
Nondeterministic programming within the frame 
of first order classical logic, Part 2 

B y T . GERGELY a n d L . U R Y 

In this part we develop a mathematical theory of nondeterministic sequential 
programming by using the mathematical tools introduced in the first part (see 
GERGELY and U R Y (1980)). Our investigation is concentrated around the problem of 
completeness. While this we introduce an appropriate complete descriptive language 
and a complete calculus in the spirit of Floyd and Hoare. The usage of the calculus 
is illustrated by three examples. 

4. Definable games 

We aim at developing a theory of non-deterministic programming within the 
frame of first order language and therefore we have to formalize the games pro-
viding consideration of nondeterminism. Unfortunately the basic notions belonging 
to games introduced in Section 2 are not that of first order language. To keep our-
selves within the frame of first order logic we have to consider such version of these 
notions that are parametrically definable. Thus we permit only parametrically 
definable games, strategies etc. However it might happen that the property " to be 
a definable game" is not definable while each game is definable. By using the 
arithmetization of formal languages we show below that this is not the case. 

Let Ax* be a 9-type system and let 91 £Md(Ax*) be arbitrary. There are several 
definable bijections between AxA and A. Let us fix one of them and denote it by 
pair. Let left and right be the two components of the inverse of the function pair, 
i.e. for any x, yd A 

left (pair (x, y)) = x and right (pair (x, y))=y. 

Remember that in any model 91 £Md(Ax*) induction can be done by inner 
time Tai i.e. by the set {t£A |2INT[>]} (see Definition 3.10). Thus the usual notion 
of sequence (see Section 1.7) has to be modified in the following way. 

Definition 4.1. Let 91 £Md(Ax*) and let D be an initial segment of inner time 
r a . A function s: D-*A is a finite (in 21) sequence. If Z)=[0, n — \] then s is called 
an n-long sequence. A function s: T^-^A is said to be a sequence or a long sequence. 

• 

\ 
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Let iTc=/4\{0} be a definable set and let *K denote the set of all parametrically 
definable finite (in 91) sequences containing only elements of K. Let A denote the 
empty sequence. 

Lemma 4.2. "To be an element of *K" is definable in 91. 

Proof. Let cp be the formula which defines K in 91, i.e. Var cp = {x} and 
91 t=(p[a]oa£K. 

Let us consider the following formula: 

(p*(s) = 3t(left(s) S MC(OA Vi(i — left (5) - q>[r (right (s), left (s), i)/x])), 

where F is the well-know Gôdel-function (see e.g. in MENDELSON ( 1 9 6 4 ) ) . Since the 
functions r, left and right are definable in Ax* the formula q>* is equivalent to 
a formula of For the sake of convenience we suppose that a formula (p* (e.g. 
i=left (a)) at the same time denotes the corresponding formula of F$t, i.e. F£t. 

Now let s£A be an element such that 

Vlt=(p*[s]. 

Let us take the following sequence : 

/ s ( 0 = r{right (s), left (s), i) for any i == left (s). 
Now we prove that s<-*f is a surjective map, i.e. the elements of *K are coded 

by s but these codes are not unique. 
Let / : [0,«]—AT be a parametrically definable function in 91. By using the 

generalized Sequence Number Theorem (see GERGELY and Û R Y ( 1 9 7 8 ) , Theorem 2 . 8 ) 
there is a b£A such that for any /6[0, «], f ( i ) = r(b, n, i). 

Let s=pair (c, b). If / is finite in 91 then by using the fact that Ax* is a system 
and the definition of T we have 9l(=Ç*|>] i.e. there is a t£A such that s^t and 
9l(=C[i]. Thus 9I|=(p*[s] and s codes the given function / . • 

Lemma 4.3. The following functions are parametrically definable in 91 (and 
also in Ax*) 

pair: *KXK^*K, 

left: *K-~*K, 

right: *K-*A. • 
Note that here the functions pair, left and right are defined on the sequences. 

However we use the same notation as on page 355 because the présent case can be 
obtained by iteratiye usage of the functions introduced there. Thus this notion 
does not lead to ambiguity. For the sake of convenience we suppose that the 
empty sequence A is cpded by 0. 

Further on we do not distinguish the elements of *K from the corresponding 
elements of A coding them. 

Definition 4.4. . 
r0 if a = A 

length (a) = \length (jefi +1 otherwjse 
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Definition 4.5. A set Fc*G4\{0}) is called a tree iff 
(0 A€ V, 

(ii) V=>left (v)€ V. 
For any V and V take Sv(v) = V\ left(w) = v). 

A tree V is called a path iff left: is an injection, i.e. any V has 
at most one successor. 

A tree V is definable in 2t iff it is parametrically definable in 21 as a unary rela-
tion on A. • 

Note that because 0 codes A it is sufficient to use v4\{0} instead of A in the 
above definition. Thus 0 can be maintained to denote the end of a sequence. 

Definition 4.6. A trace in 21 is a function of the form / : V->-"A (for some 
natural number n) where V is a tree in 21. If / is parametrically definable then it 
said to be a definable trace in 21. • 

Definition 4.7. Let V be a trace in 21. A game-frame in 21 is a pair GF=(V, C) 
where CaV is an arbitrary set. C is called the nodes of choice of V. A run in 
a game-frame GF=(V, C) is a subtree RczV such that 

(i) if c^COR then c has a unique successor in R, 
(ii) if r£R\C then Sv(r)=SR(r). 
A strategy in a game-frame G is a function str: C—rg str in such a way that 

for any c£C, str (c)£Sv(c). 
A game-frame is definable in 21 iff V and C are parametrically definable. A 

run R of GF is definable in 21 if both GF and R are parametrically definable in 21. 
A strategy str in GF is definable in 21 iff GF itself and the function str are para-

metrically definable. • 

Definition 4.8. Let GF=(V, C) be an arbitrary game-frame and let str be 
a strategy in GF. A run R is said to be generated by the strategy str if {iir(c)}= 
= SR(c) for any c€CDR. • 

We note that if str is definable then there exists a minimal definable run generated 
by str and this is denoted by Rstr. 

Definition 4.9. A tree F i n 21 is finitary iff for any V there is a d£A such that 
1) 2 t N C № 
2) if pair (v, e)£Sv(v) then eSrf , i.e. any node of V has only finitely many 

successors (in 21). • ; 

Definition 4.10. A game in 21 is a quadruple G=(V, C, rA, rB) where (V, C) 
is a game-frame and tA,TB are disjoint sets of paths in V. 

A game (V, C, TA, rB) is definable in 21 iff 
(i) (V, C) is a definable game-frame, 

(ii) r A and r B are definable sets, 
(Hi) each path of FA and FB is definable. • 

Definition 4.11. A strategy str'in the game-frame GF=(V,C) is a winning 
(non-losing) strategy of player A in the game (V, C, rA, rB) iff each definable path 
of Rstr belongs to Fa (not to FB). • 
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According to this definition a run R of the game is non-losing for player A if 
none of its paths belong to any of rB and R. 

Thus a stategy of the player A is a winning (non-losing) one in the game 
(V, C, rA, rB) iff moving accordingly the course of game realizes only paths belong-
ing to r A (not belonging to r f l ) . If we are interested only in non-losing strategies 
then it is enough to consider games of the form (V, C, 0, rB). 

In order to show that among others the property "to be a definable tree" is 
expressible by a first order formula we need the following well known theorem 
about the existence of a universal formula, though the precise form of this formula 
is not necessary to our investigation. 

Theorem 4.12. (On universal formula.) Let us fix an arbitrary 9-type system 
Ax*. There is a recursive map N (q>>—f<p 1 where f<pl denotes the Godel 
number of the formula <p) and a formula Valid (g, a, x)£ F%* such that for any 
H£Md(Ax*) and <p£F&, 91 t=cp[a, x] iff 11Valid [i(p\ a, x]. 

Proof. See in MENDELSON ( 1 9 6 4 ) . 

Theorem 4.13. (Expressibility.) For any Ax* the following properties are ex-
pressible in Ax* by using the formulas of : 

a) "to be a definable tree", 
b) "to be a definable path in a definable tree", 
c) " to be a definable game-frame", 
d) "to be a definable run in a definable game-frame", 
e) "to be a definable strategy in a definable game-frame", 
f ) " to be a non-losing definable run of a definable game", 
g) "to be a non-losing definable strategy of a definable game", 
h) "there is a non-losing definable strategy in a definable game". 

Proof. Each statement can be proved by the same method. Thus we detail 
only the proof of property a) by showing the existence of the formula corresponding 
to this case. 

a) Let Q be the variable symbol the values of which correspond to the Godel 
number of the formula <p that parametrically defines a tree in 21 and let a be the 
vector of variable symbols the values of which correspond to the parameters. 

The property "to be an element of tree V" can be defined by using the formula 
Valid (see Theorem 4.13). Namely Valid (i2, a, x) means that the element x is an 
element of the tree Q with parameter a (here of course we identify the definable 
objects with the Godel number of the appropriate formulas defining them). Having 
this defining formula we can construct the formula defining the property a). Namely 

Tree (Q, 3)= Valid(Q, a, A)A Vx (Valid (Q, a, x) - Valid(Q, a, left (*)). 

Let 21 £Md(Ax*). Now for fixed Q, q£A take 

VGa= {u£/4|2I N Valid[Q, a, »]}. 

It is clear that Va,d is a parametrically definable tree in 21. Moreover if <p defines 
a tree V by parameters a then, using 4.12, we have V= Vv>s-
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b) Let Path (i2, g, a, B) = Vx (Valid(g, b, x) - Valid (Q, S, x))A 

Vx Vy {Valid (g, B, x) A Valid(g, b, y) A left (x) = left (y) - x = y}. 

It is clear that if 1l£Md(Ax*) and Q,g, a, B^A then V9ts is a definable path in 
F n , a . ,We omit the proof of properties c), e) and f). -

d) Let GF(QV, Qc, a) be the formula corresponding to property c) 

R(QV, ß c . a, r, b)=GF(Qy, Qc, a)A Tree (r, B)A \jx[Valid(r, B, *)-

Valid(Qv, a,x)]AVxVy[Valid(r, B, x)AValid(Qv, B,y)Aleft(y)=xA 

-]Valid(Qc, a, x) - Valid(r, B, y)]A 

Vx Vy y z [Valid (r, B, x)AValid(r, B, y)AValid(r, B, z) A 

left(y) = x A left (z) = yAValid(Qc,a, x) - y = z]. 

It is evident that this formula is good, 
g) Let 

NL(Qv, Qc, QrB, a)= 3r 35 (R(Qv,Qc,a, r, 5)A 

Vg Vc(Path(r, g, B, c) — Valid(Qrg, pair (a, c), g))). 

This formula means that there is a run r with parameters B such that r is a run 
of the game defined by Qv and Qc and no path g with parameter c of r belongs 
to Q f B . • 

Now we reformalize the well-know König's lemma for the case of definable 
finitary trees. 

Lemma 4.14. (König.) Let V be a parametrically definable and finitary tree 
in such that for any d£A satisfying 9X |= [d] there is a ¿/-long definable path. 
Then there is a (-long definable path as well. 

Proof Any proof of the original form of this lemma can be repeated because 
the definability of the tree and paths provides the expressibility of each step of 
the proof in the first order language. Details are omitted. • 

5. Nondeterministic programming language 

We introduce a nondeterministic programming language of the autocode level. 
This level provides a relatively simple definition of semantics considering time con-
ditions as well. This description is done by using games introduced in Section 4. 
Having exact semantics we turn to the investigation of the question of descriptive 
languages, which is one of the foundamental component of a mathematically based 
programming theory. 

Now we introduce a 9-type nondeterministic programming language NPS. 
The programs of the language NP9 might be "executed" in the models of on ar-
bitrary .9-type system. Altogether the "meaning" of the programs varies by systems 
and by their models. 
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Let us fix a denumerable infinite set Y of variable symbols. 

Definition 5.1. The set U9 of 9-type nondeterministic commands consists of 
the following elements: 

(i) j: y—t, 
( i i ) j : Dy^T , 

(iii) y: if x then • ki> •••» kr 
where nd{any, every}, j, k^, ..., kr are natural numbers, yd Y, and Q\. 

• 
Further on sign • in commands stands either for any or every. 
Thus the commands of U9 have the form j: u, where the natural number j 

is said to be the label of the command. 

Definition 5.2. A 3-type nondeterministic program p is a nonempty sequence 
• of 3-type commands p — (/0: z/0, . . . , /„: »„)£ t/3

+ in which no two commands have 
the same labels, i.e. for any j, n] if j?±k then 

Let NP9 denote the set of all 3-type nondeterministic programs: 

NP3 = {p \p is a 9-type nondeterministic program}. • 

Note that we often write a program p in the form of column 

»o : "o 

instead of the form of row. In the column form we always assume that /„<...-=:/„. 
For any nondeterministic program p=(i0: u0,...,i„: un)£NPs we use the 

following notations: 
(i) Var p= [J Var {ii: i/j) denotes the set of variable symbols occuring in 

j i tO,n] 

the program p. Here Var(/j.: Uj) is the set of variable symbols occuring in the 
command i f Uj defined as follows 

"Var(j: .y — T) == VarrU{y}, 

Var ( j : • y = T) = Var rU{y}, 

V a r ( j : if x then • kx, ..., kr)= Var x-

For the sake of convenience we often use Yp instead of Var p. 

(") i n + 1 =min{ fc | k i { i 0 , . . . , i„}}. 1 

The programming language NPS seems to be far too weak though it is powerful 
enough as shown in its deterministic counter part in GERGELY and U R Y ( 1 9 7 8 ) . Now 
we note only the command j: if x=x then • kt, ..., kn is the same as /: goto 
• klt ..., k„. We use the latter in the language NP9 as an abbreviation. 

Since the "meaning" of a program is its "execution" let us consider the case 
when the execution takes place in an arbitrary model of a given 9-type system Ax*. 
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Definition 5.3. Let us fix a system Ax*. Let us consider an arbitrary model 
^l^Md(Ax*) and an arbitrary program p — (i0: w0, ...,«'„: u„)^NPB. 

Let q: Var p -+A be an arbitrary evaluation of the variable symbols of p. 

Let Gq=(Vq, Cq) be a game-frame and fq=(l, s): XV""A be a trace with 
the following properties: 

1. Gq and fq are parametrically definable in 91; 
2. (i) 9£|=C [length (v)] for any v£ Vq, 
(ii) /(0) = io and s(0) = q, 
(iii) if /(iOi {im\m^n}' then there exists no successor of v, i.e. Sr (v) = 9; 
3. Let us suppose that l(v) = im 

(i) if um = y r then S¥q(v) = {pair(v, 0 )=w}, /(w) = im+1, 

(ii) if um=ny = x then SVq(v) = {pair (v, e) and for any u>6 SK , 
Kw) - im +1, 

(iii) if um = if x then • ...,kr then 
a) if then Sy (v) = {pair (v, 0)} and l(w)=im+1 for w£ Sv (0), 
b) if 91N*[*(»)] then SVq(v)= {pair (v, kj)\je[l, r]> and l(w) = right (w)" for 

any w(iSVq(v). 
In both cases a) and b) for any w£SVq(v), s(w)=s(v). 
The set of nodes of choice in the cases (ii) and (iii) is defined as follows 

Cq= {v£Vq\l(v) = im and um is either any y S x or if x then any k1, ..., kr}. 

The game-frame of the above properties is said to be the q-game-frame associated 
to the program p; the trace fq of above properties is said to be a trace of the pro-
gram p in the model 91 starting with input data q. • 

Now we take the points of the definition one by one and show what conditions 
of programming are indicated by them. The ^-game frame (Vq, Cq) describes the 
nondeterminism of the trace of a program; the function fq—{l, s) shows the actual 
value of the variable symbols of the program in each moment of execution. 

If the program gets in a state represented by the node v£ Vq then in the next 
step the command labelled by l(v) will be executed with the s(v) evaluation of the 
variable symbols. 

Condition 1 is in accordance with the assumption that the first order language 
is used to describe the 9-type models. 

Condition 2 (ii) provides that the game goes on for time T=£* and it only 
stops when the situation 2 (iii) arises, i.e. when the control l(v) gets such a label 
that does not occur among z0, . . . , i n . So the termination of the trace is equivalent 
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to a jump onto such label. This is the reason why a special command stop is not 
included in U9. 

According to 2 (ii) a trace starts always with the first command of the program, 
i.e. with the label z0 with an evaluation q given in advance. This is the reason why 
a start command is not used. 

Conditions of point 3 describe the one step transition of the program execu-
tion in the usual way. If a no control command with label im is executed then after 
the execution the control gets on label i m + 1 . This is why the virtual label in+1 was 
introduced to indicate the termination of the execution. 

While executing commands with nondeterminism, i.e. with the sign • , the 
game-tree branches out according to the possible choices. The cases any and every 
differ from one another simply whether player A or B moves. The correctness of 
the above definition is ensured by the following 

Lemma 5.4. For an arbitrary program p£NP9, H£Md(Ax*) and q: V a r p - ~ A 
there is a unique trace of p in 21 starting with; q and there is a unique associated 
^-game-frame GFq. Moreover, the parameters of the formulas that define the trace 
fq and the game-frame GFq are the values of q and these definitions are universal 
(i.e. in each model of Ax* they are defined by the same formula). 

Proof. The uniqueness means that the associated game-frame GFq and the 
corresponding trace fq are unique. Let GF'q, and fq be another ^-game-frame and 
another trace for which conditions 1—3 of Definition 5.3 hold. Let v be an element 
of V with minimal length such that V or V but fq(v)^fq(v). This minimum 
exists because both (GFq , fq) and (GF'q, fq) are parametrically definable. Since 
v?±A so w=left (v)£ V and by the minimality of v we have w£ V and f(w)=f'(w). 
If so then by using conditions 1—3 we have that v£V also holds and f(v)=f'(v) 
which is a contradiction. To prove the existence of the trace we construct a recursive 
equation, the solution of which gives a trace of p in 21 starting with q. 

V3»*, /*, yt ...,y*k{g(v*, I*, y*, ...,yt al5 ..., ak)Al*i{im\rn ^ n},A<T(length v).A 

k 
e(v, l,y1, ...,yk, ax, ...,at)~(l = i0Av = AA A yj = a , ) 

m = 0 
A /* = im 
n 

i m - \v - (v*, 0 )A A yt = yiAys = T[y*/y]A I = f m + 1 J - A 
l Ms ) 

¡=1 

n 
- \v = (V*, ys)A A yf = yiAys = T[y*/y]Al = i m + J a 

iVs ) i^s 
¡=1 ¡=1 

m = 0 
A . l* = L 
n 

= «•» - [.A yt= ytA{lx - » = (v*, 0)AI - im+i)A 
"m = if X then • Itr 
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Applying Theorem 3.15 this equation has a minimal solution say g*£F9*. 
It is eviden that 

Qv(w,a)=3l,y!, ...,ykQ*(w, ...,yk,ai, ...,ak) 

defines a tree in 91 and if 

i 2 c ( w , a ) = 3/ , ylt ...,yk\g*(v, l,yt, ...,yk, at ak)A V 1 = L 
^ m=0 

um="nyys 
"m = ' f x then any kl,...,kr 

then (Qv, Qc) defines the associated ^-game-frame GFq and g* parametrically 
defines the trace of p in 21 starting with q. 

Note that since the solution of the above recursive equation is the same in 
any model of Ax* thus g* defines the trace of p in any model of Ax*. The universali-
ty of the definition of GFq is evident from the construction. • 

6. Descriptive language 

Let Ax* be a 3-type system and >H^Md(Ax*) an arbitrary model. Let 
p = (i0: «o, . . . , /„ : U„)£NP9 and q: V a r p ^ A an arbitrary input. We emphasize 
that the input q is arbitrary but fixed. The ^-game-frame associated with the pro-
gram/? is GFq=(Vq, Cq). 

Let rB be an arbitrary set of winning paths of player B in game-frame GFq 
and consider the game (Vq, Cq, 0, FB). From the point of view of the theory of 
programming it is of great significance to consider whether player A has a non-
losing strategy in the game (Vq, Cq, 0, F„). The meaning of this consideration for 
the theory depends on what set FB is selected. To illustrate the significance of the 
existence of a not losing strategy of A we consider the game (Vq, Cq, 0, FB) with 
different FB. 

A. Let rB be the set of those definable paths of the game-frame GFq in which 
there exists a situation (node) v such that i.e. FB consists of the 
terminating definable paths of Vq. 

In this case "to have a not losing strategy of the player A" means that A is 
able to ensure that the program execution never "dies", i.e. it runs infinitely long 
(more precisely £-long). • 

B. Let ¡l/€Fgr be an arbitrary formula that is called the output condition and 
let rB be the set of those definable paths of Vq each of that contains a node v such 
that 

(i) l(v)$ {ijm^n} and 
(ii) 91 
So rB consists of those executions of the program p that terminate without 

satisfying the output condition i¡/. 
In this case the non-losing strategy of A means the partial correctness of the 

program p with respect to the output condition t¡/ (while the input condition is 
any tautology e.g. x=x). • 
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C. Let <p, ip£ be arbitrary formulas that are called input and output con-
ditions respectively and let rB be the set of those definable paths of Vq for each of 
which: 

(i) 91|=9>[i(0)], 
(ii) there exists a node (in the path) such that 

l{v)i{im\m^n) and 21 ^ ip[s(v)]. 

In this case the non-losing strategy of A means the partial correctness of the 
program p w.r.t. the input condition <p and output condition tp. Note that we can 
suppose that if the program executed by input q which does not satisfy the con-
dition <p then rB=Q. • 

D. Let (p, \p£Fgp be arbitrary formulas and let rB be the set of definable paths 
of Vq such that each satisfies both 

(i) %\=<p[s(Q)] and 
(ii) either it does not terminate or it has a node v such that 1 (v) t| {im \m^n) 

and l$L^\p[s(v)]. 
Now the non-losing strategy of A means the total correctness of the program 

p w.r.t. the input condition <p and output condition ip. • 

Before proceeding to the next cases we introduce further notations. The value of 
the input is subject to change while executing a program, i.e. during the corre-
sponding computing process. Thus in order to describe program properties during 
execution we need both the input values and the actual values of program variables. 
For any fixed program p we distinguish a set XpzzY of variable symbols that 
duplicates the variable symbols Yp and refers to the input values of the latter. 

If Yp—{y1,...,yk} then Xp={x1, ..., xk} and for any/€[0, «], x,- duplicates 
the corresponding y t . 

Moreover let t be a distinguished variable symbol of Y which will be used to 
describe time conditions. A formula <p€F9* is said to be an input condition for a fixed 
program p iff Var <pczXp. Moreover, a formula \p<zF%* is called output condition 
for the program p iff Var ip<zXp U Yp U {/}. 

Now let us consider the further cases. 

E. Let <p and ip be input and output conditions for a fixed program p respec-
tively and let rB be the set of those definable paths of Vq which satisfy 2It=<p[<7] 
and have a node v such that l(v)$ {/,„ \m^n} and <$L\^\p[q, s(v), length (u)]. 

In this case^the existence of a non-losing strategy of player A is of the follow-
ing meaning. An execution of program p carried out in accordance whith the 
strategy is such that it starts with input q that satisfies condition (p and when it 
stops it satisfies condition ip. • 

F. Let cp and tp be input and output conditions for program p respectively and 
'let rB be the set of such definable paths of Vq that each of them satisfies 211= <p[q] 
and it is either infinite or there exists a node v such, that and. 
t±\p[q, s(v), length (i>)]. 

In this case the existence of a non-losing strategy of player A means the follow-
ing. An execution of program p done in accordance with the strategy starts with 
input q satisfying condition <p and it terminates by satisfying condition \p. • 
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We could go on listing cases infinitely, but we hope that the aboves represent 
the basic idea well. 

However each of the above cases represents its own situation in the theory 
of programming, having its application in the mentioned way. From theoretical 
point of view it would be very useful to have a unique descriptive language for 
any version of the set r B , i.e. this language has to be suitable to define sets of paths 
in trees. But for the time being we have not such a universal descriptive language. 
Thus for each r B we have to introduce a new descriptive language remaining within 
the same definable game-frame (V q , Cq). 

Corresponding to aboves a theory of nondeterministic programming though 
having one programming language has to possess several descriptive languages 
each of which fits in to certain conditions corresponding to some pragmatical aims. 

To illustrate this theory we give the appropriate descriptive language for the 
cases E and F. This language will be common for both cases. We have chosen these 
cases because in literature time consideration is hardly investigated. 

First we introduce the syntax of the descriptive language. 

Definition 6.1. F a =={((?,p, \l/)\p£NPa, q> and i¡1 are input and output condi-
tions for p r e s p e c t i v e l y } U p , ij/]\p(zNP9, q> and 1j/ are input and output con-
ditions for p respectively}. • 

When we are interested only in the triple of (p, p, ij/ without specifying the type 
of brackets that include them we write \cp,p,tl/\. 

Now we are going to define the semantics of the descriptive language. 
Let x=\<p,p, IA|6F9 and let 91 £Md(Ax*). According to Lemma 5.4 for any 

q: Varp-~A there is a game-frame Gp = (Vq, Cq) and a function fq = (l,s): Vq^A 
and they are definable in Ax*. Starting out from the game-frame Gq and taking 
the formula x into account the following game can be constructed: 

0) r \ = V, 
(ii) if Sl^ipfa] then let TJ=0 . In opposite case there are two possibilities: 
a) First if x—{(p,p, i/0 then.TJ = {y is a definable path in F 4 | thereisa ugysuch 

that l(v)$ {im\m^n} and SH^ij/iq, s(v), length (V)]}. 
d { 

b) Secondly if x=[<P>P> W then let r% = \y is a definable path in Vq\y is either 
infinite or there is a v£y such that l(v)(i {im\m^n} and jj[q,s(v), length (v)]}. 

Thus we have got a game G* = (Vq, Cq, 0, which is called the associated 
q-game generated by x-

By using the technique used in the proof of Theorem 4.12 it is not difficult 
to verify that the set r*B is parametrically definable in Ax* in both of the above 
cases a) and b). Moreover, the value of q are used only as parameters in the defining 
formulas. Thus we have the following 

Lemma 6.2. Let 21 £Md(Ax*) be arbitrary, and q: X„->-A. Then the 
associated q-game (Vq, Cq, 0, TJ) is parametrically definable in Ax*. • 

Now we turn to the definition of the semantics of the descriptive language 
to be defined. 
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Definition 6.3. Let 91 £Md(Ax*) and be arbitrary. 9ll= y iff for any 
q: Va rp-*A player A has a non-losing definable strategy in the associated g-game G*. 

• 
Note that if /=(<?,/?, ip) (x=[(p,p, ip]) then ii\=x means the partial (respec-

tively total) correctness of the program p in the model 91 w.r.t. the input condition 
(p and output condition [p. 

Definition 6.4. For an arbitrary 9-type system Ax* the descriptive language 
expressing partial and total correctness and describing the corresponding time 
condition is 

D9 ** = (F3, Md(Ax*), |=). 

Remark 6.5. Similarly to the fact that the associated g-game is parametrically 
definable, if 21l= x then the non-losing strategy and the corresponding run are also 
parametrically definable in 91. 

What is the connection between the validity relation introduced above and the 
validity relation of Definition 3.5. The answer to this and the expressibility of some 
notions introduced above by the first order language is given by the following 

Theorem 6.6. For any x€F 9 there is a formula such that for any 
9 \ £Md(Ax*) , iff 91 NX*. 

The function rendering x* to x is recursive. 
Moreover, there is a formula ax(a,v, w)dF** such that if 9l|=x then for any 

q\ Va rp-*A , ax[q] defines a non-losing strategy of player A in the associated 
<7-game G*. 

Proof. The existence of the formula /* for a given F 3 is an easy consequence 
of Theorem 4.9. The recursiveness of the function that renders the corresponding 
X* to each of them can be established by using Godel-numbering. We omit the 
details. • ' 

Let Efx* denote the set of all formulas that are true in the models of Ax*, i.e. 

Et-{x\Ax*\=xl 
From the point of view of the usability of the descriptive language D3

X* for 
the theory of programming the handlebility of E*x* is very important. This is es-
tablished by the following 

Theorem 6.7. (Completeness.) If the system Ax* is recursively enumerable 
then so is set of formulas E£x*, i.e. the descriptive language is complete. 

Proof. Immediate from 6.6. • 

Remark 6.8. If 9I|= x would be defined so that for any input data q in the 
game G* player A had a non-losing strategy (without the assumption of definability) 
then the language D9

X* would lose the completeness, even more, it would be neither 
co-complete nor complete relative to arithmetic in contrast with the case of deter-
ministic programming (see BANACHOWSKI et al ( 1 9 7 7 ) and COOK ( 1 9 7 8 ) , PRATT ( 1 9 7 8 ) 
respectively). 
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7. A complete calculus 

Being aware of the completeness of the language D9** we are going to intro-
duce such a complete calculus which is close to the programmer's intuition. This 
calculus has to be convenient to prove about a given program p either its partial 
or total correctness w.r.t. given input and output conditions. To provide such 
a calculus is significant from the point of view of both theory and practice. 

Theorem 6.6 shows that the syntax F s can be coded in the syntax F l however 
the proofs in the latter can nfct be interpreted directly by programming situations. 

Below we introduce a calculus in the spirit of Floyd and Hoare. 
First we introduce the following 

Notation 7.1. Let Lab: NP&-*-P(N) be the function rendering to each non-
deterministic program p=(i0: u0, ...,/„: un)£NP9 the set of labels occuring in 
it as follows. 

Lab Cp)={/m|/M^n + l}U{&| there is an m such that um= if x then 
• € {any, every}}. 

Definition 7.2. Let us fix a 9-type system Ax* and let x = \(p, p, i/H be an arbi-
trary formula of F 9 . Let <P : Lab (p)-+Fs* be a function which to each label of the 
program p renders a formula <£(/) with variable symbols x, y, Y. Remember 
that x serves to duplicate the program variable y and t refers to time. Further on 
we write instead of The function $ is said to be the description of x w.r.t. 
Ax* iff it satisfies the following conditions: 

(iii) if im: any y^s.t then 

Ax*\=$lm-+ Bz(zSrA^ f m + 1 [z /y , i+ l / i ] ) (assignment rule of A's choice) 

(iv) if im: every y^z then 

y4x*l=4>im — Vz(z^TA^ f m + 1 tz /y , t+l/t]) (assignment rule of B's choice) 

(v) if im: if x then any fcx, ..., kr then 

(i) Ax*t= <p -•$IO[0/i, x/y] 

(ii) if im: y — T then * 

A x * ^ ^ ^ [ r / y , t+l/t] 

(input1 rule) 

(assignment rule) 

r 
Ax*\=<PimA~\x—<Pim+1[t+l/t], Ax*^$imAx~y Q^t+l/t] 

(rule of conditional jump of A's choice) 

(vi) if im: if x then every k1, ..., kr then 

Ax*^<PirnMx-~4>im+1[t + lit], Ax*t=$imf\x->- V <Pkj[t + l/t] 

(rule of conditional jump of B's choice) 

(vii) Ax*t=<Pz-~\l/ (output rule for z(f { i j m s n } ) 

5 Acta Cybemetica 



368 T. Gergely and L. IJry' 

Moreover if z=[<p,p,4>] then 
(viii) for any {im \m^n} 

Ax*t=3v \/y[<P2-rv^/] (rule of termination). 
We denote by Ax*\~x the fact that the formula x has a description w.r.t. Ax". 

• 
Now let us see some remarks on the above definition: 
Each formula <Pf (O^ /Sn) shows the conditions the data should satisfy before 

executing the command labelled by i and the corresponding time conditions. We 
note that ( can be used in any formula . 

The rule (i) shows that the execution of the program starts at the moment 0. 
In the rules (ii)—(vi) the substitution [ i + l / i ] denotes unambiguously that 

the execution of each command happens during one unit of time however complex 
e.g. the term T is. This has already been supposed in the definition of the q-game 
associated to the program (see 5.3). 

This assumption can be generalized without any trouble in the following way. 
We render to any command im: um an execution time tm which can also depend 
on the data y. Thus the game associated to the program continues a unique path 
during tm time-units. Now this corresponds to the fact that the game stays in one 
and the same state. Using this generalization in the description of x in every rule 
(ii)—(vi) instead of the substitution [ i + l / i ] we write [t+tjt]. 

The rule (vii) says that if the'execution of the program p stops then it stops 
forever i.e. its time rstops,:^-:- the process "dies". 

The rule (viii) is needed only to prove the total correctness of p. 
In'the descriptive formulas the usage of separate variable symbols x is allowed 

in order to refer to the input values. These are needed only in the formulas used 
in the description of total correctness. While proving the completeness we shall get 
a formula independent from x for the case z=(q>, p, by using the definition 
<P* = 3x <f>z for each descriptive formula <PZ. 

It is interesting that in the case of nondeterministic programming total correct-
ness is not equal to partial correctness plus termination in contrast with the deter-
ministic sequential case. Thus in our case the total correctness cannot be established 
by proving the partial correctness and the termination separately. 

Now we show that the calculus introduced above is complete. 

Theorem 7.3. (Completeness.) For any 3-type system Ax* and x€F s , Ax* \=x 
iff Ax*hX-

Proof. First we show that if Ax*hx then Ax*\=x-
Let us fix a x=\(P>P>xl'\ a n d let <P: Labp—Fg* be a description of x w.r.t. 

Ax*. Let 21 £Md(Ax*) and q: Warp—A be arbitrary. We must prove that in the 
q-game G*=(Vq, Cq, 0, rx

B) player A has a non-losing strategy. 
Let ( l ,s): Vq—N x V a r M be the trace of p in 21 starting with q. First we 

define a strategy for player A. 
Let v£Cq be arbitrary. Since v£Cq for an 1, w] we have l(v) — im and um — 

=any y^z or um — i f x then any k1,...,kr. If 2i^=<^l(v)[q,s(v), length v] then let 
sir (v) be the minimal element of SKj(y). (It might be arbitrary but we have to be 
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sure that str is parametrically definable.) So let us suppose that 9t|= <Pl{D)[q, s(v), 
length (v)]. First let um=any y^r. By our assumption with im=l(v) 

91 N <P(M - 3z(z ^ zA$im+1[i/y, t+\/t], 

91N $im[q, s(v), length u] and thus 

91 1= 3z(z ^ rA4>im+1[r/y, t+l/t][q, s(v), length (u)]. 

Now let z* be the minimal z£A such that 

91 t= zS TAi>,m + 1[i/y, t+l/t][q, s(v), length (v), z]. 

It is clear that pair (v, z*)£SVg(v) and so let 

str (v) == pair (v, z*). 
Obviously 

91 1= ¡¡(str (»)), length (str (»))] (1) 

In the end let um — if x then any kx, ...,kr. Since v£Cq so 9lt=jc[s(u)]. Using r 
9tt=^,mA?<- V $k j[ t+l / t ] and 9lt=^ImAj<[q, s(v), length (v)] we have 

j=i m
 s 

91 1= V &kj[t+ l/t][q,s(v), length (v)]. 
j'=i 

Let k* be the minimal k£{klt ...,kr} for which 

91 t= <Pk[t+\/t][q, s(v), length (a)] (2) 

and take str (v)=pair (v, k*). 

Thus the strategy str is defined. Since Gq is definable and the method used in 
the aboves can be defined in F*t so str is also parametrically definable. The fact, 
that str is a non-losing strategy follows from the following 

Lemma 7.4. Let n be a parametrically definable path in the run Rslr of the 
strategy str. For every V£TC 

« t= <*>/(„)[?, s(v), length 0)]. 

In fact if / ( y ) { i m \ m ^ n } then 

91 |= ij/[q, s(v), length (v)]. 

Moreover, if x—1<P> P> M then n terminates. 
Proof. The proof goes by induction on the length (V). If v = A and length (v)~0 

then by using 91 \=(p [q] and (i) of Definition 7.2, 911= *nA)[q, s(/l), 0]. The inductive 
step can be done by using (1), (2) and (ii)—(vi) of Definition 7.2. If l(v) $ {im\m^n} 
then from (vii) of Definition 7.2 we get 9l|=i/'[<7> s(v)> length (i>)]. 

If x = [ < p , i p ] then let us apply (viii) of Definition 7.2 and we get a t£A 
such that if length (v)=~t then for any z£ {im\m^n}, 21N <Pz[q, s(v), length (v)]. 
Hence using yi)=<t>Hv)[q,s(v), length (v)] we have l(v)$ {im\m^n\. 

The proof of the lemma is completed. • 

5* 
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Now the proof of the theorem is continued by showing that if Ax*\=x then 
Ax* Н / . 

Let x=\<p, p, ф\ be such that Ax*\=/- Let S2y(a, v) and Qc(a, w) be the for-
mulas which parametrically define the game-frame GF=(V, С) in Ax* generated 
by x- By the second part of Theorem 6.6 there is a formula ox(a, v, w) with the same 
parameters as Qv, Qc which in Ax* parametrically defines a non-losing strategy 
for player A in the game (J*. Hence there is a formula Qx(a, which defines 
in Ax* the run of the strategy defined by ax. Now we give a description of x in Ax* : 

Ф2(х, у, t)=(p(x)A Зу {^ (x , v)Al(v) = zt\y — s(v)Mength(v) = /}. 

Since s is parametrically definable in Ax* by using only the parameter x so 
It is clear that Var Ф г с { х 1 , . . . , xk, уг, ..., yk, /}. 

The following lemma is enough to complete the proof. 

Lemma 7.5. The above function Ф is a description of x w.r.t. Ax*. 

Proof. Let s2t£Md(Ax*) and q: Var/?—A be arbitrary. We have to prove that 
for any y, t_£A the rules in Definition 7.2 hold, (i)—(vii) can be proved in the same 
way so e.g. we prove (iii). Let y,t£A be such that 91 н Ф,т[<7, y,t] and um—every 
y^z. Let G£=(Vq, Cq, 0, be the associated ^-game generated by x a n d let 
(/, j ) be the trace of p in 91. By the definition of Ф,т there is a Vq such that 
y—s(v) and t=length (v). Moreover v^R^ where str is the non-losing strategy 
of player Л defined by a and q. Let zs r a [i(y)] bearbitrary. Then w=pair (v, z)dRstr, 
length (w) = t+1, 

{ z if X = y, 
s(y)(x) otherwise; 

and l(v)=im+1. 
This means that 

21 И <I>im[q, s(w), l(w)]. 
Hence 

t= Ф1т+1[г1У,1+1/ШУ,1]. 
Summarizing: 

91 N Ф,-т - Vz(z ё гЛФ ; т+1[2/у, i+ l / i ] ) . 

If x=[<P,p, \]/] we must prove that for any {im\m^n), 

91 t= З Г Vj> \//[Фг(у, / ) - * ' = Г]. 
By the definition of G* and Rstr in Rstr any definable path terminates. It is clear 

that Rslr is finitary and thus Konig's Lemma can be applied: there is a T£A such 
that for any v£Rstr, length (v)^ T. As in the first part of the proof for any 
(y, t)£A with 

Я N ФЛЯ.9, £1 
there is a v£Rslr such that s(v)=y and length (v) = t. Hence tj=T and thus 

91 и Vj?Vf [ * , ( ? , / ) - / € Г ] [ * , Г | . 

The proof of the lemma is completed and so is the proof of the theorem. • 
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8. Examples 

8.1. The least common multiplier 

Let us consider the following nondeterministic program that we would like 
to use for the computation of the least common multiplier of two positive integers : 

d 
/>1 = 

0: any y ^ m a x (a, b) 

1: if a\y2Ab\y2Ay2^0 then 5 

2: if y2>ab then 5 

3: y2^y2 + yi 
4: goto 1 

The input and output conditions are respectively 
d 

(p = a > OAb > 0AJ>2 = 0 
and 

d 
il/=y2 = [a, b]. 

Let Ax be the set of axioms, which contains PA and the axiomatic definition 
of |, max, < , s , and [. , .]. Let 

Ax*=AxU{Vxt;(x)}. 
We are going to prove that 

:f Ax*\=(<p,p1, i/O-
i.e. in the label 0 the value of yx can be chosen so that if the program terminates 
then y2 = [a,b\. Indeed let us consider the following description of % w.r.t. Ax*: 

<P0^=a > 0 A b >0Aj>2 = 0 

*i=yi =*OA(y1|flVj'il&)AVz(z s yzAyJz - z\a\J~]z\b) 

d 

<P3=<P2Ay2 ab 
d $ 4 = Î>! 

4>5==y2 = la, b] 
It is easy to verify that the function described above is really the description 

of x w.r.t. Ax*. 
It is obvious that the greater value is chosen for yx f rom that of satisfying the 

condition the sooner termination of the program occurs. That is why from 



372 T. Gergely and L. IJry' 

the output condition we claim the expression of early termination. So let 

r d 4([a,b] + \) 
max (a, ft) 

Now let us consider the description ¿»'of x=[<p,p, »AI w.r.t. where the 
time conditions are to be expressed in the descriptive formulas The 
description $ is a light modification of $ as follows: 

i>0== a > OAb > OA y 2 = 0 

^ i ^ y j = max (a, ¿OAy., = sî abA Vz(z ë j^-A^lz — l z | a V lz|f>) 

= max (a, b)Ay2 = ^ - ^ y ^ y z ^ ai»AVz(z j ^ A j ^ z — ~|z|aV ~lz|b) 

^ 5 = = [a, b]Ai == u . . / . 5 1 J max (a, b) 

From the descriptions <P and $ it immediately follows that the command 2: 
if y2>ab then 5 is really unnecessary. It is good exercise to prove that if in the 
program p1 we write every instead of each occurence of any we get a program p[ 
such that 

Ax* 1= [cp, pi, t s 4ab + 4], 

8.2 Pattern matching 

Now we show how the nondeterministic programming language NPa can be 
used for handling the problem of pattern matching. First let us specify what 
pattern-matching is. 

Let ^ be a definable partial ordering in a fixed system Ax*. Let S}\£Md(Ax*). 
If for some a, b£A, a^b then we say that 6 is defined at least that much as a. Let 
us give a vector {X(j))JS„ of w + 1 elements. We would like to match to this vector 
a pattern from the matrix (A(i, j))irSmj^„. 

More precisely, we would like to find such a row in the matrix each element 
of which is defined at least that much as the corresponding element of the vector 
m))jSn-

Since vectors and matrices are not allowed in our language NPg. explicitly we 
have to suppose that the type 9 contains the function symbols vcomp and mcomp, 
for which 9(vcomp)= 2 and 9(mcomp) —3. The function symbol vcomp provides 
the i'-th component of the vector having the code X. Analoguously mcomp pro-
vides the (/, y)-th component of the matrix having the code A. 
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Let us consider the following program the input data of which are A, x, n, m. 
d 

P2 = 
0: any i^m 
1: every jSn 
2: if vcomp (x, j)^mcomp (A, i, j) then 5 
3: « = 0 
4: goto 6 
5: w = l 

Let u= 1 be the output condition of the program. It is a useful exercise to 
prove the fact that the execution of p2 w.r.t. the input values A, x, n, m is correct 
iff such a row s can be chosen for the label 0 that can be matched to X. 

8.3 A NIM-game 

According to the definition the execution of programs is represented by an 
associated game. Of course this can be reversed as follows: the properties of a 
game can be represented by an appropriate nondeterministic program. 

Let us-consider the following version of the game NIM. There are two players 
A and B and there is a single pile of n chips. The two players take turns alternately 
and at each move a player must pick up at least one and at most k chips from the 
pile. This is the game-frame. We add to this the following: the player who picks 
up the last chip wins. Thus we have the game G. 

Let player A move first. By using the calculus of Definition 7.2 and Theorem 
7.3 we show that player A has a winning strategy if n is divisible by k+1 i.e. if k+11n. 

Let us-take the same system Ax* as in 8.1 and consider the following program, 
d 

Pa = 
0: any y^k 
1: if y=0 then 9 
2: if y^n then 11 
3: n-n—y 
4: every y^k 
5: if y=0 then 11 
6: if y^n then 9 
7: n—n—y 
8: goto 0 
9: u = 0 

10: goto 12 
11: u = 1 
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Note that the commands of labels 0 and 4 allow to choose 0 chips in contrast 
with the rules of the game G. This is connected with our programming language 
NP&, where for the sake of simplicity we introduced the assignment commands 
with choices in the form of /: ny=t, • 6 {any, every} .However we could have given 
them in the following form i: • zx=y~^x2 or i: • y£q> (where t15 and q>£Fl 
and it has at least one free variable symbol). Thus to keep up with the game rules 
we need the commands labelled by 1 and 5. These commands assure that if one of 
the players on his turn chooses 0 chips that this move will be considered as a cheat 
and he loses the game immediately. 

It is obvious that player A has winning strategy in the game G iff the pro-
d 

gram p3 is correct w.r.t. the output condition tj/ = u=l. Since in the game G drow 
is not possible so a non-losing strategy of player A is, at the same time, his winning 
strategy. Thus it is enough to show that Ax*t~x where 

X = [~)k+\\n,p3,u = 1], 

i.e. it is enough to give a description of the formula x w.r.t. Ax*. It is easy to 
verify that the formulas below define a description of x w.r.t. Ax*: 

<P0== " l f c + l | n 

<PX= 1 ^ y S kAy = n mod (fc+1) 

d 

# 2 = 1 ^ y ^ fcAy = n mod (k+1) 

d 

<&3= y < nAy = n mod (fc+1) 

<P4= k+ l |nAn > 0 

^ kAn > 0 A f c + l | n 

<P6= l g y s kAk+l\nAn > 0 

1 fcAfe+l|nAn > 0 

$ 8 = n f c + l | n 

<Pg=false 

$10=false 

^ d <Plt=true d 
^ 1 2 = " = I-
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Abstract (to Part 2) 
/ 

Games are adequate to nondeterministic programming shown in Part 1 and the theory of 
nondeterministic programming is intended to be developed within the frame of classical first order 
logic. So in Section 4 the representation of games is given by considering definable games within 
this frame. The nondeterministic programming language is introduced in Section 5. In Section 6 
a descriptive language is introduced which, beside the classical data consideration, handles time 
conditions as well. It is shown (in Theorem 6.7) that this language is complete. Section 7 contains 
a calculus in the spirit of Floyd and Hoare, the usage of which is illustrated in the last section by 
examples. 
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