Completeness in non-simple and stable modal logics
By K. TétH

In my work [1] I have defined the syntax and semantics of modal loglcs Also, in-
ference systems and completeness theorems for simple, non-stable Iogxcs have been
included. Unfortunately, the methods used there cannot apply directly to non-
simple and stable logics. In this paper I give a modification of the method and
prove completeness theorems for the cases not covered in [1]. In fact, this paper
is a continuation to [1], all non-common notions and notations are introduced there.

§ 1. Completeness in non-simple logics

The notion of consistency is defined in [1].

DerFINITION. The set of formulae is complete if the following conditions are
satisfied:

@) « is consistent;
(i) If d contains variables only from =(«), then either A€a or ~ o/€«;

(iii) Let & contain variables only from =n(x). If 3xe/€a, then there exists
a variable a€n(x) such that a is free for x and &f[x/a]€«;

(iv) Let f be n-argument function symbol and let x, ..., x,€7(a). There exists

a variable a€ 7 () such that for all classical formula o the fact f(x,, ..., x,) is free for a

in o implies that the two assertions &/€a and &/[a/f (x,, ..., x,)]€a are equivalent.
AY

Theorem 1. If « is consistent, then there exists a complete set § such that « S 8.
Proof. Parallel to the proof of Theorem 5-in [1] using the following Lemma.

LEMMA. Let f be an n-argument function symbol, « a consistent set and a § n ().
Moreover, let o’=al {&:. & is a classical formula, f(x,, ..., x,) is free for a in
o -and o [a] f(xy, ..., X,)]€a}. Then o is consistent.

Proof. In contrary, let us suppose that there exist the formuiae dl, cees s
B, ..., B, such that o, ..., A €a, Byla] f(x1, ... X)), ... Bilal f(xy, ..., x)]€a
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and + ~ (A AL NBN...AB). Applying R2 and A6.b we have

-Va ~ (A . NLABN ...\ B))
- ~ (A . AANAB[aff (x1, ..., )N ... AB[alf (x5 ..., x,)])

which is a contradiction.. .

Definition of a complete system of formula-sets is just the same as in [1]-how-
ever, item (iii) can be omitted by the remark above.

The theorem remains valid for the new concept:

Theorem 2. If ¢ is a complete set of formulae, then there exists a complete
system of sets M such that «€ M.
The completeness result follows easily from this theorem.

Theorem 3. Let a non-simple, non-stable modal logic be given. If &/ cannot
be derived in this logic, then ~.7 is satisfiable.

Proof. By the previous theorems, there exist a complete set « and a complete
system of sets M such that ~ o/€a, € M. We assume, by the definition of a complete
set, that is a function for which the following property holds: if ¢ M, f is n-argu-
ment function symbol, x,, ..., x,€n(«), then v(a, f(x,, ..., x,)) is a variable, such

that for all classical formula 4, if f(x,, ..., x,) is free for v(x, f(x;, ..., X,)) in
%, then the two assertions #€a and ZB[v(x, [ (x4, ..., X))/ f(x1, ..., X)) € are
equivalent.

Let us introduce the notations:
N={B: BeM and B* = 0};
If B, yéM, then BRy< ((B* Sy and B*=0) or (B* =0 and y=§));
[P(B) = n(B);
fp(ﬁ)(xl,_..., x) =v(B.f(xy, ..., x,)), where xy, ..., x,€n(B);
ey (X5 ooes Xp) g r(xy, ..., x,)€B, where xy, ..., x,en(f).

It is clear that (M, N, a, R, P) is a model. Let us extend the domain of v as follows:
let v(B,x)=x, where x€n(f); and let o(B, f(t1, ..., 1))=0v(B, f(W(B, 1), ---»
..., v(B, 1,))), where 1, ..., 7, are terms containing variables from n(f) exclusively.
The following assertions can be proved by (the usual) induction:
Let k be an interpretation and x the corresponding valuation.
@) If =€#,(B), then x(z, B)=v(B, t[xy, ..., X /k(x)), ..., k(x,)]), where
X1, ..., X,, are all variables occuring in .
Gi) If BeH,(B), then PEB[kloB[x, ..., Xulk(x), ..., k(x,)]€H; where
Xy, ..., X,, are all variables occuring in £.
" In particular, it follows that ~ . is valid in the model (M, N, a, R, P).
Properties K1—K3 can be proved just as in [1, Theorem 7).
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§2. Comple.teness in stable logics

Theorem 4. If o is complete, then there exist a complete set § and a complete
system of sets M such that « S8, €M and for every ye M, n(f)=n(y).
Before proving this theorem we give the completeness result for stable logics.

Theorem 5. Let a stable modal logic be given. If the formula &/ cannot be-
derived in this logic, then ~ & is satisfiable.

Proof. Very similar to the proof of Theorem 3 above or Theorem 7 of [1] pro-
vided complete system of sets M, given by Theorem 4, is used in the construction.

§ 3. Proof of Theorem 4

We introduce the following notations: let « be a set of formulae. By ()
we shall mean the set of all formulae which contain variables only from m(x).

Let R be a two-argument relation. We define the relation R n finite, by the
following recurrence: R° is the identity relation and let R"*! be defined by AR"+'B
" if there exists C such that 4R"C and CRB.

Then, R = |J R", where R is the reflexive, transitive closure of R.

n=0

In the following we shall deal with certain ordered triplets {a, M, R). Without
further mentioning we always suppose that the following conditions hold for
{a, M, R): ]

(i) >M is a set of complete sets, € M, R is a binary relation on M.

(i) For every B¢ M, aRpB and if SER and for all B¢ M aSB, then R=S.

(iii) If acn(p), then there exists y such that a€=(d) if and only if yRé.

(iv) a) If BRy then BTNy () Sy and BT=0.

b)-Let e M, (sZ€p. If there is a y€ M, such that SRy and /€y (y), then

there also is a y€ M with fRy and /€.

Assertion 1. For arbitrary triplet («, M, R) there is no ¢ M such that ﬂRoz:
If BRSO and YRS then B=y. -

Proof. (a) Consider the triplet (¢, M, S), where S is defined by Sy if and only
if BRy and 7ys2a. By the second clause (i) above, R=S.

(b) Let us suppose that SRS, yRS and f=y. Let S be defined as B, SB, if
and only if B,RB, and (B, B2)#=(B, ). Then conditions above will hold for
(¢, M, S), but SCR and SR which contradicts the second condition (ii).

DErINITION. {a, M, R) is called n-th order triplet if for every B€ M there is
a k (0=k=n) such that aR*f. (o, M, R) is totally n-th order triplet if it is an n-th
order triplet and if O=k<n, aR*B, ()LEP, B* 0 then there exists y€ M for which
PRy and 7€y

It is clear, that for every m (m=n) the fact {a, M, R) is an n-th order triplet
implies that (x, M, R) is an m-th order triplet too. Similarly, if (o, M, R) is a zero
order triplet, then M={a}, R=90, thus (a, M, R) is totally zero order.

Let {a, M, R) be arbitrary, fc¢ M. Let us set

. M| = {y: BRy}, . RIB = RN(M|BXM|P).
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Assertion 2. If («, M, R) is an n-th order triplet and aRS then (B8, M/B, R/B)
is an (n—1)-th order triplet.

DEFINITION. Let us define the operation L by the following items: if («, M, R)
is a O-order triplet, then L{x, M, R)=a, if n=0 and {a, M, R) is an n-th order
triplet, then let L{x, M, R)—ozU U {Q«: o is a conjunction of formulae from the

aRp

set L(B, M[B, R/B)}.

Theorem 6. Let (a, M, R) be an n-th order triplet. Then L{a, M, R) is con-
sistent.

Proof. We proceed by induction on n. If n=0 then the assertion clearly holds.
Let n>0, and assume the contrary, i.e. there exist &/, &,, ... and a conjunction
%, of formulae from L{f,, M/B,, R/B,), a conjunction &, of formulae from
L{B,, M|B,, RIB,) etc., such that

b ~ (ALN L ANOBNOBLN L)
that is
e~V VO ~BNO ~ BV ...

We can assume that all g;, B; are distinct, for if not, then can apply

Hence we obtain a form in which all sets f;, f; are distinct. Let x be a variable of
%, such that x ¢ n(«). It follows from Assertion 1 and condition (iii) that x does
not occur in the formulae «,, o,, ... or %,,....

Apply rule R2 for all variables not occuring in n(x):

b~V ~ Vo VY X VX . O ~ BV VX ViXgg... O ~ B,V ...

Since the fixed logic is stable we can repeatedly apply the axiom Yx[O&/ — O Vxo/
and obtain

}— ~ d]_v ’Vﬂzv...v D qu wa e Nglv [:] me VX22 N-@zv...

where all free variables are from =n(x). Since bound variables can be substitued
by suitable ones from 7 (x) we have

b~V ~ VN OV X VX oo ~ BN OV X VX ~BIV ...

o complete, so this possible only when some disjunctive terms, e.g. [V x}; Vxja...
..~%€a. (For if ~of,€a, then ;€ which contradicts the completeness of «.) So

Voaq Vg ...~%€6, & L(ﬁl’ M/B,, R/ﬂl)
o~ (VX VX1g ...~ B{INB).
We concluded that L{B;, M/B;, R/f,) is consistent, wich proves the theorem.

and

Theorem 7. If (o, M, R) is an n-th order triplet, Ry and B is a complete set
such that L{a, M, R)S B then B+UL(y, M[y, R/y) is consistent.
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Proof. In contrary, let us assume that there are formulae #€ 8+ and ¥, a con-
junction of elements from L{y, M/y, Rfy) such that  ~(#BA%) ie. -B—~~%F.
By R3, we obtain —OF~O~% i.e. - ~(OBAN)%). In accordance with our
conditions, JZ¢€ S and so ()¥€f which contradicts the completeness of .

DEFINITION. We say that (¢, M, R) is a continuation of {f, N, S) if there exists
a functlon\ f: N> such that f(B8)=a, if yeéN then yCf(y), and if yS5 then
SRS ().

Theorem 8. If («, M, R) is an n-th order triplet and p is a complete set for
which L{a, M, RYS B, then'there exists a totally n-th order triplet (8, N, S) which
is a continuation of (a, M, R).

Proof. We proceed by induction on n. If n=0, the assertion follows. Let

n=0. If a*=@, then for all &€y (x), {F€a, so ().9{6/3 In particular if & is
~a negation of a tautology, then ()& ~()%, thus for every ﬂew(ﬁ) QBEP, ie.
B*=0. It is impossible that Sy, by definition, hence {f, {8}, 0) is a totally n-th
order triplet and this is a continuation of («, M, R)=(x, {a}, 0).

Let at0, and so f+=0. As we see ()€f implies the consistency of
B+ U{«}, hence we can assume that g+ U {«}Sé,, 6,4 is complete. By the pre-
vious theorem, B+U L{y, M/y, R/y) is consistent, too, provided aRy, thus there
is a complete set &, such that p*UL{y, M/y, Rjy)&4,.

It is clear, that the new variables, introduced in these steps, may be chosen
so that the sets m(8 )\7m(B), ..., n(6)\n(p), ... are pairwise disjoint. As (5,
{0z}, O) is an (n—1)-th order triplet, and since L{y, {04}, 9)< d, it follows that
a totally (n— 1)-th order continuation (0., M, Ry) of (04, {0}, 9) exists. Since
L{y, My, R[y)S 4, by the induction hypothesis, it follows that there exist M,, R,
such that (8,, M,, R,) is a totally (n—1)-th order triplet and it is a continuation

We may assume that the common variables of any two sets n(UM,), ...
,n(UM,), ... are contanied in 7(B).
Let JEN, prov1ded o=pf, or
if there is an &, such that ()s&/€f and € M,,, or
if there is a y, such that aRy and d€M,.
Let §,, 0,€ N and 6, S8, provided
if 8,=p and there is an & such that )&Z€f and =6, or
if ,=f and there is an y for which aRy and 6,=6,, or
if there is an &, such that ()«&/€f and 6,R,0,, or
if there is an p, such that aRy and é,R,d,.
It is obvious, that the conditions (i)—(iv) hold for (B, N, S). Also, it is a totally n-th
order triplet and is a continuation of {(«, M, R).

Now we can return to the proof of Theorem 4: Let {a,, My, Ry)=(a, {o}, 0)
i.e. a totally O-order triplet. Let us suppose, that for some n, a totally n-th order
triplet {a,, M,, R,) is defined. By Theorem 6, L(cx,,, M,, R, is consistent, and
hence there is a complete set «,.,, such that L(oz,,, w Ry &, 4q. By Theorem 8,
there exist M, ,,, R,+q suchthat (o, ,,, M, .1, R,y isa totally (n+ 1)-th order triplet
and it is a continuation of {«,, M,, R,). Thus, there exists a function f,: M,—~M, .,

such that f,(o,)=0a,,, and €M, implies S & f,,(/}) and if AR,7, then f,,(,B)R,,“f,,(y)

b
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Let 8= G o, and M={G Va: Y€ M, and for all i=k, y,-+l=fi(y,-)}. Since union
n=0 n=k

of increasing complete sets is also complete we have that every element of M is
complete.

Let yeM, y+*%0, and )F€y. For y= G 7., there exists an /, such that
n=k

/€y, and hence there also exists d; for which y,R,4, and Z€d,. Let 6= D o,
n=|

Cs

yr=Ur7rc U J,=96 and &€, thus M is a complete system of sets.
n

1
Let aEn(ﬂ) For some k, acn(ay), and if I=k, then a€n(y), too. If €M,

then for some 7, 6= U 6,. We may assume that k<i and so a€n(x;). Since
{a;, Mi, R is a totally_il-th order triplet, we have n(¢)Sn(6,), and thus acn(f).
Let a€n(d) for some 66 M. We may assume that d={ ) 6, and a€n(d,). For

n=k

L{u, My, RYE o441, a€n(o,) and hence acn(f).
We gained, that for every de€ M, n(B)=n(d) which completes the proof of
Theorem 4 and also the completeness theorem.
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