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A tree transducer is called functional if its induced transformation is a partial 
mapping. We show that the functionality of tree transducers is decidable. Con-
sequently, the equivalence problem for deterministic tree transducers is also de-
cidable. The latter result was independently achieved by Z . Z A C H A R in [12] for bottom-
up tree transducers and a restricted class of top-down tree transducers. The solv-
ability of the equivalence problem for generalized deterministic sequential machines 
is known from [2] and [4]. It was proved in [11] that this positive result can not be 
generalized for arbitrary, i.e. generalized nondeterministic", sequential machines. 
Therefore, the equivalence problem for nondeterministic tree transducers is un-
decidable. 

Our result can be used to minimize deterministic tree transducers in an effective 
manner. However, the minimal realizations of a deterministic tree transducer are 
not isomorphic. We investigate conditions assuring the uniqueness (up to iso-
morphism) of minimal realizations in certain , classes of tree transducers. 

Part of the results of the present paper have been announced in [8]. The terminol-
ogy is used in the sense of [5]. 

1. Notions and notations 

By a type F= (J F„ we mean a finite type such that F„?i0. For the type 

F, v (F)=max {«| ,F„ ̂  0}. ka. F-algebra is a system { ( / ) A [ / € f} ) , or 
shortly, (A, F), where for every nonnegative integer n and /€F„ ( f ) A : A"-*A is 
the realization of the n-ary operational symbol / . 

Let Y be an arbitrary set. Then TF r = ( r F y , F) denotes the free F-algebra 
generated by Y. The elements of TF Y are called trees and they can be obtained 
by induction as follows: TF Y is the smallest set satisfying 

(i) F0,YQTf,y, 

(ii) if n > 0, / €F„ , tt, ..., tneTFrY then f(p1>...,pnKTFtY. 
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In particular, if Y=X„, the set of the first n variables x1, ..., x„ for a nonnegative 
integer », TP Y is denoted by TFn and TF0 is written TF. Each n-ary tree p£TFt„ 
induces a mapping (p)A: A" ^A in an F-algebra A. If A is the free algebra TF i ' r 
then (p)x(h> •••> O— P(h> •••> 0» i-e- the tree obtained by substituting t{ for 

( i = l , . . . , ri) in p. 
The depth (dp), rank (rn) and frontier (fr) of trees are defined as usually. For 

a tree p£ 7>, Y we have 

(i) d p ( p ) = 0, m(p) = 1, f r ( p ) = p if per, 

(ii) dp (p) = 0, m(p ) = l , fr(p) = A if p€F0, 
n 

(iii) dp 0 ) = 1 + max {dp 0, ) | i = 1, ..., n}, rn (p) = 1 + 2 rn (?.)> 

fr(p) = fr(p1)...fr(pII) if P = f ( P l , ...,Pn), f i F ^ 
p1, . . . ,p n £T F Y and n>Q. Here A denotes the empty string. 

In connection with the elements of r F j „ («S0) we shall also use the concept 
of path. For an arbitrary z ' ( l ^ i ^ n ) and p£TFt„ path;(/?) is given by 

(i) pathj (p) = {/} if p = Xi, 

(ii) pa th j (p ) = 0 if PeF0VX,-{Xi}, 

(iii) pathj (p) = {jw\we pathj (j>}), l s j s m } if > = f(pn p j , 

;H>0, fdFm,p1, ..., pm£ TF n. If pathj (p) is a singleton then it is identified with 
its unique element. For u-'g pathj (p) we denote by |vv| the length of w. path(/>)= 

n 
= U pathj(^). For arbitrary two strings v and w v/w denotes the derivative of v with 

i=1 
respect to w, i.e. v/w = u if and only if v = wu. 

Further on we shall often use vector notations to simplify the treatment. Vectors, 
except possibly the one dimensional ones, are always denoted by boldfaced letters. 
For each k dimensional vector afAk (k^O) and i (l^i^k) a{ denotes the ith 
component of a. Conversely, if a£A then a k £A k is the k dimensional vector whose 
each component is equal to a. The product ab of the k dimensional vectors a 
and b is defined by ab=(a1b1, ..., akbk) where ^¡6; are short notations for 
(a ; , 6;) (/= 1, ..., k). For the vectors of trees TFi„ and q£TF<m we denote by 
p(q) the vector (/>i(q), ...,pk(q)). • ' [ 

According to the function fr one can distinguish the subset t F n of TFn. This 
consists of those elements of r f j „ whose frontier is a permutation of the variables 
in X„. We may extend this definition to vectors as follows: fF,„ = 
= {p£ TFt„ | fr (A) ... fr (pk) is a permutation of X„}. Observe that 7£„ is not the 
A:th power of fF ,„-

We now turn to the definition of tree transducers. Following [5] a top-down 
tree transducer is a system A = ( F , A, G,A0,1), where F and G are types, A is 
a finite, nonvoid set, the set of states, A0QA is the set of initial states, finally, I 
is a finite set of top-down rewriting rules. A top-down rule has the form af—p 
— or equivalently af{x1,...,x^^p, where n^O, a£A, f£F„,peTGtAxXn. A 
bottom-up tree transducer A = (F, A, G, A0,1) has a similar structure except A0 
is called the set of final states and I contains bottom-up rewriting rules. A typical 
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bottom-up rewriting rule is of form f(a1x1,...,a„x„)->-ap' where «SO, f£Fn, 
TGn, a, ax, ..., an£A. By a tree transducer we mean a top-down or bottom-up 

transducer. 
Take an arbitrary tree transducer A = ( F , A, G, A0,1) and let Y be an ar-

bitrary set. E can be used to define a binary relation =>A,Y on TGiAxTfy in the 
top-down case and on the set AXTc, r the bottom-up case. It is called derivation 
and its exact definition can be found' in [5]. If there is no danger of confusion A' 
is omitted in =^>A.y- It c a n be seen that if YXQY2 and p, q£TG AxTF then 
p^>Yiq if and only if P=>Y2

cI- Similar equivalence is valid in the bottom-up case. 
Thus we may omit Y in =>-Y. 

Again take the tree transducer A. This induces a transformation TaQTfXTg: 
TA = {(P> aoP=> q) 

in the top-down case, and 

= {(P, q)\3a0£A0 p a0q} 

for bottom-up^A. If Ta is a (partial) function A is called functional. This is always 
the case if A is deterministic, i.e. different rules have different left sides, moreover, 
A0 is a singleton in the top-down case. Two tree transducers are called equivalent 
if their induced transformations coinside. For a tree transducer A—(F, A, G, A0,1) 
and a state a f A we denote by A (a) the transducer A (a) = (F, A, G, {a}, I ) . 

The domain of the transformation Ta is denoted by dom Ta . It is a regular sub-
set of TF, i.e. a regular forest. Regular forests are exactly the forests recognized 
by tree automata. A tree automaton is a system B = (F,B, B0) with (B, F) a finite 
/"-algebra which is denoted by B too, B0%B is the set of final states. The forest 
recognized by B is determined by T(B) = {p£TF\(p)RfBn}. 

Sometimes we need to restrict a top-down tree transducer to a regular forest. 
If A = (F, A, G, A0,1) is a top-down tree transducer and TQTF is a regular 
forest then the system B = (F, T, A, G, A0,1) is called a regularly restricted top-
down tree transducer. Its induced transformation is TB ={{p, T). A similar 
but more general concept is the concept of top-down tree, transducer with regular 
look-ahead introduced in [6]. A top-down tree transducer with regular look-ahead 
is a. system A = {F, A, G, A0,1) where F, A, G, A0 are the same as for top-down 
tree transducers and I is a finite set of rules - , ' ' 

(a/(*i, ..., x„) - p; J?l5 ..., Rn) 

where af(x1, ..., x„)—p is a top-down rewriting rule, i.e. af A, /£ Fn (n £0) , 
p£TGAxXn, and R^ TF (1 s i s « ) are regular forests. The regular forests Rt 
are used to restrict -the applicability of the coressponding top-down rule 
af{x1,...,x,^-*p. The rule (af(x1,... ,x„)^p; ..., R„) can be .applied for 
a subtree of a tree in TGyAxTFY if and only if it is of form af(p1, ..., p„) with p^Ri 
for each i (1 S /S i i ) . Apart from this derivation is defined as for top-down trans-
ducers. The induced transformation is the relation Ta = {(p, q) \a0p^q for some 
a0dA0}. Again, if it is a function A is called functional. It is known that every func-
tional bottom-up or top-down tree transducer is equivalent to some deterministic 
top-down transducer with regular look-ahead (cf. [7]). 

i 
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2. The decidability of functionality of tree transducers 

First we show that the decision of functionality of bottom-up transducers is 
reducible to the decision of functionality of regularly restricted top-down ones. 

Let A = ( F , A, G, A0, Z) be an arbitrary bottom-up transducer. Define the 
top-down transducer with regular look-ahead A' as follows: A ' = ( F , A, G, A0,1') 
where 

z' = {{af ~*P(a 1*1> •••> a-x„); Ri, •••> •••> anX„) - ap^I, 

R t = d o m T A ( 0 ( ) ( I = 1 , . . . , n ) } . 

Lemma 1. A is functional if and only if A ' is functional. 

Proof. It is obvious that T a Q T a . . Therefore if A ' is functional then A is func-
tional, too. To prove the converse first we show that if ap^>A.q and a! p^>A.q' 
where a, a'£A, p£TF, q, q'£TG and q^q' then there exist different trees r,r'£TG 

such that p^>Abr and p=>Ab'r' are also satisfied for certain choise of states b, b' 
with {b,b'}^{a,a'}. We shall prove this by induction on p. The basis, pd F0, 
is immediate. Suppose now that p—f(pi, • ••,/>„) where « > 0 , / £ F „ , P l , ...,pn£TF. 
Since ap^>q and a'p=>q' there exist rules / ( a ^ , . . . , anx„)-»aq0, f(a[xt, a'nxn)— 
-*a'q'0€Z w i t h / ^ d o m TA((Jj)Pldom tA(0;) and satisfying q^a^, ..., anp„)^>q and 

q'oiaip!, ...,a'np„)^>q', respectively. We distinguish two cases. 
Firstly assume that for each i€{l , •••,"} if Aj-appears in fr(<jr0) then there 

exists exactly one tree TG with Then also, p^a-.q^. This and 
/?i(idomTA(0() ( i '= l , . . . , « ) yield p^>aq. Similarly, we get p=>a'q' if, for each 
X; occuring in fr (<7Q), there is only one tree in TG which can be derived f rom a[pi. 
This proves our assertion in the first case. 

Secondly assume that there is an integer {1, . . . , n} such that xt appears in fr (q0) 
and there are different trees qt,^^TG with aip^qi and aiPi=>q{, respectively. 
Then, by the induction hypothesis, there exist trees r ^ r ' ^ T Q satisfying both 
pi=>airi and p ^ a ^ . For each index j(J^i) choose rj£T0 in such a way that 
we have p^a^j. This can be done by />y£domTA(aj). Now let r—q0{r1, .... r„), 
r'—<lo(ri> - >ri-i>r'i>ri+i> - >rn)- because r^r^. On the other hand p=>ar 
and p^>ar'. 

Now assume that A' is not functional. Then there exist trees p£TF, q^q'd TG 

and initial states a0, a'0^A0 such that both a0p^>A,q and a'0p^>A,q' are satisfied. 
By the previous considerations it follows that there are different trees r,r'dTG 

with p=>Ab0r and p=>Ab'0r' where each of the states b0 and b'0 denotes either 
a0 or a'0. This means that both (p, r) and (p, r') are in T a , i.e. A is not functional. 

Lemma 2. The decision of functionality of bottom-up tree transducers is re-
ducible to the decision of functionality of regularly restricted top-down ones. 

Proof. Let A be an arbitrary bottom-up transducer and A' the top-down trans-
ducer with regular look-ahead constructed in the previous lemma. We know that 
A is functional if and only if A' is functional. By Theorem 2.6 in [6] we have 
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TA. =TOTb where x is a deterministic bottom-up relabeling, i.e. a transformation 
induced by a special deterministic bottom-up transducer, and B is a top-down 
transducer. Since t is a function A' is functional if and only if B restricted to the 
regular forest T(domrA . ) is functional. Note that dom tA = dom t a . ., As one can 
construct the transducers A' and B in an effective manner this proves Lemma 2. 

Now let us fix an arbitrary regularly restricted top-down tree transducer 
A—(F, T, A, G, A0,1) and a tree automaton B = (F, B, B0) recognizing T. Set 

P = {piT\^q * q'£Ta (p, g), (p, q'KtA}. 

In the next five lemmas we shall present five reduction rules. Each reduction 
rule produces a smaller tree p'£P for a tree p£ T if it can be applied for p. 

Lemma 3. • Let PJ, P2€TF1, pzeTF, n1, n[, n2, n'2^0, q ^ f ^ n ^ q ' ^ f ^ , 
q2€tG";n2, q2€f£„2 , q36 q ^ T ^ , a0, a'0£A0, a , £ A \ a ^ A " ' ( /= 1, 2). Let us denote 
by Ai and A[ the sets i ={«;,_,• 11 =^ = and A'i = {a'i ]\\^j^n'i) {i=l,2) respec-
tively. Assume that each of the following conditions is satisfied: 

(0 Pi{Pi( .P'^T, 

(ii) ^(»ix"1), a 'oPi^q ' i i^ iK 1 ) , 

(iii) a ^ 1 =>• q2(a2xj2), a i p£ *> q'2(a'2x^), 

(iv) a2p"°- q3, a a P a ' ^ q s , 

(V) (P.I)B = (P2(P3))B, A I ¿ 2 , A [ Q A ' 2 , 

(vi) q^t ) ^ ^ ( r ' ) holds for any r a n d x ' ^ j f . 

Then p A P ^ P -

Proof. First note that our assumptions imply the condition py{p2(p3))^P. 
From now on let [n] denote the set of the first n positive integers for every 

0. Thus [0] is the empty set. Let <p: [«,]-•[«,] and q>': —[«2] be mappings 
with a l t i = a2y<f(i) («€[«]]) and a'lti = a'2 ip.U) (/'6[n2]), respectively. Obviously we 
have a1Pg1=>r and a ^ p ^ r ' where i = (q3ill>(1), ..., qs,^), r'={q'z^m,..., q'3><P'ini)). 
By (ii) this implies that a0p1 (p3) =>qt(r) and a'0p1(p.i)^>q'1(r'). On the other hand 
q1(r)^q[(r') by our assumption (vi). Furthermore, pl(a,)6T holds by (v). Hence 
PiiPzKP-

Lemma 4. Let PlifFA,p£TF, n,n'> 0, qxifc,n, q'^fc,n., q 2 € ^ , q 
a0, a'0£A0, a£A", . Let \A\ and denote the cardinality of A and B, re-
spectively and let \\A\\=2^, X = m a x {dp (q)\3a£A,p£TF X ap-+q£Z}. Assume 
that the following conditions are valid: 

0) PliPiKT, 

(ii) a0pj U q i(axj) , a'0p1 ^ q[{a'xj), 
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(iii) ap§ =>q2, a ' p g ' ^ q a , 

(iv) path^ifr) is a prefix of pathx(^i). 

| p a t h x — |pathxOfr)! > [|/4||2\B\K, dp(pj S \\A\\*\B\. 

Then there is a tree r £ T e such that P i{ r )^P and rn ( r )< rn (p 2 ) . 

•Proof. Let R be the forest defined by 

R = {r£TF\Pl(r)eT, rn 00 si rn(p2), 3seTS, s'£Tg a r " ^ s , a V ' . s ' } . 

Since p2£R R is nonvoid. Let r be an element of R with minimal rank. We shall 
. show that Piir^P and dp (r)<\\A\\2B. 

Assume that the condition dp (r)<| |/4| |2i? does not hold. In this case there 
exist ' 

r2£fp>1, r 3 £ T F , m l 5 m[, m2, m2 is 0, s ^ f j ^ , s i € 7 £ m i , 

s3t fG*> 0 = 1,2) 

such that each of the following five conditions is satisfied: 

( 1 ) r = ^ ( R A O S ) ) , ' '2 ^ 

(2) a r i ^ f a x ^ ) , a ' r f ^ s i ( b i x ^ ) , 

(3) b ^ ^ C M ^ ) , b ^ ^ s ^ x ^ ) , 

(4) b 2 r 3 ^ S s 3 , b i r f ' ^ s S , 

(5) (r !)B = (r i(r3))B , A i B2, B[QB'2, where 

Bi = 11 == m,}, = {b'tiJ 11 s j s m;} (i = 1, 2). 

Now let cp: [ m j — [m2], cp': [wiJ^fmj] be mappings satisfying the equalities 
bi , i=h,9{i) 0£[™i])> b ' h i =b ' 2 t y 0 ) (i£[™[])- It is immediate that a r ^ r g ) " ^ 
^ S l i ^ p d ) ; — s *̂ 3,(p(mi)) a n d a ' r ! <p'(i)> ••• j ^.«•'(mi))- This, together with 

0 I O ' 3 ) ) B = O ' ) B yields that i\(r„)£R, which is a contradiction .because 
n i^Crg^-c rnXr ) . x 

Therefore, dp ( / - )<P | | 2 | J5 | . This implies that for every s£T£ and s 
if the derivations ar"^>s and a'r"'^>s' exist then dp (.$•,), dp.(.si) = M| | \B\K, 
thus, by (iv), py{r)<zP. Since r was of minimal rank this ends the proof of Lemma 4. 

Lemma 5. Let p 1 , p 2 , p ^ f F A , p i ^ T p , n i , n ' i , m i ^ 0 0 = 1 , 2 , 3 ) , q ^ f G „ 1 + i , 
>\tfc,mi> %ifna\> f ^ , q 3 € f ^ 3 , q ^ f ^ , , x ^ f ^ , 

<\£Tn
G\ r4er™', a0, a'0(iA0, a£A, a £ A \ b£Am< ( /=1 , 2, 3). Finally, 

let V£Tg and a'=/1(^(13(1:4))). Denote by At, A\ and Bt ( / = 1 , 2 , 3 ) the sets 
of components of a ( ) a,- and b f, respectively. Assume that the following conditions 
are satisfied: -. * • 
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(i) Pi{Pz(Pa(Pi)))iT, 

(ii) a o P i ^ V i O * ! , * ! ^ 1 ) , a'oPl=> ^('iCbiX™1), a^x"/1), 

(iii) a l P ^ q 2 ( a 2 ^ ) , a i p £ ^ qi(a£xj'«), ap2±> axlt blP2
mi ^ r2(b2x™»), 

(iv) a2Pg2 q3(a3xj3), 4 q ^ x " ^ ) , ap32>aXl, b2p3
M* r3(b3x™°), 

(v) a 3 p ^ ^ q 4 , a 3 p ^ 4 q i , ap^v, 

(vi) (P4)B = (Ps(l>i))B.= (P2(P3(P4)))B, 

AxQA2Q A3, AiQAi^ A'3, B^BzQ B3, 

(vii) v ^ v', path1(^1) = pathiC^')-

Then at least one of the trees px{pz(pd), Pi{Ps(.Pd) and Pt(Pi) is in P. 

Proof. First observe that by the assumptions of the lemma it follows that 
Pi(P2(Pz(Pi)))£P-

Let <Pi: [nJ-*-[nt+J, cp[: [ « i M » i + J and i/^: 0 = 1,2) be mapp-
ings such that we have aiyj=ai+lt<PiU) ( /=1, 2, y'G [«,]), a i , j=a i + 1 y i ( J ) (/'=1, 2, 
M«,']), bij=bi+1^iU) ( / = 1 , 2 , 7 6 K 1 ) . Furthermore, let = (p'3= 

Let us introduce the following notations: 

SI — ( 9 3 , 9 , ( 1 ) ; •• 

/ 

S I = C^3,<pic i ) ' •• ^«^(„ijHqi). 

tl = ( > " 3 , ^ ( 1 ) >;••• > r3,ilil(.m1))(j'i)> 

S 2 
= Q2(<?4 ,92(1 ) ' • •*, ^4,Ç>2 ("2)) ' 

t 
S 2 = ^ 2 ( ^ 4 , ^ ( 1 ) » •••» #4 , P'A ("A) )> 

t2 = r 2 ( r 4 , ifra (1) ' • • • , {¡i: (M2))I 

S3" = ( ? 4 , ? a ( l ) > •• •> ?4,ç>8 ( " l ) ) ' 

f 
S3 

t3 = (r4,$i(l)> •• •J 

It is easy to check that each of the following derivations is valid: 10^1(^3(^4))=* 
Si), a'op^paipjj^-qi^itj), sQ, a ^ p ^ p ^ ^ - q ^ v , s2), (4Pi{Pi(PÙ)^ 

^q'iiriik), s0, a ^ i p ^ q ^ v , s3), a 'opM^qi ir^ts l s ' i ) . On the other hand 
Pi(Pa(PÙ)> Pi(Pn(PÙ), Pi(PiK T'-

Assume that Pi(p2(P4))$.P- Then, by (vii), it follows that mlt m2, w3=-0 and 
there is an integer /£[m2] with Without loss of generality we 
may assume that this integer i is in the range of ipx, i.e. there exist / € [ m j satisfying 
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ip i { j )—i . Now suppose that neither /)1(p3(/?4)) nor (p4) is in P. Then rx(tx) = 
='"i( t2)=''i( t3) (= v ) - But this is impossible because t l j ^ t 3 j . 

Note that Lemma 5 remains valid even if A2<^A3
 a n d B 2 ^ B 3 are replaced 

by A'2UB2<gA'z\JB3. 
The proof of the next lemma is similar to the previous one. 

Lemma 6. Let 

^ » A ^ t - S « f a € f c \ , 
a0,a'0eA0, a£An>, a ( / = 1 , 2, 3). Further-

more, let v'£Tc and v—r^o(r3(r4))). Denote by A-„ A[ and Bt ( /=1, 2, 3) the sets 
of components of a i ; a- and b,, respectively. Assume that 

(0 

(ii) a<>Pi^><h (ri (bx x^), ax x^), OQ p t => qi(v', a^xf) , 

(iii) aiP^1 q2(a2x^); a ^ => q ^ x " ^ , bjp™1 r2(b2x™2), 

(iy) a2P3
2 q3(a3x?), a ip£ q i ( a ^ ) , b2P3

 2 r3(b3x™»), 

(v) a3P43 ^ Q4, a3p '̂3 qi, b3p^ 4 r4, 

(vi) (Pd B = (PS(P4))B = (P2(P3(PJ))B, 
AXQA2QA3, AiQA'2QA'3, B1=B2QB3, 

(vii) v t± v', patha (qj = patl^ (qi). 

Then at least one of the trees />1 (p2 (pt)), Pi (p3 (A)), Pi ( AI) is in P. 
Our last lemma is stated as follows: 

Lemma 7. Let p2£TFtl, p3£TF, k, /, m, k', I', m' ^ 0, q-&TGtk^, qi^fG> k .+ 1 , 
^ e f c > 1 + 1 , q'2efG,v+!, r £ t l „ , T'ef£m,, q3ifGil, q'3,v£TG, s t £ T g , 
t ' € 7 £ \ a0,ai€A0, a,a'€A, a£A", a'6A*, b£Al, b ' £ A e , c£Am, c'6Am ' . Let Ax, B1 
and C-i denote the sets of all components of a, b and c, respectively. Similarly, denote 
by A{, B[ and C[ the sets of components of a', b' and c'. Suppose that the following 
conditions are satisfied: 

0) Pi(PiCPa))67; 

(ii) a0p1^> q1(ax1,ax^), a'oPl ^ q[(a'xl, a'xj'), 

(iii) ap2 ^ q2(ax1, bxi), a'Pi q'2{a'xx, b'x'i), 

ap* 4 r(cxl-), a'pg 4 r'Cc'xf): 

(iv) ap3 q3(v), a'p3 q3, bp£ ^ s, b'p£ 4 s', cp™ U t, c'p f t', 

(v) A1QB1UC1, AiQBiUCi, (p3)B = (p2(p3))B, 
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(vi) pathj {q{) = patl^ path (q3), pathj (q2) path (q3) = 

= path (q3) pathi (q'2), v ^ q3. 

Then Pi(p3)eP. 

Proof. Let us introduce the following notations: d=(b, c), d '=(b ' , c'), u=(s , t),. 
u '=(s ' , t ' ) . Choose the mappings <p: |7c]^[/+w] and cp': +m ] in such 
a way that we have a ^ d ^ and a ^ d ^ ^ for every /£[£] and j^[k']. Obviously,. 
a0pi(p3)^>qi(q3(v), .. . , M„№)) and a'<sp1{p3)^>q[(q'3,u<f,.m, ..., u'^^), further--
more, PiiPn)iT. On the other hand pathx ( ^ f e , w„(1), . . . , w„(lt))) = 
= patha (q'Axj, u'v(1), ..., u'^^) and q3^v. Therefore, q1(q3(p), u ^ , ..., u ^ ) ^ 

X ' W •••=<'№'))> showing that p1(p3)€P. 
, We are now able to prove our main result: 

Theorem 8. The functionality of top-down as well as bottom-up tree trans-
ducers is decidable. 

Proof. By Lemma 2 it suffices to prove our statement for regularly restricted 
top-down transducers. Hence take an arbitrary regularly restricted top-down trans-
ducer A—(F, T, A, G, A0,1) with T— T(JS), where B is the tree automaton 
B—(F,B,B0). Define the set P and integers \A\, \B\ and K as previously 
(cf. Lemma 4) and let L denote the number of nonempty strings over [v (G)] with 
length not exceeding \\Af\B\K. Furthermore, let / c=M| | 2 M| 2 | 5 | ( 2L+l ) , . 
I=k+2\}A\\3\A\\B\(\\A\\2\B\K+\) and finally, m=l+2\\A\\3\B\. 

We shall show that P is nonvoid if and only if it contains a tree of depth less-
than m. It is obvious if K= 0. Therefore let K^O and assume that p is an element 
of P with minimal rank. Let q and q' be different images of p under TA. 

Assume to the contrary dp ( p ) ^ m . Then there exist a0 , ai$A0 , 
Po, •••,Pm€fF,1, pm+i£TF, 0 (i=0,...,m), q 

(/ = 1, ...,m), q m + 1 € q a a ¡ £ A " ' ' 0 = 0 , ...,m) such, 
that the following three conditions are satisfied: 

(1) P = Po(Pi(-(Pm+i) •••))>. Pi^Xi 0 = 1, —,m), 
(2) ? = ? 0 ( q i ( - ( q » + 1 ) - ) ) , = q i ( - (q ; + i ) • • • ) ) , 

(3) a0p0 f 0 ( v £ ) , V o ^ ? ; « ^ ) , 

« » ^ ^ • q i + i ^ + i ^ ' " ) , a . r P - i i ^ q , ' + 1 « + 1
x i ; + 1 ) 0 = o, . . . , m—i), 

amPmm
+i ^ lm + 1, ^ % + l• 

Further on we shall often use the following notations. Let i '£{0,..., /w+1},. 
j£{0, ...,m). Then ^ = P o ( / ' i ( - (A) -))>ii = 9o(qi( - (q i) - )), ¥i=q'o(qi(-(q,')•••))• 
similarly, j2,=p,+ 1( . . . (pm + 1) . . . ) q j = q j + i ( - (qm+i) - )) q i = q i + 1 ( - ( q i , + i ) - ) . 
Furthermore, for each ¿=0, ...,m, At and A\ denotes the set of allcomponents-
of a;> and a-, respectively. 

If for any and we have q,(\) ^ qi (v') then, by Lemma 3 and 
the fact that the cardinality of the set {/ , . . . , m} is at least ||/i||2|i?| + l, we get tha t 
for some i, j (l^icj^m) pt(J>j)£P. It is a contradiction. 
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Therefore we may assume that « ,>0 and the existence of an index /,£[«,] 
such that there are trees u'£TGtl, v £Ta with q'=u'(v'), pa th (u ' )=path i l (qt) 
and v'?sql i r Obviously, «¡>0 holds for each /.-</. Now let i: (0 = / < /, 
be those uniquely determined idices for which path f j (qt) is a prefix of path,-, (qt). 
Of course we may assume that i0 = ...=ii — l. 

Suppose now that there is no a'£path (¡7,') such that pathx (q,) is a prefix of 
•a' or conversely. In this case let 

Bl = {aitj | pathj (qt) is a prefix of pathy 
Ci = {ai j | pathj (q,)" is not a prefix of pathy (<7,)} 

for each i (J^i^m). Since the cardinality of the set {/, . . . , m) is exactly 
2 p | | 3 | 5 | + l there exist indices 4 , i2, i3 satisfying the following 
conditions: 

(Pn)B = ( /Ub = (pOb, Bix = BhQBh, Ch g Ci2 i ch, A'h Q A'h c A'h. 

By Lemma 6 this yields that at least one of the trees ph(pi2), Pit (Pi3), PiSPO's ' n 

which is a contradiction. 
We have shown that there exists an a'£ path (q{) such that pathj (q,) is a prefix 

of a ' or conversely. Consequently 0 holds for each i (O^i 'S/) and there exist, 
integers i0, ..., 1) with the property that pathiy (q'j) is a prefix of pathx (q{) or con-
versely ( 7 = 0 , . . . , /). We may also assume that if j \ < j 2 then path,^. (q'jJ is a prefix 
of path^. (qj2), moreover, we may assume that ;u = . . . = / , = 1. In this way either 
pathiC^) is a prefix of path^ (q'j) (j=0,...,l) or conversely. 

Now there are two cases. First suppose that patl^ (q'k) is a prefix of pathx (qt). 
If, within this case, there exists an integer i (0 sisk) such that Upat^ ( ^ j — 
— |pathx (gOUHMlH^I-K then, by Lemma 4, there is a tree TF satisfying both 

Pi ( r )£P and rn (>)<rn (/>;). This is a contradiction because rn ( r ) < r n (/?,) im-
plies rn(p i(/-))<rn(/?). Thus we have ||pathx - |pathx (qi)\\ ^\\Af\B\K for 
every i (O^i^k). But this yields another contradiction. Indeed, the cardinality 
of the set {0, ...,k) is equal to \\A\\2\Af\B\{2L+\) + \, thus, there are" at least 
two indices i, j (0 ̂ i-^j^k) such that — say — pathj (¡7,) is a prefix of pathx (q[), 
pathx{qj) is a prefix of pathx (§;.), pathx foO/pathi (? i )=path 1 (q '^paX^ % ) , 
moreover, (pdv = (Pjhi, alA = ajA, B^Bj, B\ B) where Bs = 
= {a s > ( |2^i^w s}, B's = {a'st\2^t^n's} (s~i, j). By an application of Lemma 7 
this results that Pi(pj)£P — contrary to the minimality of p. 

We have shown that pathx (qk) can not be a prefix of pathx (qt). Therefore 
pathj (c/i) is a prefix of pathj (qk). If we prove that Ipathj (<7;)j — |path r (i^)) > 
>M||2 | j5 | is : then also | pathi (q'k)[-1pathx ( q k ) H M li21 ̂  I Again by Lemma 4, 
this yields a contradiction. Therefore it is enough to show that Ipa th j^ , ) ! — 
- i p a t M ^ H M I N * ! * . 

Assume that this condition does not hold. The cardinality of the set {&+1, . . . , /} 
•is exactly. 21| 1 | 3 1 | J B| . (pf |5 |A"+1) , therefore, there exist indices ^ ( k ^ i ^ i ^ l ) 
such that ¿ 2 - / i=2 |M | | 3 M! |£ j and path t = =pathx i.e. qh+lfl = ... 
— = 9 H , I = X I - N O W l e t 

J? ;={a;. f | l S f ^ w J ^ p a t h ! (§,-,) is a prefix of path, (#.)}, 
ci~{a'j,t \i=t = n'j, pathx (qk) is not a prefix of path, (q'j)} 

for each Since the cardinality of {4, . . . , j2} is equal to 2 | | , 4 | | 3 | 5 | + 1 
there exist indices j\, j2, j3 (h —Ah<h—h) such that each of the following 
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conditions is satisfied: (PJi)B=(PJ2)B=(P;3)B. Ah<^AhQAh, Bh=BhQBh, Ch% 
ah.i=ah,i=ah.i> where Ait = {ai„s\2-s-nt}- T h u s > applying 

Lemma 5, we get t h a f o n e of the trees pJl(pj2), Pj2(pj3), Ph(Pj3) is in P, contradicting 
to the minimality of p. This ends the proof of Theorem 8. 

Observe that, by the decomposition result for top-down tree transducers with 
regular look-ahead in [6], the above theorem holds for this type of transducers 
as well. But Theorem 8 has some other important consequences, too. 

Take two arbitrary top-down or bottom-up tree transducers A = ( F , A, G, A0,1) 
and B=(F, B, G, B0,1'). Assume that A is functional and A and B are disjoint. 
Then construct the sum of A and B, i.e. take C=(F, AUB, G, A0UB0, ZUS'). 
For C we have the following equivalence: t a = Tb if and only if dom t A = dom t b 
and C is functional. From this and by the fact that the equality of regular forests 
is decidable we get: 

Theorem 9. There exists an algorithm to decide for an arbitrary tree trans-
ducer A and a functional transducer B whether they are equivalent, i.e. such that 
t a = Tb. 

COROLLARY. A similar argument shows that Theorem 9 holds even if T a = T b 
is replaced by Ta Q Tb . On the other hand every deterministic transducer is func-
tional. Thus, the equivalence problem for deterministic transducers is decidable. 

Another consequence of Theorem 8 concerns with minimization of transducers. 
For any given tree transducer A one can compute a bound k with the following 
property: A has a corresponding tree transducer B which is minimal and satisfies 
that each tree in the right hand side of a rule of B has depth not exceeding k. This 
k can be obtained as 2JRT||.4|| in the top-down case and as 2K\A\ in the bottom-up 
case. (Here \A\, \\A\\ and AT are determined as in the proof of Theorem 8.) Therefore, 
if we assume that A is functional and we want to minimize A, it is enough to check 
only for a finite number of transducers whether they are equivalent to A or not. 
This proves 

Theorem 10. The minimization of" functional tree transducers is effectively 
solvable. 

/ 

COROLLARY. A S every deterministic tree transducer is functional the same state-
ment holds for deterministic transducers. 

This corol|ary as well as the positive decidability result concerning the equiv-
alence problem for deterministic bottom-up transducers and a restricted class of 
deterministic top-down transducers was independently achieved by Z . ZACHAR 
in [12] too. 

3. Minimization of deterministic transducers 

Let J f be a class of tree transducers. A transducer is said to be minimal 
in J f if there is no transducer B£ ¿ f which is equivalent to A and has fewer states 
than A. In the preceding section we have shown that if j f is the class of all func-
tional top-down or all bottom-up transducers, or if J f is the class of all deterministic 
top-down or all bottom-up transducers, then, for every given A € J f , one can effec-
tively find a minimal equivalent transducer B £ j f . However, these minimal realiza-
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tions are not uniquely determined. In this section we investigate conditions assuring 
the uniqueness (up to isomorphism) of minimal realizations. Similar results are 
already known for Mealy-type automata (cf. [9]) and tree automata [1, 3, 10]. We 
point out that the minimizing process of Mealy-type automata can be generalized 
in a natural way for certain classes of deterministic tree transducers. For the sake 
of simplicity we shall consider completely defined deterministic tree transducers 
only. Therefore, from now on, by a tree transducer we shall always mean a com-
pletely defined deterministic transducer. Furthermore, all transducers will be taken 
with a fixed input type F and output type G. Since the case F=F0 is trivial we 
assume that F ^ F 0 . 

First we treat top-down transducers. Let A=(F, A, G, {a0}> E) be a top-down 
transducer. It is completely defined, i.e. for any ad A and f<iF there is a rule in E 
with left side af. Let B—(F)B,G, {60}, I') be another top-down transducer and 
take a mapping (p: A -+B. If the following two conditions are satisfied for arbitrary 
n, fflSO, f£F„,p£TGtm, a, al, . . . , am£A and ily ..., im£[n] then <p is called a homo-
morphism of A into B: 

(i) if af-*p(axxh, ...,amxim)eZ then bf^p(b1xil,...,bmxij£E' where 
b = <p(d),bj = <p(aj) (Mm]), 

(ii) (p(a„)=b0. 
If, moreover, <p is surjective then В is a homomorphic image of A. If cp is bijective 
then we speak about isomorphism, written As=B. If ВЯА and (p is the natural 
embedding of В into A then В is a subtransducer of A. If .A has not proper sub-
transducers then it is called connected. 

The next statement is obvious: 

Statement 11. If there is a homomorphism from A into В then т А = т в . 

As in case of universal algebras there is a bijective correspondence between 
homomorphic images and congruence relations. Let A=(F, A, G, {a„}, I ) be an 
arbitrary top-down transducer and take an equivalence relation в on A. It is called 
a congruence relation if for any two _rules af-*p(a1xil, ,.., amxim), bf-~ 
^д(Ьгхн, ..., b^XE (n, m, 1^0, fCF„,pefa_m, qefGJ, /x, ...,im, j\, ,jt€[n], 
als ..., am, ¿ j , ..., bu a, b£A) a9b implies m=l,p=q,Jt=jt and at6b, (t= 1, ..., m). 
Here for any nonnegative integer n the notation TGt„ is used to denote the set 
fG,„={peTGJii(p)=x1...x„}. 

Assume that в is a congruence relation of A. Then we can define the quotient 
of A induced by в. This is the top-down transducer A/e=(F,A/e, G, {в(а0)},Г) 
where for every n, m^O, f£Fn,p<=TG<m, a, ..., am£A ' 

e(d)f^p(e(a1)xil,...,9(am)xim)er 
if and only if 

af^v{<*ixh,..., amxim)£l. 

Statement 12. А/в is a homomorphic image of A. If В is a homomorphic image 
of A then there is a congruence relation в of A such that A / 0 s B . 

Take again the top-down tree transducer A = ( F , A, G, {a0}, Z). Let us define 
an equivalence relation 6A on А: авАЬ if and only if тА(о)=тА(Ь) . Unfortunately, 
this will not always be a congruence relation. We need certain additional require-
ments on A. 
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Let Q be any mapping of the set of nonnegative integers into itself, i.e. Q: CO-*CO. 
Then let .5T (Q) denote the class of all top-down tree transducers A = (F, A, G, {a0}, Z) 
which satisfy the condition |path^ (/>) I = (?((/) f ° r every n, m^0, f£Fn, p£ TG m, 
¿t, cii, ..., am£A, x . . . , Xfm(iXn, je[m] and af+p(ax X;)£Z, as well 
as the condition | rA ( a )(7V)|>l for arbitrary state a appearing in the right side 
of a rule in Z. 

Statement 13. If A£ J f (q) then 0A is a congruence relation. 

Proof. Let A = (F, A, G, {<z0}, Z) and assume that af^p(a1xh, ..., amxin) 
and bf^q{btxh, ...,b,x}) are rules in Z where a,b£A, a6Ab, n, m, / s 0 , f£F„, 
pefG>m, q£TGyl, ax, ...,am,bx, ...,bt£A, ilt ...,im, j\, . . . , 7,€[n]. Assume that 
there is an integer t£[m] such that none of the strings in U (paths (q)\i,=js, .?£[/]) 
is a prefix of path, (p) or conversely. Then, by |TA(0t)(rp)| =-1, it is easy to show 
the existence of a tree r£TF with tA(a)(r)^rA(b)(r). On the other hand if i, =js 
holds for some t£[m] and i€[/] then the equality |path, (/?){= [paths (q)\ is also 
valid. This proves that m=l, i,=jt, path,(/>) = p a t h , ( q ) ( i = l , ...,m). But 
IA ( O )=TB № ) , hence from this we get p=q, at6Ab, 0 = 1 , ...,m). 

Another class of top-down transducers in which 6A is always a congruence 
relation is the class where d denotes an arbitrary nonnegative integer. A top-
down transducer A = (F, A, G, {a0}, Z) is in ,JTd if and only if for every a£A, f£F0 
and p(zTG if af^-p(LZ then dp (p)=d, moreover, as in case of J f (g), 
lTA(a)(7V)|=-l is satisfied for each a£A appearing in the right side of a rule in Z. 

Statement 14. If then dA is a congruence relation. 

Proof. The proof of this statement is similar to that of Statement 13. Only use 
the conditions defining X d to establish the bijective correspondence between the 
sets U (path, (p) \ t£[m]) and U (paths (?) |j€[/]) for the rules af^p{axxh, .... amxim) 
and bf-—q(b1xJl, 

Note that for A£.yT(g) or the definition of 6A can be reformulated 
as follows. Let a, b£A. Then aOAb if and only if for every n, mgO, p£TFt„, qf_TG m 
and ... , im£[n] the following equivalence holds: 

3fli, •••> am£A ap qfax^ ..., amxim) 
if and only if 

3bj_, ..., bm€A bp ^ qib^, ..., bmx,J. 
This is an easy consequence of statements 13, 14. Observe that this new definition 
of 0A makes 6A a congruence relation without requiring A o r A£.J/fd. 

A transducer A o r A£3fd is called reduced if 6A is the equality relation. 
As both and are closed under homomorphic images the transducer A/0A 
is reduced for any A£Jf(g) or A£3fd. The following statement is the basic step 
to show that minimal transducers in and are exactly the connected and 
reduced transducers. 

Theorem 15. Let A, B£jf(g) be connected top-down transducers. Then A 
and B are equivalent if and only if A / 0 a ^ B / 0 b . The same holds for X d . 

Proof. Sufficiency follows by statements 11—14. In order to prove necessity 
first observe that if A = ( F , A, G, {a0}, Z) and B = ( F , B, G, {b0}, Z'), moreover, 
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a<>P=>•••, amxO ~ w h e r e P^tf,„, " = 0, q£TG<m, m^O, ax,...,am^At 
h, ..., imi[n] — then there exist states blt ..., bm£E with bop^nqfax^, ...,bmxQ. 
Furthermore, for these states bt (i— 1, . . . , m) we have TA(ai)=^B(6j)' This is a con-
sequence of the assumption T a =T b and the definitions of and Using 
the above mentioned facts it is easy to prove that the correspondence cp: A/6a— 
-~B/6b defined by <p(BA(a)) = dB(b) if and only if there exist p ^ f F i l , q£.TG,m+i 
(m^O), a1, ...,am£A, b1,...,bm£B such that a0p^>-Aq(ax1,a1x1,...,amx1) and 
bQp=>Bq(bxl, ¿ jx x , ..., bmxx) forms an isomorphism of A/0A into B/0B. 

. The next theorem is an immediate consequence of Theorem 15 and the fact 
that J f (¿0 and are closed under the formation of subtransducers and homo-
morphic images.- . 

Theorem 16. A transducer is minimal in JiT(g) if and only if it is connected 
and reduced. If both A and B are minimal in J f ( g ) and they are equivalent then 
AsiB, i.e. the minimal realization of a transducer in is unique up to iso-
morphism. The same holds for the class j f d . 

Of course Theorem 16 holds for every class J ^ ^ z J o r Crif & provided 
J f is closed under the formation of subtransducers and homomorphic. images. 
The most important example for a class of this type is the class of all top-down 
relabelings (cf. [5]). 

It is natural to raise the question whether the minimal transducers in 
or are minimal in the class of all top-down transducers. The following examples 
prove that the answer is negative in general. In these examples the adjectives 
"linear", "nondeleting" are used in the sense of [5]. Furthermore, a top-down 
tree transducer A=(F , A, G, {a0}, Z) will be called uniform if each rule a f ^ p 
(a&A, /£F„ («^0) , pd.TGyAxXJ can be written as af-~q(axxY, ..., a„xn) for a tree 
q£TGi„ and states at, ...,anCA. 

Example 17. This example shows that'there is a linear nondeleting top-down 
tree transducer A £ j f 1 i ) J i r ( g ) which is connected and reduced — i.e. minimal in 
both J f 1 and J f ( g ) — but which is not minimal in the class of all linear nondeleting 
top-down tree transducers. Here Q: to—oj is the mapping defined by g(n) = 1 
(nssO). Indeed, let A — (F, [5], F, [1], Z) where F is the type determined by the 
conditions F0 = {# }, F a = {/, g}, F„ = 0 if « > 1 and Z consists of the rules (1)—(5) 
listed below: 

(1) i * - / ( # ) , , i/(*i) - f a x , ) , \g(Xl) ^ gOxj, 

(2) 2 # - / ( # ) , 2f(Xl) - / ( 4 * 0 , 2g(*1) - / ( 4 x 0 , 

(3) 3 # — g ( # ) , 3/(xa) - g(4x1), 3g(Xl) - g(4x1), 

(4) 4 # - / ( # ) , 4 / ( x 1 ) - / ( 5 x 0 , 4g(x1) - g(5Xl), 

• (5) 5 * ^ / ( 1 ) , 5/(xJ - / ( ] * , ) , Sgfe ) - g O ^ ) . 

However, A is equivalent to A '=(F , [4], F, [1], Z') where Z' contains the 
following rules. (1)—(4): 

(1) ! # - / ( # ) , l / ( x j - / ( / (2X, ) ) , lg(xj) - g(g(2x1)), 
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(2) 2 = * - # , 2 / ( x 1 ) - 3 x 1 , 2g(x1) — 3x l 5 

(3) 3 # - / ( # ) , 3/(xx) - / ( 4 x 0 , 3g(Xl) - g(4x0, 

(4) 4 # - / ( # ) , 4f(Xl) - / ( l x j , 4 g ( x 1 ) g O x J . 

Example 18. This example proves that there is a top-down tree transducer 
A£ which is minimal in J f 0 but not minimal in the class of all top-down 
transducers. 

Let us define the types F and G by F 0 = { # } , F1={f), F„=0 if « > 1 and 
G o = { # > # i , ' # 2 } , Gi = { f ) , G2 = {g}, G„=9 («>2), respectively. Then put 
A=(F , [4], G, [1], I ) where Z consists of the following rules: 

(1) l = * - # , l / ( x 1 ) - g ( 2 x 1 , 3 x 1 ) , 

(2) . 2 # - # 1 , 2/(x1) - / ( 4 x 0 , 

(3) 3 # - # 2 , 3 / (xJ - / ( 4 x 0 , 

(4) 4 # — # , 4/(x t) - / ( 4 x 0 -

It is easy to check that A is minimal in J f 0 . On the other hand A is equivalent to-
A '=(F , [3], G, [1], Z') with Z' containing the following rules: 

(1) l / ( x 0 - 2 x 1 , . 
(2) 2 # — g ( # i , #2), 2/(x0 - g(/(3xO,/(3xO), 
(3) 3 # — # , ' 3 / ( x 0 - / ( 3 x 0 -

Observe that A was not uniform. 
In spite of Example 18 we have 

Theorem 19. If a uniform transducer is minimal in J f 0 then it is minimal in 
the class of all top-down tree transducers. 

Proof. Let A = ( F , A, G, {o0}, 0 be uniform and minimal in J f 0 . Assume 
that the top-down tree transducer B = ( F , B, G, {Z>0}, Z') is equivalent to A and 
has fewer states than A, i.e. | f i |< |yl | . 

Take an arbitrary state a£A. We shall correspond to this state a state <p(a)£B 
as follows. First let us choose the trees p£TFil and q£TGn («>0) in such a way 
that we have a9p^>Aq(a"xj). If a=a0 choose p = q=Xl. This can be done since 
A is connected. Let r£TG>m (raS0) and bu ...,bm£B be determined by 
b0p=>Br(blXl, ...,bmXl). As ! t A ( c ) ( 7 » | > l is satisfied for each c£A occuring in 
the right side of a rule in Z we must have m > 0 . Or even, there must be an index 
jfc[m] for each [n] with the property that either path,-. (r~) is a prefix of path( (q) 
or conversely. But, by the definition of it is impossible that path; (q) is a proper 
prefix of pathj (r). Therefore j) is uniquely determined for each [«] and path^ (r) 
is a prefix of path; (q). As A and B are equivalent this implies that there exist trees 
r j , ..., rm£TG>1 with r(rlt ..., rm) = q. Let <p(a) = b± and ra=rJl. We must have 
'•a(TA(a)(0)=TB(?(fl))(0 for each t£TF, i.e. ra(tA(o)) = t B ( 9 W ) . ' 

As |5 |< |y i | there exist states o , w i t h cpia^ — cp^) . Consequently, 
roi(TA{oi)) = roi(rA{a2))- But, again by the definition of this is possible only if 
ra=ra„ and TA(FLL") = TA(FL2) yielding a contradiction. 
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We will now turn our attention to the bottom-up case. A deterministic bottom-
pu tree transducer A = ( F , A, G, A0,1) is called completely defined if there is 
a rule in I with left hand side f{alxl, ..., anx„) for every иёО, / £F„ and 
al, ...,a„£A. First of all we have to define homomorphisms, congruence rela-
tions etc. 

Let A = ( F , A, G, A0,1) and В = ( F , В, G, B0, Г ) be bottom-up transducers. 
By a homomorphism of A into В we mean a mapping <p: A —B which satisfies the 
following two conditions: 

(i) / ( M i b„x„) - bp£Z' if / ( a i * i , . . . , anxn) - ap^I, bt = <p(af) 

(i = 1, ..., n), b = (p(a) (n S 0, f£Fn, alt ..., an, a£A, p£TG.„), 

(ii) <)o(A0)QB0, cp-i(B0)QA0. 

Again, if <p is surjective then В is a homomorphic image of A and bijective homo-
morphisms are called isomorphisms. If BQ A and <p is the natural, embedding of 
В into A then В is a substransducer of A. 

We now define congruence relations. A congruence relation of A is an equivalence 
relation 0 on A with the following property: for any и^О, / £F„ , ah b£A 
•0'=1 и), a, b£A and p,q$.TG>n if both / f o x i , . . . , a„x„)—ap and 
f(b1x1, ..., bnxn)^bq are in I and а^вЬ, ( /=1, ...,n) are satisfied then p=q 
and adb hold too. Furthermore, A0 is required to be equal to the union of certain 
blocks of the partition induced by в: A0= и(0(а) |а£Л о) . The quotient transducer 
•determined by в is the transducer A¡6=(F, А/в, G, AJ9,1') where 

Г = {/(вы*!, ..., в(ап)х„) - 6(a)p\f(a1x1,..., a„x„) - ap£l}. 

With the above definitions in mind one can easily prove the analogues of 
statements 11 and 12. 

For a bottom-up transducer A = ( F , A, G, A0,1) the relation вА is defined 
as follows. Let a, b£A. Then a6Ab if and only if the equivalence 3a0£A0 

Р (ai a„xn)=>a0q*>3b0€A0 р{аххх, ..., a ^ x ^ , 
bxt, a i + 1 x i + 1 , ...,anxn)^>-b0q^ holds for j i l l 0, г£[и], alt ..., a f _ ъ ai+1, ...,aneA, 
P£TFi„ (or equivalently pefFt„ or pefF>„) and q£TUn. 

Likewise in the top-down case, 0A will not always be a congruence relation, 
but it will be a congruence relation if we require A to be in X~(Q) for a mapping 
Q of the set of nonnegative integers into itself. A bottom-up transducer 
A = ( F , A, G, A0,1) belongs to 3f(g) provided it satisfies the following three con-
ditions: 

(i) if /0*1*1, . . . , anxn)-~ap£E («>0, / £F„ , a, alt ..., an£A, p£TC n) then 
M — h o l d s for each г £ [и] and u'£pathj (/>), 

(ii) A is nondeleting, i.e. for all 0, / £F„ , a, ax, ..., a„£A and />£ TGn if 
/ ( f l i ^ i , . . . , a„xn) —ap£Z then each of the variables jcl5 ...,x„ occurs in f r (p), 

(iii) for any a£A there exist PefFi„+1, q£TGn+1 (n^0), a0£A0, ax, ..., a„£A 
such that p(axlt alx2, ..., a„x„+1)=>a0q. 

Statement 20. If A€Jf (g) then 0A is a congruence relation. 
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Proof. Let A = ( F , A, G, A0, Z), a, b£A. Assume that adAb and let 

f i f l ^ , ..., a^x,-!, axh al+1xl+1, ..., a„x„) - cp, 
/ ( a ^ , ..., a^Xi-i, bxt, at+1xi+1,..., a„x„) - dq 

be arbitrary rules in Z. Here « > 0 , /€[«], f£F„,a1, ..., ai+1, ..., an, c, d£A, 
p, qdTGn. We have to show that p=q and cdAd. 

As'A^^ie), there exist m^O, c1 ; . . . , cm£A, a0eA0 r^TF>m+1 and s£ r G _ m + 1 
such that 

r(cxx, ctx2, ..., cmxm+1) => a0s. 
Let r1=r(/(x1, ...,xn), x n + 1 , ..., x„+m), si=s(p, xn+i, ...,xn+J. Of course we have 

R1(a1x1, ..., ai_1Xj-1, axi, ai+1xi+1, ..., anxn, c1xn+1, ..., cmxn+m) => CIQSX. 

Since a9Ab, this implies 
r1(a1x1, ..., al_1xi^1, bxh ai+1xi+1, ..., anxn, c1x„+l! ..., cmxn+m) => b0sx 

for a state b0£A0. But this is possible only if is of form = xn+1, ..., xn+m) 
where t£TGim+1 and r(dxlt cxx2, ..., cmxm+1)^>b0t. 

We know that s(p, xn+1, ..., xn+m) = t(q, xn+1, ..., xn+m). By (i) and (ii) in 
the definition of Jf(<?) this results that s=t and p=q. Essentially the same argu-
ment shows that cOAd. 

Observe that for a bottom-up transducer A = ( F , A, G, A0, Z)£Jf(g) the 
relation 0A can be redefined as follows. Let a, b£A. Then aOAb if and only if the 
following, two equivalences are satisfied for arbitrary p£TFt„, q£TG „ (w^O), 
a1 ; ..., aj-i, a i + i , ..., an£A and *€[«]: 

(i) 3a0^Ap(a1x1, ..., a^x^i, axtai+1xi+1,..., a„x„) ^ a0q 

if and only if 
Bbo^Apia^!, ..., ai-1xi-1, bxt, al+1xi+1, ..., a„x„) b0q, 

(ii) for a0 and b0 of (i) it holds that a0£A0 if and only if b0£A0. 
A transducer A£jT(g) is called reduced if 6A is the equality relation on A. 

A/0A is always reduced. 
In contrast with the top-down case there are nonisomorphic but equivalent 

minimal transducers in Jf(g). However, if a bottom-up transducer is minimal in 
•5f(<?) then it is both reduced and connected (i.e. it has not proper subtransducers). 
The converse is not true in general. 

According to the above discussion we need some further restrictions to guaran-
tee the uniqueness of minimal realizations. For this purpose we introduce the sub-
class X'(q) of Jf(g). A bottom-up transducer A = ( F , A, G, A0, Z)£Jf(g) belongs 
to Jf'(g) if and only if it satisfies the condition: 

if f(a1Xi,...,anxr)+ap£Z where w>0, f£F„, al3 ...,an, a£A and p€Tc „ 
then p£TGi„ and none of the operational symbols in G0 occurs in p. 
Now we are able to state an analogue of Theorem 15 for bottom-up transducers. 

Theorem 21. Let A, B dJf'(g) be connected. Then they are equivalent if and 
only if A / 0 a ^ B / 0 b . 
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Proof. The sufficiency follows in the same way as in Theorem 14. In order to 
prove the necessity of our statement, first observe that if A = ( F , A, G, A0,Z) and 
B = (F, B, G, B0, Z'), moreover, xMa)(p) = q where p£TF, q£TG and a£A, then 
there is a state b£B with TB№) (/>) = #• In fact, if a£A, b£B ( i = l , . . . , « , « > 0 ) 
are such that dom TA(f l i )fldom TB ( b i )^0 ( / = 1, . . . , n) and p i f l ^ , ..., a„xn)=>Aaq 
where p£TFi„, q£TG n and a£A then there is a state b£B satisfying 
pfaXi, ..., bnxn)=*Bbq. The same assertions holds if we change the role of A and 
B. By these observations it is easy to verify that the correspondence q> defined by 
(p(9a(a))=9B(b) if and only if dom tA ( a ) f l dom T b w ^ 0 is an isomorphism of 
A/OA into b¡EB . 

Theorem 22. A bottom-up transducer is minimal in J f ' ( g ) if and only if it 
is both reduced and connected. The minimal realization of a bottom-up trans-
ducer in y f \ g ) is unique up to isomorphism. 

Proof. Immediate by Theorem 21. 
Observe that Theorem 22 holds for every class J f Q j f ' ( g ) provided it is 

closed under the formation of subtransducers and homomorphic images. An example 
of a class of this sort is the class of all bottom-up relabelings satisfying condition 
(iii) in the definition of Jf(i>). A tree transducer A = (F, A, G, A0, Z) is called 
a bottom-up relabeling if each rule in Z is of form 

f i a ^ , ...,anxn) - a g O i , ..., x„) . 

where «SO, f£Fn,g£Gn, ax, ...,a„, a£A. 
The following example shows that there is a transducer which is minimal in 

jf'(<?) but which is not minimal in the class of all bottom-up transducers. Let 
F 0 = { # } , F, = { / g} and F ( = 0 if 1. Take the bottom-up transducer 
A = (JF, [5], F, [1], I ) where Z consists of the following rules: 

(1) # - 1 # , 

(2) f(\Xl) - 2f(xJ, g(lXl)~3g(xJ, 

(3) f{2xs) - 4f(Xl), g(2Xl) - 4/(x1), 

(4) / ( 3 x 0 - 4g(x1), g ( 3 x 1 ) - 4 g ( x 1 ) , 

(5) / (4x j ) -*• 5f(xj), g(4xx) - 4g(x1), 

(6) / ( 5 x 0 - l f ( X l ) , g(5Xl) - lg(xO-

It is easy to see that A is minimal in X~'(Q) where Q is a constant mapping: £>(«) = ! 
for all « ^ 0 . On the other hand rA can be induced by a four state transducer 
B = ( F , [4], F, [1], Z') where Z' consists of the rules (1)—(5) listed below: 

(1) * 

(2) / ( 1 x 0 - 2 / ( / (x0) , g ( l x 1 ) - 2 g ( g ( x 1 ) ) , 

(3) f(2Xl) — 3xj , g(2Xi) — 3xj, 

(4). / (3x0 . - 4 f i x , ) , g(3xj) - 4g(xj), 

(5) / ( 4 x 0 - 1 / ( 4 g(4xj - lg(*D-
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In spite of the preceding example the following theorem is valid. 

Theorem 23. Let A = ( F , A, G, A0, Z) be minimal in Jf'(e). Assume that 
A = A 0 . Then A is minimal in the class of all bottom-up transducers. 

Proof. Let us correspond to each a£A a tree /?a6dom rA ( a ) . This can be done 
because A is connected. Assume that B = ( F , B, G,B0,Z') is equivalent to A and 
has fewer states than A, i.e. Of course B=B9. Define the mapping 
(p: A-+B by (p(a)=b if and only if />a£dom TB(íj). Since \B\<\A\ there are distinct 
states ax, a2£Ajvith (p (a^ = (p (a2). Denote this state <p (a,) by b. As A is reduced, 
there exist p£TF<n, q^q^TGn (n>0) and z0e[«], as well as states c1 ; . . . , c i o _ l t 
cb+i> •••' cn> d2£A such that 

p(c1x1, ..., Cja_jxit)_x, ci1xio, Cj0+1xi0+1, ..., cnxn) =>Ad1ql, 

P(c lxl> •••> cio-lxio-l> a-Xio ' c /o + l ^ i o + l> • • • ' cnxn) d-2 • 

Of course q1,q2£TGin. 
As A£JÍ"(Q) we may assume that p = f(xx, ..., xn) for an operational symbol 

f£F„. It can be seen, by q1^q2 and A t J f ' ( o ) , that and q2 are of form q1 = 
= q0(r1, . . . , r j and q2 = q0(ri, ..., r'm), respectively, where q^fG,m (w>0) , 
rj,r'j£TGin, furthermore, there is at least one index j0£[m] such that rh^r'ja, rJo, 
r'h $ Xn. More exactly, we may choose q0 in such a way that rj(l=g1 (sj) and /-y0=g2(s2) 
hold for some vectors sJ; s2 and different operational symbols gly g2£G. This implies 
that 

TA(/(PC . •••» Vcin_t, pai, P%+v..., P j ) S- T A ( f ( p c i , ..., p ^ , pa2, P%+1, ..., p j ) . 

Now let bi = <p(c;) (7=1, . . . , « , ir^io). There is a state e£B and a tree q£TG>n 
with f(blXl, ..., 2\0_iX i0_i, bxh, bk+1xio+l, ..., bnxn)^eq£Z'. Since A and B are 
equivalent we have rA(pc) = tB(pbi) ( / = 1 , . . . , « , i^i0), Ta (/>„,) = rB (/>„,) ( /=1 ,2) , 
q^AÍPd), •••> T A O C , W ) , ^AÍPa), T A (Pc k + 1), •• ^x(Pcn)) = q(^a(Pcl), • • • , ^(Pc^J* 
TB(Püi), XB(PCÍ0+1), - , *BOC„)) 0 = 1, 2). 

•-,Pc„))- Thus HÍPJ^TBÍPJ and path,„ (<7)^0. Even more, by rJo^r'Jo, 
there is a string w£path ;o (q) which is a prefix of pathJo (q0). Now there are two cases. 

First suppose that pathJo (^0) is a prefix of path/o (q,) and let pt= 
=f(pCl, •••>Pciíí-1>Pat,Pcilí+1, 0 = 1,2). Then ^ A ( P i ) = u ( r A ( p a i ) ) and 
*B(/>I) = "'(TB(/7<JI)) where u, fF1 satisfy path (w) = pathio Oft) and path (u') = w, 
respectively. As w is a proper prefix of path,0 (q,) and T A ( p a i ) = x B ( p a i ) this results 
that T A ( p 1 ) ^ r i t ( p 1 ) , contrary to our assumption T A = T b . A similar argument 
yields a contradiction if pathJ0 (qa) is assumed to be a prefix of path;0 (q2). 

Thus none of the strings path io (<?,) and path,-0 (q2) is a postfix of pathJ0 (qd). 
This implies^ that TA(p1) = u(v), TA(p2) = u'(v), xB(pj) = u(v) and TB(/?2) = w/(t)') 
where u, u'd Tf l , v, u'£ TG satisfy the conditions path (u) = path (u')=w and v^v'. 
Indeed, v=zB(pai), and v'=x¿(p„2). It is again a contradiction. 
DEPT. O F C O M P U T E R SCIENCE 
A. JÓZSEF UNIVERSITY 
A R A D I V É R T A N U K T E R E 1. 
SZEGED, H U N G A R Y 
H—6720 

2* 



2 0 Z. Ésík: Decidability results concerning tree transducers I. 

References 

[1] ARBIB, M . A. and Y . GIVE'ON, Algebra automata I : Parallel programming as a prolegomena 
to the categorical approach, Inform, and Control, v. 12, 1968, pp. 331—345. 

'[2] BLATTNER, M. and T. HEAD, The decidability of equivalence for deterministic finite trans-
ducers, J. Comput. System Sci., v. 19, 1979, pp. 45—49. 

([3] BRAINERD, W. S., The minimization of tree-automata, Inform, and Control, v. 13, 1968, pp. 
484—491. 

'[4] CULIC I I , K . and A . SALOMAA, On the decidability of homomorphism equivalence for languages, 
J. Comput. System Sci., v. 17, 1978, pp. 163—175. 

[5] ENGELFRIET, J., Bottom-up and top-down tree transformations, A comparison, Math. Systems 
Theory, v. 9, 1975, pp. 198—231. 

'[6] ENGELFRIET, J., Top-down tree transducers with regular look-ahead, Math. Systems Theory, 
v. 10, 1977, pp. 289—303. 

[7] ENGELFRIET, J., On tree transducers for partial functions, Inform. Process. Lett., v. 7, 1978, 
pp. 170—172. 

[8] Esne, Z., On functional tree transducers, in Proceedings, Conference on Fundamentals of Com-
putation Theory, ed. Budach, L., Akademie-Verlag, Berlin, 1979, pp. 121—127. 

[9] GÉCSEG, F. and I . PEAK, Algebraic theory of automata, Akadémia Kiadó, Budapest, 1972 . 
[10] GÉCSEG, F. and M. STEINBY, Minimal ascending tree automata, Acta Cybernet., v. 4, 1978, 

pp. 37—44. 
[11] GRIFFITHS, T. V., The unsolvability of the equivalence problem for /.-free nondeterministic 

generalized machines, J. Assoc. Comput. Mach., v. 15, 1968 , pp. 4 0 9 — 4 1 3 . 
i[12] ZACHAR, Z . , The solvability of the equivalence problem for deterministic frontier-to-root tree 

transducers, Acta Cybernet., v. 4, 1978, pp. 167—177. 

(Received May 8, 1980) 


