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Introduction 

It is known [7] that to a unary universal algebra (universal algebra [6] with unary 
operations only) there corresponds a monoid (semigroup with identity). An auto-
maton without outputs [4], or shortly automaton, can be obtained from a unary 
universal algebra by selecting an element and a subset from its base set, for the 
initial state and the final state set of automaton, respectively [8]. The above men-
tioned monoid is associated with this automaton, as well [5]. 

The concept of a tree automaton [1] is such a generalization of that of an auto-
maton, when the corresponding universal algebra is not necessarily unary [12], [11]. 
The purpose of this paper is to show that there is an other way of generalization 
obtained by replacing the monoid by an arbitrary groupoid. Then the notions 
corresponding to those of the unary universal algebra and the automaton are the 
pseudoalgebra and the pseudoautomaton (which is a kind of tree automata, as well), 
respectively (see Conclusion at the end of the paper). These notions are introduced 
in the paper [10]. 

The method used here for representation of formal languages [9] by a set of 
trees is analogous to that in the author's paper [2]. 

1. Trees and algebraic structures 

By a) we denote the set of all nonnegative integers, i.e., ©={0 ,1 ,2 , . . . } , 
and by % the set of two parentheses ( and ), i.e., n — {(,)}. Furthermore, we suppose 
that n is disjoint from each other sets used here. For a set A, A* is the set of all 
finite strings on A including the empty string X and A+=A* — {X). If p is a finite / 
string on A, then lg (p) denotes the length of p, i.e., the number of occurences of 
symbols from A in p. An alphabet is allways a finite nonempty set. 

Let V be an alphabet and X a set of symbols disjoint from V (X may be infinite, 
finite, nonempty or empty). The set of trees of type V over the set X, in notation 
[V, X], is a subset of (KUXUrt)+ defined as follows: 



390 F. Ferenci 

1.1.(1) xi[V, X] for all x£X; 
(2) if v£ V, k£a> and t£[V, X] for l^i^k, then v(tJ(.t2)...(tJt[V, X] (in the 

special case k=0, v 6 [ V, A"]); 
(3) the elements of [V, X] are those and only those which we get f rom (1) 

and (2) in a finite number of steps. 
It can be proved that for every t=v(t1)(t2)...(tk)£[V, X], the components 

v£ V, k£co and ¡¡^[V, X] (1 ^i^k) are uniquely determined. 
If X=0 then we write [V] for [V, X], i.e., [V]=[V, 0]. 

Example 1.1. If {uj, v2,v3,v4) and X={xu x2}, then t - u1(i33(x1))(iy2(u1)(i;2)) 
is an element of [V, X], This tree is represented graphically in the next figure: 

(It can be noticed from our definition of trees, that the use of parentheses 
differ from usually manner, see [10], [12], [1], etc. Our method is taken from [3].) 

The word function fV: [V]~*V+ we define in the next way: 

1.2. (1) if t = v for some v£V, then W(t)=v; 
(2) if t=v(t1)(t2)...(tk) where v<EV, k^l, t£[V], l^isk, then W(t) = 

=vW(t1)W(t2)...W{tk). 
It can be seen that for a i£[F], W(t) is the word over the alphabet V [9] which 

is obtained from t by erasing all parentheses. 

Example 1.2. If V={vlt v2, i>3} and t=v1(v2)(v1(v2)(v2)}, then W{t) = 
— V1V2VXV2 v2. 

For TQ[V], W(T) is the set {W(t)\t£T} and it is a 1-free language over V[9]. 
Let V be an alphabet. A pseudoalgebra of type V is a system A = a ( V , A) 

where A is a nonvoid set disjoint from V, the base set of A, and a is an operator 
which for each v f rom Vdetermines a mapping ay: A*—A [10]. The pseudoalgebra 
A is finite iff A is finite. A pseudoalgebra B = f i ( V , B) of the same type V is called 
a subpseudoalgebra of A iff B^A and fiv(p)=xv(p)£B for every vd V and p£B*. 
Let C = y ( V , C ) be a pseudoalgebra and h a mapping of C into A. When for ar-
bitrary v(iVand c1c2...ck£C* (k£a>, c^C, l^i^k) h(yv(c1c2...ck))=otv(h(c1)h(c2)... 
...h(ck)) holds, then h is a homomorphism of C into A. If in addition h is onto then 
A is a homomorphic image of C. Moreover, if h is an onto and one-to-one homo-
morphism then it is an isomorphism, and A and C are called isomorphic pseudoalgebras. 

Let us consider a pseudoalgebra A=a(V,A) and the set of trees [V, A]. By 
a we define a mapping a from [V, A] into A in the following way: 

1.3. (1) if t—a for an a£A, then oi(t)=a; 
(2) if. t=v(t1)(t2)...(tk) where v£V and t£[V, A] for l^i^k, then a ( f ) = 

=av(a(t1)a(t2) ...a(tk)). 
The next lemma expresses a property of homomorphisms. 
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Lemma 1.1. If A = a ( V , A) and B = f i { V , B ) are pseudoalgebras and h: B-»A 
a homomorphism of B into A, then h(P(t))—u(t) holds for every t from [V]. 

Proof. The proof is by induction on lg(i)- First.it can be shown that if t = v 
for some «€ V, the assertion is true. Then, supposing that the assertion is true for 

l ^ i ^ k , fcsl, one can prove, that it is true for t = v(t1)(t2)...(tk). 
A pseudoalgebra A = a(V,A) is connected iff oi([V]) = A. 
The next statement is a consequence of the previous lemma. 

Lemma 1.2. If A and B are connected pseudoalgebras of the same type and 
there exists a homomorphism h of B into A then h is uniquelly determined and A 
is a homomorphic image of B. 

A nonvoid set A with a binary operation "multiplication" defined on A is 
a groupoid A. The result of the multiplication of two elements a1 and a2 from A 
(their "product") will be denoted by (a1 • a2), but expressions obtained by a succes-
sive application of multiplication can be simplified in the known way, i.e., by erasing 
the outer parentheses. For example, instead of (a • b) and (a-(b- c)) we shall write 
a • b and a • (b • c), respectively. 

If to a groupoid A we add an alphabet V disjoint from A and introduce a mapp-
ing £: K—A, we get a designed groupoid si, in symbols, si = {A, V, £). The designed 
groupoid si is finite iff A (i.e. A) is finite. It is connected iff A is generated by the 
set £(V) = {l;(v)\v(iV}. If ^S = (B,V,rj) is a designed groupoid too, then the 
mapping h: B-*A is termed homomorphism of into si iff it is a homomorphism 
of B into A and h(ri(v)) = ^(v) holds for arbitrary v£V. "Onto" homomorphism 
and isomorphism are defined in the natural way. 

Using a designed groupoid si —(A, V, £) one can consruct a pseudoalgebra 
which is denoted by ind si (pseudoalgebra induced by si) in the next way: ind si = 
= a(V, A), i.e. it is of type V, its base set is A, and for every v£ V, p£A* and a£A 
holds 

1.4. (1) a»(X) = m ; 

(2) av(pa) = xv(p) -a. 

In other terms, for p=a1a2...ak (a£A, 1 S/S/c) ow(/?) = (...((£(u) • • a2) • 

The following lemma will be useful in some proofs.. 

Lemma 1.3. Let si be a designed groupoid. Then ind si is connected iff stf 
is connected. 

Proof. Let si —{A, V, £) and ind si = a(V,A). We shall show that an a£A 
is a product of some elements from £(V) iff there exists a t£[V] with a(t) = a. 
We proceed by induction. 

When the number of factors in the product is one, i.e. a = ^(v) for some v£ V, 
then it is equivalent to a = a.(t) for t = v£[V], If we suppose that the element a; 
from A is a product of elements from £(V ) and a, = a(i,) holds for some t£[V], 
where 1 ^i^k, k^l, then a=(...((£(v)-a1)-a2)-...)-ak iff a = txv(a1a2...ak) = 
= a ( 0 for t = v(t1Xt2)...(tkX[V]. 
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2. The groupoid of a pseudoalgebra 

Let 9 be a binary relation on a set X(9Q X2). Then we write Xj 6x2 iff , 0. 
If 9 is an equivalence relation, then X/6 denote the partition of X induced by 0, i.e. 
the set of all equivalence classes modulo 9. For an x£X the equivalence class con-
taining x will be denoted by 0(;c). 

Let [V, A] be the set of trees of type V over a nonempty set A. We define the 
subsets [V, A]' and [V, A]" of this set in the following way: 

2.1. [V,A\ = [V,A]-A 

and , 

2.2. 

[V, A]" = {t\t£[V, A], t = viaJia^)... (ak) for v£ V and ax a2... A* (a,€ A, 1 i == k)}z 

If t£[V, A]' and p — a1a2...ak is an element from A* (a^A, l^i^k), then let 
tp = t(a1)(a2)...(.aK)(WAN 

Let us suppose that A = a ( F , A) is a pseudoalgebra of type V. On the set 
[V, A]' we define the relation o'Q([V, A]')2 in the next way: 

2.3. for arbitrary trees i j and t2 from [V, AY hg't2 holds iff a(t1p)=a(t2p) is 
satisfied for each p£A*. 

The relation g' is evidently an equivalence relation on the set [V, AY- Into the 
set [V, AYIQ' of equivalence classes modulo Q' one can introduce a binary opera-
tion — multiplication — in the next manner: for arbitrary it and t2 f r o m [V, AY 

2.4. Q'(,h)-Q'(t2) = Q'{t) where t = h(t2). 

One can easily prove that this operation is well defined. 

Now, we have a groupoid [V, AYIQ' whose multiplication is defined by 2.4. 

The designed groupoid ([V, AYIQ', V, a') where A'(v) = g'(v) holds for each V, 
we call the groupoid of the pseudoalgebra A and denote it by ^(A) . 

Since Q"—QT\([V, AYT is an equivalence relation too, however now on the 
set [V, AY'C=[V, AY), and each equivalence class modulo Q' contains elements f rom 
[V, AY' (if t1 = v(r1)(r2)...(rk) and «(r^a^A, l = s I S K , then txg't2, where t2 = 
= u(a 1 ) (a 2 ) . . .K)€[F , AY'). If on the set [V, AY'/Q" we define the multiplication by 

2.5. Q"(h)-Q"{t2) = Q"(t), where / = h { a { Q \ 

we get a groupoid [V, AY'IQ" isomorphic to [V, AYIQ'. Namely, it can be easily 
shown that the mapping / : [V, AY' IQ"~[V, AYIQ', which is defined by f((e"(t)) = 
— Q' (t), is an isomorphism between these groupoids. For this reason the designed 

groupoid ([V, AY'IQ", V, a") where OC"(V) = Q"(V) holds for each V£ V, is isomorphic 
to (A). That means that we can consider this designed groupoid to be equal to 

We investigate now the nature of the elements of ^ (A) . For this purpose, for 
every t£[V, AY let us introduce a mapping at: A*.-rA in the next way: for arbitrary 
p£ A* let oct(p) 

=oe(tp). Since for t=v(v£V), dit(p)—ctv(p) holds a is an extension 
of a. This mapping at can be called the mapping induced by t in A. From 2.3 we 
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conclude now that the set of elements of 0(A), up to notation, is the same as the 
set of all different mappins induced by trees from [V, A]' (or [V, A]") in A. 

In a similar way as we obtained the relation g" we can get the relation Q = Q'C\ 
fl([F])2. The set [V]jg of equivalence classes modulo g equals to the set of all 
mappings induced by trees from [V] in A, and it is a subset of all mappings induced 
by trees from [V, A]'. This set forms a groupoid with the multiplication defined 
as in 2.4, and this groupoid is the subgroupoid of [V, A]'IQ' generated by the set 
{e'OOl^ V}- (For each t from [V], g'(t) is a product .of elements from {g'(t;)|r€ V}-
This can be proved by induction on Ig (i)-) If A is connected then [V, AJ/Q' is 
generated by the set {e'(v)\v£V} (since then for every t from [V, A]' there is an 
r from [V] for which rg't is valid; r can be getted from t by substituting each a£A 
with an ra from [V] for which a(ra)=a). Now the next lemma, by the Lemma 1.3, 
follows from the fact that the set {g'(v)\v£ V} equals to the set u'(V). 

Lemma 2.1. If the pseudoalgebra A is connected, then so is ind 0(A). 
The following theorem gives a connection between a pseudoalgebra and its 

groupoid. 

Theorem 2.1. Let A—A(V, A) be A pseudoalgebra and 0(A) its groupoid. 
Then the following assertions are valid: 

1° There exists a homomorphism h from ind 0(A) into A. 
2° If A is connected then 
(a) the homomorphism h is completely determined and it is an onto homo-

morphism; 
(b) if for some connected designed groupoid 38={B, V, r\) there exists a ho-

momorphism from ind 38 into A, then 0 (A) is a homomorphic image of 08 and 
ind 0(A) is a homomorphic image of ind 3S\ 

(c) if A = ind si for some designed groupoid si, then si is isomorphic to 
0(A) and therefore, A is isomorphic to ind 0(A)., 

Proof. 1° Since 0 (A ) = ([v7WiQ', V, a'), the mapping h: [V,A]'/Q'-~A for 
which h(Q'(t)) — a( /) holds, where t is an arbitrary element from [V,A]', is well 
defined by 2.3. It can be easily shown that h is a homomorphism from ind 0(A) 
into A. 

2° (a) It follows from 1°, and Lemmas 2.1 and 1.2. 
(b) Let ind 38=P(V, B). By Lemma 1.3, ind 38 is connected and, by Lemma 

1.2, A is a homomorphic image of ind under the mapping h: B->-A which is 
determined by Lemma 1.1. From these facts it follows that the mapping / : B--
-•[V, A]'IQ', where f(P(t))=Q'(t) holds for arbitrary t$\V], is well defined. In-
deed, if for tlt /2€[F], P(h)~Hh) holds, then g'(t1) = Q,(t2) holds too. It can be 
checked as follows. 

Since h is a homomorphism from ind 38 onto A, then for" alt a2, from 
A there exists bx,b2, ..., bk from B such, that h(bi) = ai for l^i^k. Then 

. . . *(ti(a1)(a2)...(ak)) = h(J3(h(b1)(b2)...(bk))) = 

= h((...(Hti)' bd • b2). .„) • bk) = h((...{Hh) • bj • ft2) •...) .bk) = 

= hifiit^b0(6,)...(b»))) = « ( ^ H a , ) . . . ^ ) ) (see 2.3). 
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Moreover, the mapping / is a homomorphism from ind Si into i n d ^ ( A ) , 
and since ind 38 is connected then from Lemmas 2.1 and 1.2 it follows t h a t / i s 
an onto homomorphism. 

The same mapping / is a homomorphism from id onto ^(A) . 
(c) The proof is a routine computation. 
From the assertion 2° (c) of the previous theorem, it follows that each con-

nected designed groupoid is the groupoid of a pseudoalgebra. 

3. Finite pseudoalgebras 

Let us suppose that the pseudoalgebra A = a ( K , A) is finite, i.e., A is a finite 
set. For arbitrary v£V and a£A, let £C(v, a) denote the set {pjpÇA*, ocv(p) = a}. 
It is evident, that J?(v, a) is a language over A. We shall say that the pseudoalgebra 
A is regular iff £?(v, a) is a regular language over A [9] for each v£ V and a£A. 

The next theorem is of great importance for our approach. 

Theorem 3.1. The groupoid of a finite pseudoalgebra A is finite iff A is regular. 

Proof. Let A=<x{V, A). It is known from the previous chapter, that &(A) is 
isomorphic to the designed groupoid ([V, A]"/Q", V,OL"). Therefore, ^ ( A ) is finite 
iff there are finitely many equivalence classes modulo Q". 

For arbitrary vÇ. V let ev = Q"(~)([{v}, A]")2. The equivalence relations Q"v, 
when v is running through V, have the property that each equivalence class modulo 
q" is the union of some equivalence classes modulo e'ù such that for each v£ V at 
most one equivalence class modulo Q'Û occurs in this union. Consequently, for 
the finiteness of V, there are finitely many equivalence classes modulo Q" iff there 
are finitely many equivalence classes modulo Q'„, i.e. [{y}, A]"/Qis finite, for 
each V. 

We give now a necessary and sufficient condition for the finiteness of 
[{y}, A]"IQ'^. From 2.3 we have that for arbitrary t1 = vp and t2 = vq f rom [{f}, A]", 
where p and q are in A*, t1QU2 holds iff à(t1r) = û(t2r) is valid for every rÇA*, which 
is the same as 

3.1. <xv(pr) = xv(qr) for every r£A*. 

Now, we can induce an equivalence relation av on the set A* in the next way: pavq 
holds iff 3.1 is valid. It is obvious that A*/AV is finite iff [{i;}, A]"IQ"V is finite. 

An other equivalence relation 5V on A* can be defined by: paDq iff av(p) = 
= av(q). In the members of the partition A*jdv we can recognise the sets Z£(v, a) 
for those a(LA for which a) is nonempty. Moreover, the partition A*/av is 
a refinement of A*/5V. From the definitions of av and 5V it can be seen that the parti-
tion A*/<jv is the maximal right automaton-partition of the set A* written into" 
the partition A*jdv (see [5]). It is finite iff each member of A*/av is a regular language 
over the alphabet A, in other terms, iff each i?(i>, a) is regular. 
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4. Pseudoautomata 

Let A=oc{V, A) be a pseudoalgebra of type V. Selecting a subset AF of A, 
we get from A a pseudoautomaton A = (A, AF) = (a(V, A), AF). Sets V, A and AP 
are the sets of inputs, states and final states of A, respectively, while a can be called 
the transition function of A (see [10]). The pseudoautomaton A is finite, regular 
or connected iff the pseudoalgebra A is finite, regular or connected, respectively. 
The set of trees represented by A, in symbols 2T (A), is a subset of [ V] defined by 

4.1. ^"(A) — [t\t£[V], a(t)ZAF}. 

For an alphabet V, a subset T of trees from [V] will be called recognizable 
iff it is represented by a finite pseudoautomaton. In the caseNwhen the pseudo-
automaton is regular, T is called pseudoregular. _ 

The language represented by a pseudoautomaton A, in symbols ¿f(A), is de-
fined by 

4.2. Sf(A)=W(Sr(A)) = {W(t)\t^(A)}. 

The set i?(A) is, obviously^ a language over the set of inputs of A. 
Let A = ( A , AF) and B=(B, BF) be two pseudoautomata, where A=a(V, A) 

and B = P(V, B) are pseudoalgebras of the same type V. If there is a mapping 
ft: B-+A which is a homomorphism from B into A, and in addition for every b 
from B, b£BF iff h(b)£AF then h is a homomorphism from B into A. If h is also a 
homomorphism (isomorphism) of B onto_ A, then we say that h is a homomorphism 
(isomorphism) of B onto A. In this case A is a homomorphic image ofB (h is an iso-
morphism between A and B). We shall say that the pseudoautomaton B is a sub-
pseudoautomaton of A iff B is a subpseudoalgebra of A and BF—AFC)B. The pseudo-
automaton B is the trunk of the pseudoautomaton A iff B is the connected sub-
pseudoautomaton of A. (Note that the trunk is completely determined and 
5={a( i ) | /€[F]} . ) 

Two pseudoautomata A and B will be called_equivalent iff = 
It is evident, that for equivalent pseudoautomata A and B, ££ (A) = i f (B) also 
holds (the opposite is not true). 

The next result is a direct consequence of our definitions and Lemma 1.1. 

Theorem 4.1. If there jexists a_ homomorphism of the pseudoautomaton B 
into the pseudoautomaton A, then A and B are equivalent. Consequently, JS? (A) = 
= i f (B) . ' 

Moreover, we obviously have 

Theorem 4.2. Any pseudoautomaton is equivalent to each of its subpseudo-
automata. Especially, a pseudoautomaton is equivalent to its trunk. 

The second part of the previous theorem shows that connected pseudoauto-
mata are of special interest. 

From Lemma 1.2 we can get the next theorem. 

Theorem 4.3. Let A and B be connected pseudoautomata with a common 
set of inputs. Assume that h is a homomorphism of B into A. Then h is uniquelly 
determined and A is a homomorphic image of B. 
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By the groupoid of a pseudoautomaton A = (A, Af), in symbols &(A) we mean 
the designed groupoid &(A). 

If for a pseudoautomaton B=(B, BF) the pseudoalgebra B is of the form ind 38, 
where 38 is a designed groupoid, we shall call B groupoid pseudoautomaton. The 
groupoid pseudoautomaton B is the groupoid pseudoautomaton belonging to 
A = ( a ( V , A ) , A F ) , iff_ a=9(5) = ([V,'X№', V,a') and BP={e'(t)\tZ[V, A]', 
a(t)£AF}. In this case B is denoted by (7(A). 

On account of our definitions and previous results we can state the following 
three theorems. The first of them is based on Lemma 2.1. 

Theorem 4.4. If A is a connected pseudoautomaton then (7(A) is connected too. 
The next theorem follows from Theorem 2.1, properties of the mapping h 

from the proof of the assertion 1° in this theorem and from our definitions. 

Theorem 4.5. Let A=(A, AF) be a pseudoautomaton and (7(A) the groupoid 
pseudoautomaton belonging to A. The following assertions are valid: 

1° There exists a homomorphism h from (7(A) into A. 
2° If A is connected then 
(a) (7(A) is connected and h is completely determined onto homomorphism; 
(b) if B is a connected groupoid pseudoautomaton and there exists a homomor-

phism of B into A then A is a homomorphic image of B and (7(A) is a homomorphic 
image of B; 

(c) if A is a groupoid pseudoautomaton then (7(A) is isomorphic to A. 
From the previous theorem it is clear, that the relation between a pseudoauto-

maton and its groupoid is similar to the relation between an automaton and its 
monoid (see [5]). 

The following theorem is important in investigating finite pseudoautomata. 
It follows from Theorem 3.1. 

Theorem 4.6. If A is a finite pseudoautomaton then (7(A) is finite iff A is regular. 
In the next theorem languages represented by regular pseudoautomata are 

characterised. (For language-theoretic terminology used here, see [9]. It should 
be emphasized that here in the definition of context-free grammar we take a set 
of initial letters instead of a single letter. Obviously, this modification does not 
alter the generative capacity of context-free grammars.) 

Theorem 4.7. A language over an alphabet V is a ¿-free context-free language 
iff it is represented by a regular pseudoautomaton with set of inputs V. 

Proof. Since a finite groupoid pseudoautomaton is regular, by Theorems 4.1, 
4.5 (assertion 1°) and 4.6, it will be sufficient to prove that a language is A-free and 
context-free iff it is represented by a finite groupoid pseudoautomaton. 

First we prove the sufficiency of the condition. 
Let A = ( A , A f ) be a finite groupoid pseudoautomaton, i.e. A= ind , where 

si=(A, V, £) is a finite Resigned groupoid. Using A one can construct a A-free 
context-free grammar T(A) of Chomsky normal form in the next way: r(A)— 
= (A, V, AF, 77), where A and V are the nonterminal and terminal alphabets, re-



Groupoids of pseudoautomata 397 

spectively. Moreover, AF is the set of initial letters and 77 is the set of productions 
for which n = n 1 U n 2 where 

= {a - v\v£V, a£A, = a}, 
and 

J72 = {a -* axa2\a, ai> a2€A, a — a1-a2 in Â}. 

It can be_shown that the language generated by T(A), in symbols i f (r(A)), 
equals to i?(A). For this purpose it is enough to show that for arbitrary a£A and 
p£V+,a=>*p is valid iff there exists a_t from [V] for which W(t)=p and a(t)—a 
where a is the transition function of A. The proof is by induction. First, it can be 
seen easily that if p=v and t=v for an arbitrary v from V, then a=>*p holds 
iff « ( / ) = « . Furthermore, let us suppose that for p£V+, a&A, l ^ i ^ k , k s l , 
it have been shown that a,=>-*/?i is valid iff there exists a t£ [V] for which 
fV(ti)=pi and «(/,) = ûj hold. But then, there is a sequence of productions from 
IJ2: a—bkak, bk-"bk_1ak_1, . . . , è 2 — b ^ , and a production from 77^ b^v such 
that by a succesive application of them we get the derivation a=>*va1a2...ak, and 
by at=>*Pi, a=>*vp1p2...pk=p, p£ V+ iff there is a sequence of identities a—bk-ak, 
i'k=bk_1-ak_1, ..., b2—b1 • ax, b1 = Ç(v) in Â, from which we get 
•a2)- . . . ) • ak = av(ala2...ak), and for = a = oc(t), where t = v(t1)(t2) ,..(tk), 
and moreover W(t)=vp1pi...pk=p.-

To prove the necessity of the condition, let us suppose that L is a A-free con-
text-free language over V. Then there exists a grammar in Chomsky normal form 
generating L. From this grammar, by the method applied to the proof of Theorem 
3.1 of Part Three in [9] (with the difference that here the set S'Q contains the empty 
subset of S0 , as well) we can get an equivalent grammar r of the form (A, V, AF, II). 
For the set of productions 77 we have 77 = 771U772, where n 1 contains productions 
of the form a--v only (aÇA, v£ V) such that for each v from V there is exactly 
one production of this form, while 772 contains productions of the form a-^axa2 
only (a, a l 5 a2£A) such that for each (aa, a2) from A2 there is exactly one produc-
tion of this form. From these properties of r it follows that there is a finite groupoid 
pseudoautomaton A with r = T ( A ) . 

' NOTE. If for a A-free context-free grammar r=(N, V,N',II) we introduce 
the grammar rT=(N, VU it, N', 77T) where 77T is obtained from 77 by substituting 
every production a-*a1a2...ak (a£N, k^l, a^NUV, l^isk) in 77 by the pro-
duction a—a1(a2(...(ak])) then the language £?(TT) generated by rT is a subset 
of [V], Let us call ^£(tT) the set of trees generated by r. It was shown in [3] that 
the following assertion is valid : a set of trees is pseudoregular i f f it is the set of trees 
generated by a X-free context-free grammar. Since JV(JC (rT))=J? (F) is valid, our 
Theorem 4.7 is now a consequence of this assertion. (Moreover, for T(A) from the 
proof of Theorem 4.7, S£ ( r (Â) T )=3r (Â) is valid.) 

5. Relations between various types of the sets of trees 

We shall say that a set of trees is regular iff it is represented by a such modi-
fication of our finite pseudoautomaton that if the transition function, the set of 
inputs and the set of states are denoted by a, V, and A, respectively, than for any 
vÇV, ctv : {p\p£Â*, lg (p)^Kv}-* A, where Kv is a finite nonempty subset of to. It can 
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be checked that this definition of regular sets of trees is equivalent to the definition 
of recognizable sets in [11]. 

Each regular set of trees is pseudoregular. (It can be seen by adding to our 
modified finite pseudoautomaton a new state b and mapping by otv all remaining 
words from (A U {6})* into it. The pseudoautomaton obtained by this procedure 
is regular.) The opposite is not true, i.e. there exist such sets of trees which are 
pseudoregular but not regular (for example [V ] for an alphabet V). 

If a set of trees is pseudoregular it is recognizable by definition. However, there 
are recognizable sets of trees which are not pseudoregular. To show it, let us take 
an alphabet by a single letter v. Then each subset of the set 

{t\t = v(v)(v)...(v) = v(v)\ kico), 
k times 

is represented by a pseudoautomaton which has at most three states. Therefore, 
selecting a subset T of this set, for which fV(T) is not context-free, we get a -
recognizable set of trees and it is not pseudoregular by Theorem 4.7. 

To finish these discussions, we demonstrate that for any alphabet V there are 
subsets of [V] which are not recognizable. Let us suppose that v is an element of 
Vand define a subset U of [V] in the next way: 

(1) veu-, 
(2) if U, then w(/)G U; 
(3) the elements of U are those and only those which we get from (1) and 

(2) in a finite number of steps. 
Every recognizable subset of U is regular, therefore, it is pseudoregular. Select-

ing from U a subset S for which fV(S) is not context-free, we get a set which is 
not recognizable. 

6. Conclusion 

From our point of view, we shall now answer to the question: what is the 
connection between pseudoautomata and automata? 

The importance of connected pseudoautomata follows from Theorem 4.2. 
By the assertion 2° (a) of Theorem 4.5 every pseudoautomaton of this kind is a 
hnmomorphic image of a connected groupoid pseudoautomaton, and therefore 
(for Theorem 4.1) equivalent to it. 

Let A = (a(V, A), AF) be a connected groupoid pseudoautomaton, i.e. a(V, A) = 
= ind si for some connected designed groupoid si = (A,V,Q. Moreover, let 
A be a monoid (semigroup with identity). Then, from the associativity it follows, 
that for each p£V+ the set T{p)={t\t£[V\,W{t)=p} has the property, that the 
whole set is represented by a single state of A. (This means that from , t2£T(p) 
it follows oi(t1)=ix(t2). It can be proved by induction on lg (p).) For this reason 
it may be chosen a representative from T(p) which is simpler than other members 
of this set, and only it must be represented by the pseudoautomaton A. If 
p = v1v2...vk V, l^i^k), then this representative can be t=v1(v2(...(vk)...)) 
where arities of symbols v1, v2, ...,vk_1 equal to 1 and of vk to 0. However, the 
situation becomes yet more simpler, if arities of each v from V equal to 1 and the 
other arities are ignored because they are unnecessary. But, it needs the introducing 
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of a nullary symbol A which is not in V and whose realization is the identity e of 
the monoid A. Then the representative of T(p) is the tree ^ (^ ( . . . ( ^ (A) ) . . . ) ) . By 
these modifications we got from A a (connected) automaton in the sense of [4], [5], 
with initial state e. Now, an arbitrary homomorphic image of this automaton is a 
(connected) automaton too, its initial state is the image of e under the homomor-
phism, and moreover these automata are equivalent. (The first of them is a "mono-
id" automaton, but the second is an arbitrary one.) 

By this interpretation, we got that the (ordinary) automaton is a simplification 
of the pseudoautomaton for the case when its groupoid is a monoid, and con-
versely, the concept of the pseudoautomaton is such a generalization of the con-
cept of the automaton where its monoid is replaced with an arbitrary groupoid. 

Abstract 

The notion of a pseudoalgebra and that of a pseudoautomaton are introduced in a paper by 
THATCHER (1967). In this work it is shown that with a pseudoalgebra and with a pseudoautomaton 
a groupoid can be associated, in the same way as to a unary universal algebra and to an automa-
on a monoid can be corresponded. 
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