle]= labile],
(v) if (p = Qvij/ then <p[x/g] = Qv\l/[x/g] where Q is either V or 3. •

We are interested whether the equation g-*-*<p(g) has a solution in Ax* i.e.
whether a formula x£Fa* exists such that

Ax* |= x** VlxlQl

In this case we say that x is a solution of the recursive equation g-*(p(g) in Ax*.
Moreover for some types of formulas in F^tu{(e,k)} there exists a minimal

solution of the above recursive equation.

Definition 3.14. A formula <p£ia*u((0,fc)} w ' t h Var <p={xlt ..., is a pedigree
formula iff there is a formula i//6/"j/»(J{(Si4)} such that

(i) AX*\=9* CP~\L/\
(ii) I¡j has the form I/' = I/'0VI//1, where g does not occur in ip0 and the symbols

~1 and V do not act on g in i
(iii) all occurences of g in ip contain only variable symbols;
(iv) bounded variable symbols of ip are distinct from each other. •

Nondeterministic programming within the frame of first order classical logic 353

The forthcoming theorem shows the recursive definition to be allowed, pro-
vided that we make only "positive" statements. This latter is contained in condi-
tion (ii) of the above definition of pedigree formula. It is needed in recursive defini-
tion to consider only already existing objects and not to speak about such that
have not occured so far but may do so sometimes in the future. So for example
we cannot say which objects should not belong to a recursively defined set. So the
condition (ii) provides the constructive feature of the recursive definability. The
conditions (iii) and (iv) are merely technical. If a formula <Рб^Г*и((еД)} satisfies
conditions (i) and (ii) then it is already a pedigree formula, of course with another
ф as if q> satisfied conditions (iii) and (iv) as well.

Theorem 3.15. For any pedigree formula <р€ з̂'*и{(еД)> there exists a formula
X^Fl* such that

(i) Var /1()=Var <p;
(ii) Ax*\=x<i>*—<pixjg] i-e- X<p is a solution of the recursive equation owp(o) ;

(iii) if x is any other solution of the recursive equation, i.e. it is a formula of
such that Ax*)= х~-*(р[х/ в] then Ax*t=x<p~~X> i-e- X? is the minimal solution.

Sketch of the proof It is similar to that of Theorem 3 . 4 in GERGELY and U R Y
(1 9 7 8) . It uses the fact, that there is a formula ф — ф0Чф1 such that the properties
(i)—(iv) of Definition 3.14 hold. By using the property (i) and the following fact:
if Ax*|= for any срх, (p.2d /Т»и{(е>Д)} then for any with exactly к vari-
able symbols:

Ax* \=^<PMQ]**<PMe]

to prove the theorem it is enough to construct such a formula x<p that Ax* И x
.xje]- The idea of the construction is that xv is either ф0 or it builds up from

ф0 applying фг (-many times. The building up of x<p can be done similarly to that
o f GERGELY a n d U R Y (1 9 7 8) . •

Abstract (to Part 1)

Nondeterministic programming play an increasing role in the theory of programming. This
role is discussed in Section 1 together with the role of classical first order logic in developing a
theory of programming. Two kinds of nondeterminism are considered: any and every. The un-
certainty in programs that use both any and every is quite analogous to that of game situations.
So in our theory games are the centre of interest. The basic constructions of games are introduced
in Section 2. The theory will be built within the frame of classical first order logic. The basic notions
and constructions needed to develop this theory are given in Section 3.

RESEARCH INSTITUTE FOR
APPLIED COMPUTER SCIENCE
CSALOGANY U. 30—32.
BUDAPEST, H U N G A R Y
H—1536

References

[1] ASHCROFT, E. and Z. MANNA, Formalization of properties of parallel programs, Artificial
Intelligence Memo AIM—110, Stanford University, Stanford, 1970.

[2] DIJKSTRA, E. W., Guarded commands; nondeterminacy and formal derivation of programs,
Comm. ACM, v. 18, 1975, № 8, pp. 453—457.

5*

354 T. Gergely and L. IJry'

[3] EGLI, H., A mathematical model for nondeterministic computations, Technological University,
Zürich, 1975.

[4] FRANCEZ, N., C. A. R . HOARE and W. P. DE ROEVER, Semantics of nondeterminism, concur-
rency and communications, Mathematical Foundations of Computer Science, Ed. J. Winkowski,
Springer Verlag, Berlin, 1978.

[5] GERGELY, T . and L . ÚRY, Mathematical theories of programming (manuscript), Budapest,
'1978.

[6] HAREL, D . and V . R. PRATT, Nondetermism in logics of programs, Report M I T / L C S / T M — 9 8 ,
1 9 7 8 .

[7] HOARE, C. A. R., Communicating sequential processes, Comm. ACM, v. 21, 1978, № 8, pp.
6 6 6 — 6 7 7 .

[8] MANNA, Z., The correctness of nondeterministic programs, Artificial Intelligence, v. 1. 1970,
№ 1—2, pp. 1—26.

[9] MENDELSON, E . , Introduction to mathematical logic, Van Nostrand, N. Y . , 1964 .
[10] MILNER, R . , An approach to the semantics of parallel programs, Proceedings of the Convegno

di Informático Teórica, Instituto di Elaborazione delle Informazione, Pisa, 1973.
[11] MILNER, R . , Synthesis of communicating behaviour, Mathematical Foundations of Computer

Science, Ed. J. Winkowski, Springer Verlag, Berlin, 1978.
[12] MIRKOWSKA, G . , Algorithmic logic with nondeterministic programs, Proceedings of Colloquium

Mathematical Logic in Programming, North Holland, 1980 (under publication).
[13] OWICKI, S. and D . GRIES, An axiomatic proof technique for parallel programs I., Acta Inform.,

v . 6 , 1 9 7 6 , p p . 3 1 9 — 3 4 0 .
[14] PLOTKIN, G. D . , A powerdomain construction, SIAM J. Comput., v. 5 , 1976, № 3, pp. 4 5 2 —

487.
[15] ROBINSON, A., Nonstandard analysis, North Holland, Amsterdam, 1966.

(Received Sept. 7, 1979)

