Decidability results concerning tree transducers I

By Z: Esik

A tree transducer is called functional if its induced transformation is a partial
mapping. We show that the functionality of tree transducers is decidable. Con-
sequently, the equivalence problem for deterministic tree transducers is also de-
cidable, The latter result was independently achieved by Z. ZACHAR in [12] for bottom-
up tree transducers and a restricted class of top-down tree transducers. The solv-
ability of the equivalence problem for generalized deterministic sequential machines
is known from [2] and [4]. It was proved in [11] that this positive result can not be
generalized for arbitrary, i.e. generalized nondeterministic; sequential machines.
Therefore, the equivalence problem for nondeterministic tree transducers is un-
decidable.

Our result can be used to minimize deterministic tree transducers in an effective
manner. However, the minimal realizations of a deterministic tree transducer are
not isomorphic. We investigate conditions assuring the uniqueness (up to iso-
morphism) of minimal realizations in certain classes of tree transducers.

Part of the results of the present paper have been announced in [8] The terminol-
ogy is used in the sense of [S].

1. Notions and notations

By a type F= U F,- we mean a finite type such that . F,=0. For the type

F, v(F)=max {n| F,#0}. An ‘F-algebra is a system A=(4, {(/)a|fEF}),
shortly, (4, F), where for every nonnegative integer n and f€F, (f),: A"—~A4 is
the realization of the n-ary operational symbol f.

Let Y be an arbitrary set. Then Tp y=(Tf,y, F) denotes the free F-algebra
generated by Y. The elements of Tp y are called frees and they can be obtained
by induction as follows: Ty y is the smallest set satisfying

(l) FOaYgTF,Y,'

@) if n=0, feF,, t,.. €Ty then f(py,...,p.)Ty.
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In particular, if Y=X,, the set of the first # variables x,, ..., x, for a nonnegative
integer n, Tp,y is denoted by Tr , and Tp is written Tp. Each n-ary tree pcTg ,
induces a mapping (p),: A"—~A in an F- algebra A. If A is the free algebra Ty y
then (p)a(ty, ..., t)=p(4, ..., 1,), i.e. the tree obtained by substituting f; for
x; (i=1,...,n) in p.

The depth (dp), rank (rn) and frontier (fr) of trees are defined as usually. For
a tree pc Tg,y we have

@ do@=0, m@=1, frp)=p if pe,

@) dp(p)=0, m(p)=1, fri(p=41- if pEF,

(i) dp(p) =1+max{dp(p)li=1,..,n}, m(p) =1+ é’rn(p,-),
)= (). fr @) I p=Srr o ps SeFur

P1s s Po€Tpy and n=(Q. Here A denotes the empty string.
In connection with the elements of Ty ,(n=0) we shall also use the concept
of path. For an arbitrary i(1=i=n) and p€Ty , path;(p) is given by

() path(p) = {2} if p=x,
(i) path;(p) =0 if pcF,UX,—{x},
(ifi) path;(p) = {jwlwe path; (p;), 1=j=m} if P =f(pss - Pu)s

m=0, fe Fouy b1y oo P TE .. If path; (p) is a singleton then it is identified with
its umque element For prath (p) we denote by |w| the length of w. path(p)=

= U path;(p). For arbitrary two strmgs vand w ofw denotes the derivative of v with

respect to w, i.e. v/w=u if and only if v=wu.

Further on we shall often use vector notations to simplify the treatment. Vectors,
except possibly the one dimensional ones, are always denoted by boldfaced letters.
For each k dimensional vector acA4* (k=0) and i (1=i=k) a; denotes the ith
component of a. Conversely, if ac4 then a*¢ 4% is the k dimensional vector whose
each component is equal to a. The product ab of the k dimensional vectors a
and b is defined by ab=(ayb,, ..., a;b) where a;b; are short notations for
(a;, b)) (=1, ..., k). For the vectors of trees pET},, and q€T§ ., we denote by
p(@ the vector (py(q), ..., py(@)). -

According to the function fr one can dlstmgulsh the subset Ty, of T% ,. This
consists of those elements of T , whose frontier is a permutation of the variables
in X,. We may extend this definition to vectors as follows: Ea=
={peTk,|fr (p,)... fr (p,) is a permutation of X,}. Observe that 7%, is not the
kth power of Ty ,.

We now turn to the deﬁnltlon of tree transducers. Following 5l a top-down
tree transducer is a system A=(F, 4, G, A,, %), where F and G are types, A4 is
a finite, nonvoid set, the set of states, 4,S A4 is the set of initial states, finally, X
is a finite set of top-down rewriting rules. A top-down rule has the form af—p
— or equivalently af(x,, ..., x,)—~p, where n=0,a€Ad, fcF,,pcT; 44x,. A
bottom-up tree transducer A=(F, A, G, Ay, Z) has a similar structure except A4,
is called the set of final states and Z-contains bottom-up rewriting rules. A typical -
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bottom-up rewriting rule is of form f(ayxy,...,a,x,)~ap whére n=0, fCF,,
pETG s 4, ay, ..., a,€A. By a tree transducer we mean a top-down or bottom-up
transducer. o ' - B

Take an arbitrary tree transducer A=(F, 4, G, AO,E) and let Y. be an ar-
bitrary set. T can be useéd to define a bmary relation % Ay on: TG AXTF , in the
top-down case and on the set Tr, axtq, ¥ in the bottom- -up case. It is called derivation
and its exact definition can be found in [S]. If there is no danger. of confusion A

is omitted in -2, y. It can be seen that if Y, £ Y, and p, g€Tg, AxT,,- f then
p=>,,]q if and only if p=>y2q Similar equivalence is valid in the bottom-up case.

Thus we may omit ¥ in & .
Agam take the tree transducer A. This induces a transformation 1, S TpX Tg:

_ 14 = {(p, 9)|3a,€ 4, app = )
in the top-down case, and .
s = {(p, DI3a€ 4 p S a4}

for bottom-up A. If 7, is a (partial) function A is called functional. This is always
the case if A is deterministic, i.e. different rules have different left sides, moreover,
A, is a singleton in the top-down case. Two tree transducers are called equivalent
if their induced transformations coinside. For a tree transducer A=(F, 4, G, 4,, %)
and a state acA we denote by A(q) the transducer A(a)= (F, 4, G {a}, 2).

The domain of the transformation 74 is denoted by dom 7. It is a regular sub-
set of Tg, i.e. a regular forest. Regular forests are -exactly the forests recognized
by tree automata. A tree automaton is a system B=(F, B, B,) with (B, F) a finite
F-algebra which is denoted by B too, B,S B is the st of final states. The forest
recognized by B is determined by " T(B)={p< T¢|(p)s€ B,}-

Sometimes we need to restrict a top-down tree’ transducer to a regular forest.
If A=(F, A,G, A,,%) is a top-down tree transducer and 7& Ty is a regular
forest then ‘the system B=(F, T, A, G, A,, X) ‘1s called a regularly restricted top-
down tree transducer. Its induced transformation is t3={(p, ¢)€14|p€T}. A similar
but more general concept is the concept of top-down tree. transducer with regular
look-ahead introduced in [6]. A top-down tree transdiicer with regular look-ahead
is a system A=(F, 4, G, 4,, %) where F, A, G, A, are the same as for top down
tree transducers and X is a finite set of rules

(afCx,, A p; Ry, ..,R)

where af (x;, ..., x,)—p is a top-down rewriting rule, i.e. acA, f€F, (n=0),
PTG axx,, and RS Tp (1=i=n). are regular forests. The regular forests R;
are used to restrict -the applicability of the coressponding’ top-down rule
af (x4, ..., x,)—~p. The rule (af(xy; ..., x,)>p; Ry, ..., R,) can be .applied for
a subtree of a tree in T, 4«1, if and only if it is of: form af{(p,, ..., p,). with p,€R;
for each i (1=i=#n). Apart from this derivation is defined as for top-down trans-
ducers. The induced transformation is the relation 7,= {(p, q)|app2q for some
a,C Ay} Again, if it is a function A is called functzonal It is known that every func-
tional bottom-up or top-down tree transducer is equivalent to some deterministic
top-down transducer with regular look-ahead (cf [7D. :
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4 Z. Esik

2. The decidability of functionality of tree transducers

First we show that the decision of functionality of bottom-up transducers is
reducible to the decision of functionality of regularly restricted top-down ones.

Let A=(F, 4, G, 4y, Z) be an arbitrary bottom-up transducer. Define the
top-down transducer with regular look-ahead A’ as follows: A’=(F, 4, G, 4,, X’)
where .

2 ={(af > p(a1 X1, ... @4%,); Ry, ..r R flayxy, -.s 8,X,) —~ ap€Z,
Ri=domtyg,, (i=1,..,n)}
Lemma 1. A is functional if and only if A is functional.

Proof. 1t is obvious that t,C1,.. Therefore if A’ is functional then A is func-

tional, too. To prove the converse first we show that if ap®,.q and a’p3,.q’
where a,a’€A, pcTy, q,q9'€Ts and g#q° then there exist different trees r,r'€Tg

such that p2 ,br and p%,b'r’ are also satisfied for certain choise of states b, b’
with {b, b'}< {a, a’}. We shall prove this by induction on p. The basis, p€ F,
is immediate. Suppose now that p=f(p,, ..., p,) where n=0, f€F,, py, ..., P.€Tp.
Since apZq and a’p3 g’ there exist rules f(ayx,, ..., @,X,) ~aqe, f(aiX1, - » AoXn)—~
—~a' g€ X with p,cdom 1, Ndom 1,y and satisfying go(a,p;, -, 4,7,)>g and
ao(@py, ..., a,p)>q’, respectively. We distinguish two cases.

Firstly assume that for each i€{l, ..., n} if x;.appears in fr(g,) then there
exists exactly one tree ¢, €T; with a;p;2q;. Then also. p;%a;q;. This and
pi€dom 15,y (i=1, ..., n) yield pEaq. Similarly, we get p3a’q’ if, for each
x; occuring 1n fr (g;), there is only one tree in T; which can be derived from qjp;.
This proves our assertion in the first case.

Secondly assume that there is an integer i€ {1, ..., n} such that x; appears in fr(q)

and there are different trees ¢;,g/€Ts with a;p;%¢q; and a;p;5q], respectively.
Then, by the induction hypothesis, there exist trees r;=ri€7T; satisfying both

pi>ar;, and p;Sar{. For each index j(j=i) choose r;¢T; in such a way that
we have p;=a;r;. This can be done by p;€édom Ta@y)- Now let r=go(ry, ..., 1),
F'=Go(Pyy o Fiv1s iy Fisas ooy T). F#r’ because r;=r{. On the other hand p%ar
and pSar’.

Now assume that A’ is not functional. Then there exist trees pe Ty, g=2q'€ Ty
.and initial states a,, @j€¢ 4, such that both agp3,.q and ajp,.¢q’ are satisfied.
By the previous considerations it follows that there are different trees r,r €7Tg
with p3,b,r and pZ,bir’ where each of the states b, and b, denotes either
ay or ay. This means that both (p, r) and (p, r’) are in 1,, i.e. A is not functional.

Lemma 2. The decision of functionality of bottom-up tree transducers is re-
ducible to the decision of functionality of regularly restricted top-down ones.

Proof. Let A be an arbitfary bottom-up transducer and A’ the top-down trans-
ducer with regular look-ahead constructed in the previous lemma. We know that
A is functional if and only if A" is functional. By Theorem 2.6 in [6] we have
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14-=toTg Where 7 is a deterministic bottom-up relabeling, i.e. a transformation
induced by a special deterministic bottom-up transducer, and B is a top-down
transducer. Since 1 is a function A’ is functional if and only if B restricted to the
regular forest 7 (dom 7,.) is functional. Note that dom t,=dom 74... As one can
construct the transducers A" and B in an effective manner this proves Lemma 2.

Now let us fix an arbitrary regularly restricted top-down tree transducer
A=(F, T, A, G, Ay, Z), and a tree automaton B=(F, B, By) recognizing T. Set

P = {peT|3q # q'€T; (p, 9), (b, ¢ )ETA}.

In the next five lemmas we shall present five reduction rules. Each reduction
rule produces a smaller tree p’€ P for a tree p€ T if it can be applied for p.

Lemma 3.. Let p;,p€Tp 1, p€Tp,  my,ny, ny, ny=0, q1ETG,,,l, QiETG,,.'I,
QETy, TR | A€ TE, GETE, ao, age Ao, a€A™, a{€A™ (i=1, 2). Let us denote
by A;and A; the sets 4;,={a; ;|1=j=n;} and A{={a; ;|1=j=n]} (i=1, 2) respec-
tively. Assume that each of the following conditions is satisfied:

() pi(p(P)ET,

(i) aop 5 511(31?‘?), agp = qi(a{x:ll),
n n reony X o nh
(i) a,py? % q (a, xlz), 1p,' = q (alez),

. n rony ¥,

(iv) a,pg = q;, azp3’=qs,

v (pads = (Pz(Ps))B, A4, S 4, A1 E A4S,

(vi) ¢,(r) # ¢q;(r") holds for any re7® and r’ETgi.

Then p,(p;)€P.

Proof. First note that our assumptions imply the condition p,(p,(ps))€P.

From now on let [n] denote the set of the first n positive integers for every
n=0. Thus [0] is the empty set. Let ¢: [n]—[n,] and ¢’: [#])—~[r3] be mappings
with a; ;=a 4 (iE['hD and aj ;=da;s .-y ({€[ng]), respectively. Obviously we
have a piSr and ajplSr’ where 1=(3,a)s > 95, pm) ¥ =(93,0' 1) -+-> G5, 0" (n))-
By (ii) this implies that ayp1(P)=q,(r) and ajp, (ps)=qi(’). On the other hand
¢, (r)=q,@’) by our assumption (vi). Furthermore, p,(p3)€T holds by (v). Hence
Pi(p)EP. '

Lemma 4. Let p1€Tp,1,P2€TF, n, I’l’>0, fhéTG,,,, qiefG,n” q2€TG"’ (IQETZ;",
ay, ay Ay, a€ A", a°€ A™. Let |A| and |B| denote the cardinality of 4 and B, re-
spectively and let [|4||=2!4!, K=max {dp (q)|3a€ 4, p€ Tr,x ap—q€Z). Assume
that the following conditions are valid: '

(0 p(po)ET,

.. b
(i) aop = q,(axy), agp1 = q1(a’xy),
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(i) ap} g, 29 =4,

(iv) path(q,) is a preﬁx of path,(q;),

N Ipath, (¢ DI —|path, (gDl > [4I*[BIK, dp(p) = [ 4]%|B].

Then there is a tree r€7T, such that p,(r)€EP and rn(r)<rn(p,)-
‘Proof. Let R be the forest defined by '

= {r€Telp,(NET, m(r) =rtn(py), 3Is€TE, s;E T arSs, ar.> s}

Since p,€R R'is nonvoid. Let r be an element of R with minimal rank. We shall
. show that p,(r)€P and dp (r)<[j4]*B. _
Assume that the condition dp (r)<|A4[2B does not hold. In this case there
exist ' '
T "2€TF,17 r3€ Ty, My, my, my, mj =0, SIET(;',ml’ S{ET(';',,,,/I,

€150, sgef’.';",",,.g_,; so€ 17, sieTr?, bed™, bicd™ (i=1,2)
such that each of the following five conditions is satisfied: '
®» r= "1(”2("3))7 Fg # Xy,
() arp S s (b,x™), aTy Ss{(b{x™),
() by S sy(b,x7E), biryt 5 s (bXT),
(@) brreS sy, birre o s,
B @d= ("2("3))35 B, S B,, B;ES B;, where v
Blz{bhi|1§j§m,}, B’ {bl,_]ll §j§m£} (i:1,2).

Now let ¢: [m]—[m,], ¢’: [m7]—-[m3] be mappings satisfying the equalities
bi=byoq GElm), by i=blpw GElmD. It is immediate that ar, (ry)"=
=>sl(s3 o(1)s -3 53, p(mpy) and a’rl(rs)"';si(sg,w{l), w5 83, @/(my)- This, together with
(rl(r3))B_(r)B yields - that ri(ry)¢R, which is a contradiction because
™ (ry (rs))<rn'(r).

Therefore, dp (r)<|[A[| |B]. Thls implies that for every seTE and SETE
if the derivations ar"3s and a’r"Z»s’ exist then dp (s1), dp(sp) =4} |B| K,
thus by (iv), p(r)€P. Since r was of minimal rank this ends the proof of Lemma 4.

Lemmas Let plap29p3ETF 1’p4€TF1nnnnm -—0 (1—1 2 3) q1ETG,n1+1,

9y gt ons 1€ TG s €T3, €T, 0, €T, ,QSET"E" ,qaeT"z T ez’"g‘zm ,

€T, Q,ETIS, ¥,E T, ay, )€ Ao, A€ A, €A™, A€ A", b 4™ (i=1,2, 3). Finally,
let v€T; and v —rl(rz(r3(r4))) Denote by A4;, A and B; (i=1,2,3) the sets
of components of a;, a; and b, respectlvely Assume that the followmg conditions
are satisfied: R :
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@) pi(P(ps(P))ET,

(i) aop, ;/‘h(axn a1x:1)’ . a(;Pl;’ \4{("1(b1X;"1), a; X:II ,
i) 2l D go(@:x), apl S qi(xl), ap S ax, byl S ry(bx™),
(iv) apg = q:(a;x7?), a‘ép;; ut qé(aéx;s), aps = ax;, b, p;e 2 ry(b, x7's),

n * , "' * ’ * m * .
(V) appP=4qs, APpP=q, ap=v, bp=1,

) (pods = (P3(P4))B _— (Pz (pa (P4)))B,
A, C A, C Ay, A, S A, S A, B, = B, < B,,
(vii) v #v’, pathy(qy) = path,(g;).
Then at least one of the trees p,(p.(py)), p1(ps(ps) and py(py) is in P.

_ Proof. First observe that by the assumptions of the lemma it follows that
pi(p(ps(P)))EP. - -

Let @;: [n]~[n4q), 070 [n{]=[ni i} and ;2 [m]—~[m;y,] ((=1,2) be mapp-
ings such that we have a; ;=@iy1,4,5) (=1,2, j€[m), ai’,,=a:+1'q,;(j) (i=1, 2,
J€miD, by j=bisrgy (=12, jé[m]). Furthermore, let @3=¢,00,, ¢3=
= 1003, Y3=Y10Y;. .

Let us introduce the following notations:

v

S1 = (93,0, (1) +++» qs,m(nl))(‘h),
’ I 7 ’
8 = (qa,cp’l(l)a seey q3,¢'1(ni))(q4)9

t1 = (r3,|h @)s:;°°» "s,wl (ml))(r4)’

Sy = qz(%,w @> s 94,00 (02))>

§; = Q2(q4,¢;(1)’ <3 G4, 0% (n}) ),

t, = 1'2("4,%(1), cee "4,.11,(».2)),

S5 = (44,0535 -+ T4, 03(m)

’ 7 ’

83 = (q4,¢é(l1)a'-"9 q4,q)'a(n'l))’

ts = (g, 095 s T, 05 (m)- i
It is easy to check that each of the following derivations is valid: aopl(ps(p4))§>
é>ql(v, s, 06P1(P3(P4))*2’4i(f 1(t), Si), aoP1(P2(P4));>Q1(U, Sa), ‘16171(172@4))é>
é"]i(" 1 (t), SQ), a,p1(P)=> 4, (v, S3), a(,)Pl(P:x)é"II(r 1(ts), SQ)- On the other hand
P1(2s(PD))s Pr(P2(Pa)), P1(PW)ET. o

© Assume that p,(p,(p,)) ¢ P. Then, by (vii), it follows that nz,, my, my>0 and

there is an integer i€[my] with ry (r)=rs, .. Without loss of “generality we
may assume that this integer i is in the range of i/, i.e. there exist j€[m,] satisfying

—
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Y1(j)=i. Now suppose that neither p,(ps(p,)) nor p,(p,) is in P. Then ry(t))=
- =n(t)=r(ty) (=v). But this is impossible because ¢, ;¢ ;.

Note that Lemma 5 remains valid even if A;C 45 and B,< B; are replaced
by A;UB,S A;UB;.

The proof of the next lemma is similar to the previous one.

Lemma 6. Let pl’P2,p3ETF,1”p4€TF’ ni’n;: miEO (i=1,2’ 3’)1 q1€TG m+1l>
qleTG,,,;_,_lerET G,m,’ q2ET23,,2’ QZETG:,,;, r2€TG,l,,,2i Q3ETG";.',,33 qséf(’;?n;’ rsefg; ’
QeT, q4€T"3, r€T58, ay, ap€ Ay, a€A™, aj€A™, b;2A™ (i=1,2,3). Further-

more, let v’€T; and v=r,(r,(rs(r,))). Denote by 4;, A; and B; (i=1, 2, 3) the sets
of components of a;, aj and b;, respectively. Assume that

@ P1(Pz(P3$P4)))6T,

() aopy = qi(ry(byx™), a,X7), afp, 5 (v, ax"d),

(iii) alp;i;qz(angZ); a1p21=>q2(a2x ) blp'z”lérz(bzx;""’),
(v) 2P} qo(asX]), a3 = q5(a3X15),  byplt = ry(byx™™),

V) 3PS q., apt>q;, bp Sy,
i) (p)s = (P3 (P4))B = (Pz (ps (P4)))B,
A, & A, & A4, AigAégA:’s, B, = B, & B,,
(vii) v =0, path,(gq) = path; (g9).

Then at least one of the trees p,(p.(pa)), Pr(Ps(Ps)), P1(py) is in P.
Our last lemma is stated as follows:

Lemma 7. Let PanETF nPaETh k,L,m Kk, I',m =0, %ETG k+1> %ETG K +1s
42676 1015 956 T6, 141, ¥€TE s T ETG,m ) %ETG 1> 93, V€T, SETGy SETE, Ty,
VETE, ay, ayE Ay, a, '€ A, acA¥, a’CA¥, be AL, €AY, c€A™, cA™. Let A,, B,
and C; denote the sets of all components of a, b and ¢, respectively. Similarly, denote
by Ay, B] and Cj the sets of components of a’, b’ and ¢’. Suppose that the following
conditions are satisfied:

@) P1(P2(P3))E T,
(") aopl ; ql(axl’ ax’{), a(’)pl ; q{ (a’xl’ a,xi’)’
(i) ap S galax;, bx)), a'pe> gi(a'x,, b'xY),
api S riexy), a'py S r(exy),
(V)" aps= gs(0), a'ps> g5, bpiSs, VPSS, oSt py S 4,

V) 4, B UG, A4S B;UC{’ (pa)s = (Pz(Ps))B,
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(vi) path, (g) = path, (¢;) path(g;), path, (¢,) path (g;) =
= path(q;) path, (q2), v # ¢s.
Then p,(p;)€P.

Proof. Let us introduce the following notations: d=(b, ¢), d’=(b’, ¢’), u=(s, t),.
0'=(s’,t’). Choose the mappings ¢: [k]—[/+m] and ¢’: [K]-[/"+m’] in such
a way that we have a;=d,; and a;=d,. ¢, for every i€[k] and ]E[k’] Obviously,.

*
aopl(Ps)=>‘11(Q3(U), Upqys ---» Upy) @nd aoP1(P3)=>Q1(q3,u«p "@)s v Ug ), further--
more, p(p)ET. On the other hand  path, (ql(q3, o(1)s o3 Uog)) =
=path, (91 (x1, W1y ---» Upry) @nd gis2v. Therefore, g,(qs(®), Upays ---» Upay) =
#q1(g35 Ugr(rys -5 Ui >) showing that p,(p,)€P.
, We are now able to prove our main result:

Theorem 8. The functionality of top-down as well as bottom-up tree trans--
ducers is decidable.

Proof. By Lemma 2 it suffices to prove our statement for regularly restricted
top-down transducers. Hence take an arbitrary regularly restricted top-down trans--
ducer A=(F, T, A, G, Ay, 2) with T=T(B), where B is the tree automaton
B=(F, B, B;)). Define the set P and integers |4|, | 4], |B| and K as previously
(cf. Lemma 4) and let L denote the number of nonempty strings over [v(G)] with
length not exceeding [A4(%|B|K. Furthermore, let” k=|A4|2|4[?|B|(2L+]1),
I=k+2[4AP|4||B|(14)2{B|K+1) and finally, m=142{4]|_2|B|.

We shall show that P is nonvoid if and only if it contains a tree of depth less.
than m. It is obvious if K=0. Therefore let K<0 and assume that p is an element
of P with minimal rank. Let ¢ and ¢” be different images of p under 74.

Assume to the contrary dp(p)=m. Then there exist a4, ag€A,,

Do - ,PmETF,I’ Pm+1€TFa n, n:EO (i=0,...,m), qOETG,nO’ q(’)ETG,nQ’ qzef‘a;:’
q,ET""l (i=1,...,m), q, € T(";"‘, q:,,HETZ’", a,-EA"', aEEA"‘ (=0, ...,m) such
that the following three conditions are satisfied:

M p=po(Pi(-- P -))y PiEX (=1,..,m),
@ 9=0(a:(..@n+0--)) 9" = go(@ (... (gms1)--))s

* * ’
() apy= 9,(3,%7), aéPﬁ%(ﬂéX”“

aip:'il ;7 qi+1(ai+1x;“1)’ a p,+1 :> q,+1(a,+1 :“1) (l = 0: vy M— 1)’
mp::m+1 ;’ 9n+15 a,',,p','""'H ;’ q:n+1'
Further on we shall often use the following notations. Let ic {0, ..., m+1;
JE{0, ..., m}. Then pi=po(pa(.- (p.) )) 4:=40(q: (- (@).- )) 4= qo(ql( (q7)--.)

Slmllarly’ pj—'p1+1 (Pm+1) q_l+1 (qm+1) o )s qj+1 (qm+1)
Furthermore, for each i=0,...,m, and A; denotes the set of all. components

of a; and aj, respectively.

If for any veT7' and v'€T, g; we have g(v)#4g/(v") then, by Lemma 3 and
the fact that the cardinality of the set {/, ..., m} is at least ||A4|*|B]+1, we get that
for some i, j (I=i<j=m) p;(p;)€P. It is a contradiction. ‘
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Therefore we may assume that #,>0 and the existence of an index i€[n)]
such that there are trees w'€Tg,,v'€T; with ¢’=u'(v'), path(@’)=path; (g,
and v'#4; ;. Obviously, n;=>0 holds for each i<Il. Now let i; 0=i<l, je[n))
be those umquely determlned idices for which path; (g;) is a preﬁx of path; (g,).
Of course we may assume that i,=...=i=1.

Suppose now that there is no «’¢path (g;) such that path, (g, is a prefix of
o or conversely. In this case let

B,={a; ; | path, (¢,) is a prefix of path; ()},

C {a, ;| path; ()" is not a prefix of path; ()}
for each i (/=i=m). Since the cardinality of the set {l, ...,m} is exactly
2||A|3|B|+1 there exist indices iy, iy, Iy ((Sh<iy<iz=m) satlsfymg the following
conditions:

(ﬁil)B (Ptz)B (pxa)B’ B - B = By39 Czl = C = ng? A" g A, g A/ .

By Lemma 6 this yields that at least one of the trees p; (5;,), p,z(p,a) P, (B;,) isin P,
which is a contradiction.

We have shown that there exists an o’€path (/) such that path, (g, is a prefix
of «’ or conversely. Consequently n;=>0 holds for each i (0=i=/) and there exist
integers i, ..., f; with the property that path; (g}) is a prefix of path, (q,) or con-
versely (j= 0 ., 1). We may also assume that if j,<j, then path (q %) 1s a prefix

of path e (qn), moreover, we may assume that i=...=i=1. In *this way either

path, (g;) is a prefix of path, (qj) (j=0,...,1) or conversely

Now there are two cases. First suppose that path, (g;) is a prefix of path, (q,)

If, within this case, there exists an integer i (0<z<k) such that |path; (g)|—

— |pathy (g7)l|=>|4]?|B{K then, by Lemma 4, there is a tree rcT} satisfying both
Di()EP and rn(r)<rn(p). This is a contradlctlon because rn (r)<rn:(p;) im-
plies m (p;(r))<rn(p). Thus we have |path, (g;)|—|path, ()| =|I4[?[B|K for
every i (0=i=k). But this yields another contradiction. Indeed, the cardinality
of the set {0, ..., k} is equal to [[4}2|4*|B|(2QL+1)+1, thus, there are” at least
two indices i, j (0=i<j=k) such that — say — path, (g;) is a prefix of path, (§/),
pathy (3) is a prefix of ~pathy ), pathy (3)/pathy () =path, (3)/path, ().
moreover, (F)g=(Pps, @,1=a;1, ai1=a;., BiSB;, B/{SB; where B=
—{as,|2_tsns} Bi={a;, J|2=t=nf} (s=i, j). By an apphcatlon of Lemma 7
this results that p,(pj)eP — contrary to the minimality of p. '

We have shown that path, (¢7) can not be a prefix of path, (§;). Therefore
path; (7, is a prefix of path, (§;). If we prove that |path, (g)]— |path, (g,)]=
>||4]|2|B|K then also |path; (§;)| —|path, (g,)|=[|4|?|B|K. Again by Lemma 4,
this yields a contradiction. Therefore it is enough to show that [path, ()|
— |path, (g)| =] 4| B| K.

Assume that this condition does not hold. The cardinality of the set {k+1, ..., I}
1is exactly 21|A113|A||B|(||A|| |B|K+1), therefore, there exist indices iy, (k511<12Sl)
such that i,—i;=2||4|*|4||B] and path, (g;)=...=path; (¢;,), ie. @y41,1=.

=g 1=X;. Now let

B;={a} ,|1=t=nj, path, (q,l) is a prefix of path, ()},

C {a ¢|1=t=nj, path, (g;) is not a prefix of path, @n}
for each ](1151<12) Since the cardinality of {i,, ..., iy} is equal to 2[|4|2®|4||B|+1 ~
there exist indices j, fo, js (G=ji<jo<js=iy) such that each of the following
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conditions is satisfied: (§;)s=(F;)s=(b;)s, 4;,SA4;,S4;,, B;,=B;,,SB;,, C;,;S
SC,ECy,s aj,1=aj,1=a;,,, where A, =1a; ,[2= s<n} Thus, applying
Lemma 5, we get that-one of the trees p,l(p,z), P;,(P;), P;,(B;,) is in P, contradicting

to the minimality of p. This ends the proof of Theorem 8:

Observe that, by the decomposition result for top-down tree transducers with
regular look-ahead in [6], the above theorem holds for this type of transducers
as well. But Theorem 8 has some other important consequences, too.

Take two arbitrary top-down or bottom-up tree transducers A=(F, 4, G, A,, 2)
and B=(F, B, G, By, ). Assume that A is functional and A4 and B are disjoint.
Then construct the sum of A and B, i.e. take C=(F, AUB, G, 4,UB,, ZUZ").
For C we have the following equivalence: 7, =15 if and only if dom t,=dom 7y
and C is functional. From this and by the fact that the equality of regular forests
is decidable we get: -

_ Theorem 9. There exists an algorithm to decide fot an arbitrary tree trans-
‘ducer A and a functional transducer B whether they are equivalent, i.e. such that
TA=T8- -

CoOROLLARY. A similar argument shows that Theorem 9 holds even if 17,=1g
is replaced by 7,Stg. On the other hand every deterministic transducer is func-
tional. Thus, the equivalence problem for deterministic transducers is decidable.

Another consequence of Theorem 8 concerns with minimization of transducers.
For any given tree transducer A one can compute a bound k with the following
property: A has a corresponding tree transducer B which is minimal and satisfies
that each tree in the right hand side of a rule of B has depth not exceeding k. This |
k can be obtained as 2K 4| in the top-down case and as 2K|4] in the bottom-up
case. (Here |4], | A]| and K are determined as in the proof of Theorem 8.) Therefore,
if we assume that A is functional and we want to minimize A, it is enough to check
only for a finite number of transducers whether they are equivalent to A or not.
This proves :

Theorem 10. The mlmmlzatlon of" functional tree -transducers is effectively
solvable. '

COROLLARY. As every deterministic tree transducer is functlonal the same state-
ment holds for deterministic transducers.

This corollary as well as the positive decidability result concerning the equiv-
alence problem for deterministic bottom-up transducers and a restricted class of"
deterministic top- -down  transducers was independently achieved by Z. ZACHAR
in [12] too.

3. Minimization of deterministic transducers

Let A be a class of tree transducers. A transducer A€.¢" is said to be-minimal
in A if there is no transducer B€ ¢ which is equivalent to A and has fewer states
than.A. In the preceding section we have shown that if " is the class of all func-
tional top-down or all bottom-up transducers, or if 2 is the class of all deterministic
top- down or all Bottom-up transducers, then, for every given A€, one can effec-
tively find a minimal equivalent transducer B€#". However, these minimal realiza-

“
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tions are not uniquely determined. In this section we investigate conditions assuring
the uniqueness (up to isomorphism) of minimal realizations. Similar results are
already known for Mealy-type automata (cf. [9]) and tree automata [1, 3, 10]. We
point out that the minimizing process of Mealy-type automata can be generalized
in a natural way for certain classes of deterministic tree transducers. For the sake
of simplicity we shall consider completely defined deterministic tree transducers
only. Therefore, from now on, by a tree transducer we shall always mean a com-
pletely defined deterministic transducer. Furthermore, all transducers will be taken
with a fixed input type F and output type G. Since the case F=F, is trivial we
assume that F#=F,.

First we treat top-down transducers. Let A= (F 4, G, {a,}, 2) be a top-down
transducer. It is completely defined, i.e. for any a€ A and fc F there is a rule in X
with left side af. Let B=(F, B, G, {b,}, ") be another top-down transducer and
take a mapping ¢: A—B. If the following two conditions are satisfied for arbitrary
n,m=0, f€F,,pETG m» 4, @y, ..., ,€A and iy,...., i,€[n] then ¢ is called a homo-
morphism of A into B: . : ‘

@) if af-playx;, ..., anx; )EX  then  bf—p(bix;, ..., b,x; )X where
b=¢(a),b;=¢(a)) (Jélm])

(i) ¢(ap —bo
If, moreover, ¢ is surjective then B is a homomorphic image of A. If ¢ is bijective
then we speak about isomorphism, written A=B. If BC A4 and ¢ is the natural
embedding of B into A then B is a subtransducer of A. If.A has not proper sub-
transducers then it is called connected.

The next statement is obvious:

Statement 11. If there is a homomorphism from A into B then 7, =15.

As in case of universal algebras there is a bijective correspondence between
homomorphic images and congruence relations. Let A=(F, 4, G, {a,}, Z) be an
arbitrary top-down transducer and take an equivalence relatlon 0 on A. It is called
a congruence relation if for any two rules f»p(alx,l, v dmX; ), bf—
—’q(bl Jl’ sres )EE (I’l, m, 1>0 fe 9P€I'G m» qETG 1> lla [ lm’ jla . 9]16[’1]’
a, .-y am,bl, .. b,,a b€ A) abb 1mphes m= lp 4, i:=J and a,0b, (t_l m).
Here for any nonnegatlve integer n the notation Tg, , is used to denote the set
TG 2= {PETG,,| fr (P) =X X}

Assume that 6 is a congruence relation of A. Then we can define the quotient
of A induced by 6. This is the top-down transducer A/0=(F, A6, G, {8(ay)}, Z")
where for every n,m=0, fcF,,pcT; n, 0,0y, ...,0,64" .

0(a) f~p(0(a)x, ..., 0(a)x; JEZ

af ~ p(ay x;), -5 U X; JEZ.

Statement 12. A/ is a homomorphic image of 4. If B is a homomorphic image
of A then there is a congruence relation 8 of A such that A/@=B.

if and only if

Take again the top-down tree transducer A=(F, 4, G, {a,}, Z). Let us define
an equivalence relation 8, on A: af,b if and only if 7,,)=744). Unfortunately,
this will not always be a congruence relation. We need certain additional require-
ments on A. '
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Let o be any mapping of the set of nonnegative integers into itself, i.e. ¢: w—w.
Then let " (o) denote the class of all top-down tree transducers A=(F, 4, G, {a,}, X)
which satisfy the condition [path; (p)|=0(i;) for every n,m=0, fcF,, pcT; p,
a,ay, ..., 0,6 A, X, ., X €X,, j€lm] and af-p(ayx;, ..., anx; )EZ, as well
as the condition |[t4(,)(TF)|>1 for arbitrary state a appearing in the right side
of arulein Z.

Statement 13. If A€ (o) then 6, is a congruence relation.

Proof. Let A=(F, A4,G, {a},2) and assume that af—p(a,x;, ..., a,x;)

and bf—q(byx;,, ..., byx;) are rules in X where a,b€d, al,b, n,m, =0, fcF,,

ETG m> qETG 1> ala cies Qms bla e bIEAa 113 e lm’ ]1: cesy ]le[n] - Assume that
there is an integer tE[m] such that none of the strmgs in U (pathg (9)|i,=J,, s€[I])
is a prefix of path,(p) or conversely. Then, by [t5, (T, w)|>1, it is easy to show
the existence of a tree r&Ty With 7,¢)(r)=Tap (7). On the other hand if i,=j
holds for some #€[m] and s€[l] then the equality |path, (p)|=|path,(q)| is also
valid. This proves that m=Il, i,=j,, path,(p)=path,(q) (¢t=1,...,m). But
Ta@=Tnp), hence from this we get p=gq, a,b, (1=1, ..., m).

Another class of top-down transducers in which 6, is always a congruence
relation is the class % 4, where d denotes an arbitrary nonnegative integer. A top-
down transducer A=(F, 4, G, {a,}, 2) is in A, if and only if for every ac 4, f¢ F,
and p€T; if af->pcX then dp(p)=d, moreover, as in case of A (o),
|ta@(Tp)|=1 is satisfied for each ac4 appearing in the right side of a rule in X.

Statement 14. If A€, then 8, is a congruence relation.

Proof. The proof of this statement is similar to that of Statement 13. Only use
the conditions defining 5", to establish the bijective correspondence between -the
sets U (path, (p)|#€[m]) and U (path, (¢)|s€[/]) for the rules af—>p(ayx, ..., 4,%;)
and bf>q(b,x;,, ..., bx;).

Note that for AE,%’ (o) or Acx, the definition of #, can be reformulated
as follows. Let a, b€ A. Then af,b if and only if for every n, m=0, p€ T, ,, g€ T4
and iy, ..., i,€[n] the following equivalence holds:

da,, ..., a,6A ap L q(asx;, ..., Gux;)
if and only if '

dby, ..., b,€A bp = q(byx;y, vy by,

This is an easy consequence of statements 13, 14. Observe that this new definition
of 8, makes 6, a congruence relation without requiring A€ (@) or A€X ;.

A transducer A€ (g) or A€, is called reduced if 6, is the equality relation.
As both o (g) and &, are closed under homomorphic images the transducer A/,
is reduced for any A€ (g) or Ae'y. The following statement is the basic step
to show that minimal transducers in 2 (¢) and o, are exactly the connected and
reduced transducers.

Theorem 15. Let A, B€# (¢) be connected top-down transducers. Then A
and B are equivalent if and only if A/f,=B/0g. The same holds for x£,;..

Proof. Sufficiency follows by statements 11—14. In order to prove necessity
first observe that if A=(F, 4, G, {a,}, Z) and B=(F, B, G, {by}, ), moreover,
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qop;}Aq(alxil, vees @pX; ) — where p€Ty,, n=0, geT; ,,, m=0, ay, ..., a,€4,
ity ..., in€[n) — then there exist states by, ..., b,€ B with bypZpq(byX;,, - » buX; i)
Furthermore, for these states b; (i=1, .. m) we have T,x,,)=Tap,)- Tms 1s a con-
sequence of the assumption TA=Tp and the definitions of # (¢) and ;. Using
the above mentioned facts it is easy to prove that the correspondence ¢@: A/6,~
—B[0g defined by ¢(0,(a))=05(b) if and only 1f there exist p€ Tp 1, §€ TG mss
(m=0), a,...,a,€A4, by, ..., b,eB such that aop:>Aq(ax1,a1x1,. , X)) and
b(,p*an(bxl, bixy, ..., b x,) forms an isomorphism of A/f, into B/0g.

The next theorem is an immediate consequence of Theorem 15 and the fact
that (o) and &, are closed under the formatlon of ‘subtransducers and homo-
morphic images: .

Theorem 16. A transducer is minimal'in 2 (o) if and only if it is connected
and reduced. If both A and B are minimal in 2/ (¢) and they are equivalent then
A=B, i.e. the minimal realization -of a transducer in % (o) is unlque up to iso-
morphism. The same holds for the class ;.

Of course Theorem 16 holds for every class” 2#"C o (@) or A4 & A, provided
A is closed under the formation of subtransducers and homomorphic, images.
The most important example for a class of this type is the class of all top-down
relabelmgs (cf: [5]).

It is natural to raise the question whether the minimal transducers in % (g)
or A, are minimal in the class of all top-down transducers. The following examples
prove that the answer is negative in general. In these examples the adjectives
“linear”, “nondeleting’”’ are used in the sense of [5]. Furthermore, a top-down
tree transducer A= (F, A, G, {ay}, Z) will be called uniform if each rule af-p
(ac4, feF, (n=0), pETG AxX,.) can be written as af—q(a; x,, ..., a,x,) for a tree
g€Tg,, and states a,, ..., a,€A4 :

Example 17. This example shows that there is a linear nondeleting top-down
tree transducer A€, N4 (¢) which is connected and reduced — i.e. minimal in
both ", and 2 (¢) — but which is not minimal in the class of all linear nondeleting
top-down tree transducers. Here ¢: w—w is the mapping defined by o(n)=1
{(n=0). Indeed, let A=(F,[5], F,[1], Z) where F is the type determined by the
conditions Fy={3t}, Fy= {f, g}, F,=0 if n>1 and X consists of the rules (1)—(5)
listed below: : :

D 1#E—~fH), . Yl ~f2x), 1g(x) —~ g(3x),
@ 2%~ (), 20x) ~ flax), 2g(x) ~ fxy),
@) 3#-g(#), ¥x) - g(4x), 3g(x) —~ g(4xy),
@ 4% —>f (), 4f(x) —f(5x), dg(x) —~ g(5x),
(5 SH—~Sf(#), S —~flxy), 58(x) = g(Ixy).

However A is equlvalent to A’—(F [4], F,[1], ") where X’ contains the
followmg rules. (1)—(4): .

() 1# /(%) Yo f(f(2‘€1)) 1g(x) — g(g(2x),
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@ 2#-%, ) -3xn,  2g(x)~3x,
@) 3% -f(#), ) ~f@x),  3g(x) ~ g(@x),
@) 4% ~f(5), 4 ~fx),  4g(x) > g(lx).

Example 18. This example proves that there is a top-down tree transducer
A€, which is minimal in 2, but not minimal in the class of all top-down:
transducers. .

Let us define the types F and G by Fo={%}, /,={f}, F =0 if n>1 and
Go={#, %4, #.}, Gi={f), G.={g}y G,=0 (n=>2), respectlvely Then put
A=(F, {4}, G,[1], %) where consmts of the following rules:

() 1%, 1/(x)—~g(2x,3x),
(D). 24 —#y, 2(x) > f(4x),
B 3%, Ilx) —~ fEx),
@) 4% -, 4(x) —~f(4x).

It is easy to check that A is minimal in /. On the other hand A is equlvalent to-
=(F, [3], G, [1], ") with X’ containing the following rules:

n 1#—’#, ‘lf(xl)"’zx1a4
(D 2% —g(#1, ¥, 2f(x) ~ 2(S(3x), f(3xY),
() 3% —~#, 3f(xy) — f(3x-

Observe that A was not uniform.
In spite of Example 18 we have

Theorem 19. If a uniform transducer is minimal in 2, then it is minimal in
the class of all top-down tree transducers.

Proof. Let A=(F, 4, G {ao}, 2)e Ay be uniform and minimal in . Assume
that the top-down tree transducer B=(F, B G {bo}, 2 is equivalent to A and
has fewer states than A, i.e. |B|<|A].

Take an arbitrary state ac 4. We shall correspond to this state a state o@cB
as follows. First let us choose the trees pETF 1 and g€ T, (n>0) in such a way

that we have a0p==~ aq@"x])). If a=a, choose p=g=x;. This can be done since
A is connected. Let r€Tg, (m=0) and by,...,b,6B be determined by
bop=gr(bixy, ... b,,,xl) As |14 (TRI=1 is satisﬁéd for each ¢€A occuring in
the right sxde of a rule in ¥ we must have m=0. Or even, there must be an index
Ji€[m) for ‘each ic[n] with the property that either path;, (r) is a prefix of path; (¢)
or conversely. But, by the definition of ", it is 1mposs1b1e that path; (¢) is a proper
prefix of path; (r). Therefore j; is uniquely determined for each i€[n] and path;, (r)
is a prefix of path; (g).-As A and B are equivalent this implies that there exist trees
Fis ooy Tm€T6 1 With -r(ry, ..., r)=gq. Let @(a)=b, and r, =rj,. We-must have
(TA(a)(t))—'TB(¢(a))(t) for each tETF’ ie. r (TA(G)) TB({u(a))

As |B|<|A| there exist states a,=a,€4 with @(a)=¢(a,). Consequently,

Fo(Ta@)) =Fa(Ta@ny)- But, again by the definition of 5, this is possible only if

Fay=la, @Nd Ty =Ta, yielding a contradiction.
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We will now turn our attention to the bottom-up case. A deterministic bottom-
pu tree transducer A=(F, 4, G, Ay, 2) is called completely defined if there is
arule in ¥ with left hand side f(aq,x,, ..., a,x,) for every n=0, f€F, and
a, ..., a,€A. First of all we have to define homomorphisms, congruence rela-
tions etc.

Let A=(F, A4, G, 4,,%) and B=(F, B, G, By, ") be bottom-up transducers.

By a homomorphism of A into B we mean a mapping ¢: A—B which satisfies the
following two conditions:

(l) f(blxls teey bnxn) g prZ’ lf f(alxla sy anxn) - apez, bi q’(az)
i=1,..,n, b=¢l@ (=0 fEF,, a,..,a, acd, pcTg,),
(i) @4 E By, ¢X(By) S 4.

Again, if ¢ is surjective then B is a homomorphic image of A and bijective homo-
morphisms are called isomorphisms. If BS A and ¢ is the natural embeddmg of
B into A then B is a substransducer of A.

We now define congruence relations. A congruence relatlon of A is an equivalence
relation & on A with the following property: for any n=0, fcF,, a;, bcA
(i=1,..,n), ab€A and p,qcT;, if both f(ayx,...,a,x,)~ap and
f(byxy, ..., byx,)~bg are in X and q;6b; (i=1,...,n) are satisfied then p=gq
.and afb hold too. Furthermore, A4, is required to be equal to the union of certain
blocks of the partition induced by 6: Ay,=U(0(a)|a€ Ay). The quotient transducer
determined by 6 is the transducer A/0=(F, A/6, G, A,/0, Z") where

={f(8(apxy, ..., 0(a)x,) —~ 0(a) plf(a, %y, ..., a,%,) ~ ap€ L}.

With the above definitions in mind one can easily prove the analogues of
statements 11 and 12.

For a bottom-up transducer A=(F, 4, G, Ay, X) the relation 6, is defined
as follows. Let a, bcA. Then af,b if and only if the equivalence JFa,€A4,
playxy, ..o, @iy Xy, axn Qip1Xi41s ov5 Ap x);aoq‘”aboel‘io p(ay Xy, ..o, Gy Xy,
bx;, i1 X415 -5 @ x)=>boq holds for all n=0, i€[n), a;, ..., Gy, Qiyy, ..., G,€A,
PETg,, (or equlvalently p€Ty,, or peT;,) and q€T; .

Likewise in the top- -down case, N will not always be a congruence relatlon,
but it will be a congruence relation if we require A to be in J#'(¢) for a mapping
o of the set of nonnegative integers into itself. A bottom-up transducer
A=(F, A4, G, Ay, X) belongs to A (¢) provided it satisfies the following three con-
-ditions:

O if f(ayxy, ..., a,x,)~ape (n=0, fE€F, a,ay,...,a,£4, p€T;,) then
|w|=e0(@) holds for each i€[n] and wepath; (p),

(ii) A is nondeleting, i.e. for all n=0, f€F,, a,a,,...,a,6A and peTg, if
flayxy, ..., a,x,)~apcX then each of the variables x,, ..., x, occurs in fr(p),

(i) for any acA there'exist p€Ty ui1, 9€T6 ne1 (n=0), ap€ 4y, ay, ..., a,€ A4
such that p(ax,, a;Xs, ..., @ X,41)=>0eq.

Statement 20. If .\ 4 (Ag). then 6, is a congruence relation.



Decidability results concerning tree transducers I. 17

Proof. Let A=(F, A, G, Ay, X), a, b€ A. Assume that afl, b and let
SO X105 ey Qi1 Xio15 QX5 Qi1 Xis1s oves AgXy) —~ CD,
S@ Xy, ooy @1 X1, bX;, Qi1 X415 oees pX,) ~ dg

be arbitrary rules in 2. Here n=0, i€[n], f€F,, ay, ..., Gi_1; i1y, --rs Ay, C, €A,
P, q€Tg ,. We have to show that p=g and c0,d. .

As AcA (o), there exist m=0, ¢y, ..., cu€A, Go€Ay r€lp mey and SE€ETG, iy
such that

r(cxl’ C1X2s ey mem-i-l) *: QS
Let ry=r(f(x1, - Xp)s X415 o> Xnim)s $1=5(D, X1, ---» Xpem)- Of course we have
Iy
rl(alxl’ vy B3 X1 AXyy Qip1 X415 cony QX5 C1 X415 ooy cmxn+m) = 448y .
Since af, b, this implies
*
71(@1 X1, s i1 X1, DXy Qi1 Xi41s oo BuXgs C1Xn 415 oes CnXim) = boSy
for a state byc A,. But this is possible only if s, is of form s;,=2(g, X,11, «++5 Xpsm)
where t€7g iy and rdxg, ¢, ..., c,,,xm+1)*=bot. :
We know that s(p, X,115 -os Xpam)=2(q, Xpy15 ---» Xpem)- By (i) and (ii) in
the definition of () this results that s=¢ and p=gq. Essentially the same argu-
ment shows that c,d.
Observe that for a bottom-up transducer A=(F, 4, G, 4,, 2)eHA(¢) the
relation 8, can be redefined as follows. Let a, b€ A. Then af, b if and only if the

following, two equivalences are satisfied for arbitrary p€Ty,, qcT;, (n=0),
iy eees Qi1 Qigqs .., d,€A and i€[n)]:

. *
() Fag€dplayxy, o Qjo1Xi-1, AX;18541 %5415 -5 QX)) = Goq
if and only if '
E 3
3be€A p(ar Xy, -5 @i—1X;-1, bXy5 Qi1 Xi41s --os X)) > b g,

(i) for a, and b, of (i) it holds that a,€ 4, if and only if by€A,.

A transducer A€ (g) is called reduced if 0, is the equality relation on A4.
A/8, is always reduced.

In contrast with the top- down case there are nomsomorphlc but equlvalent
minimal transducers in J#(g). However, if a bottom-up transducer is minimal in
A'(@) then it is both reduced and connected (i.e. 1t has not proper subtransducers).
The converse is not true in general.

According to the above discussion we need some further restrictions to guaran-
tee the uniqueness of minimal realizations. For this purpose we introduce the sub-
class o(¢) of A (p). A bottom-up transducer A=(F, 4, G, 4y, T)€H (@) belongs
to X (¢) if and only if it satisfies the condition:

if f(ayxy, ..., a,x,)~ap€X where n=0, fcF, s A1y ooy Gpy aEA and p€Tg ,

then pefl‘; » and none of the operational symbols in Gy occurs in p.

Now we are able to state an analogue of Theorem 15 for bottom-up transducers.

Theorem 21. Let A, B€E£“(g) be connected. Then they are equivalent if and
only if A/0,2=B/0y.

2 Acta Cybernetica V/1
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Proof. The sufficiency follows in the same way as in Theorem 14. In order to
prove the necessity of our statement, first observe that if A=(F, 4, G, 4y, %) and

(F B, G, By, Z’), moreover, Tae(p)=q where p€Ty, q€T; and acA4, then
there is a state b¢B with 1g4,(p)=¢. In fact, if a;€4, bCB (i=1, ..., n, n>0)
are such that dom 7,4,dom 1p4,y=0 (i=1,...,n) and p(a;x,, .. ax)=> Aaq
where pETp ., 9€T;, and acA then there is a state bEB satisfying
p(bixy, ..., b,x,)=pbg. The same assertions holds if we change the role of A and
B. By these observations it is easy to verify that the correspondence ¢ defined by
¢(0s(@)=0s(®) if and only if dom 14,Ndom 154)P is an isomorphism of
A/8, into B/fy.

Theorem 22. A bottom-up transducer is.minimal in #(g) if and only if it
is both reduced and connected. The minimal realization of a bottom-up trans-
_ducer in 2£”(g) is unique up to isomorphism.

Proof. Immediate by Theorem 21.

Observe that Theorem 22 holds for every class 4 S (@) prov1ded it is
closed under the formation of subtransducers and homomorphic images. An example
of a class of this sort is the class of all bottom-up relabelings satisfying condition
(iii) in the definition of #'(9). A tree transducer A=(F, 4, G, 4, X) is called
a bottom-up relabeling if each rule in Z is of form

flayxy, ooy @px,) = ag(xy, ooy X,)

where n=0, fcF,, gcG,, ay, ..., a,, a€ A.

The following example shows that there is a transducer which is minimal in
A(0) but which is not minimal in the class of all bottom-up transducers. Let
Fo={#)}, F,={f,g} and F;=0 if i>1. Take the bottom-up transducer
A=(F,[5], F,[1],2) where X consists of the following rules:

D #=-1%,

@) fIx) ~2f(xp), g(lx)) —~3g(x),
(3 f2x) ~4f(x),  g(2x) ~ 4f(x),
(4) fBx) —4g(x), g(Bx) —~ 4g(x),
(5 f@x) —~5f(x), g@xy) —~4g(x),
©6) f(5x) ~ 1f(x1), g(5xp) —~ 1g(x).

It is easy to see that A is minimal in #”(g) where ¢ is a constant mapping: ¢(n)=1
for all #=0. On the other hand t, can be induced by a four state transducer
=(F, [4}, F, [1], 2’) where X’ consists of the rules (1)——(5) listed below:

1) #F 13, N
2 f(x) = 2f(f(x0), g(1x) ~ 2g(g(x),
3 fQx) = 3xy, - g(2x1) — 3xy,

@) fGx) = 4(x),  g0x) ~ 4g(x),
(5) f@x) —~1f(x),  g(@xy) ~ lg(xy).
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In spite of the preceding example the following theorem is valid.

Theorem 23. Let A=(F, A, G, Ay, Z) be minimal in #7(¢). Assume that
A=A,. Then A is minimal in the class of all bottom-up transducers. -

Proof. Let us correspond to each a€ 4 a tree p,6dom 7,(,. This can be done
because A is connected. Assume that B=(F, B, G, B,, X") is equivalent to A and
has fewer states than A, ie. |B|<|4|. Of course B=B,. Define the mapping
¢: A~B by ¢(a)=>b if and only if p,dom 75¢,. Since |B|<|4| there are distinct .
states @, a,€ A with @(a;)=¢(a,). Denote this state ¢(a,) by b. As A is reduced,
there exist pCTy ,, ¢1#9:€T6,» (m=>0) and i€[n], as well as states c,, ..., ¢;—-1,
Cig+1s +++3 Cn» i, d3€ A such that

. k3
pleyxy, ooy Cio—1Xig—1> Q1 Xiys Cig+1Xig+15 -5 CuXn) = ad1qys
*
pleyxy, .o Cio—1Xig—15 A2Xiys Cigr1Xig+1s < o» CnXy) = adsqs.

Of course ¢y, €75 -

As A€ A’(¢) we may assume that p=f(x,, ..., x,) for an operational symbol
JEF,. It can be seen, by g,%¢, and A€2’(0), that ¢, and ¢, are of form ¢,=
=qo(r1s -.os Fw)  and  go=gqo(r5, ..., rh), respectively, where ¢o¢Tg ,, (m=0),
rj> ;€ Tg,,, furthermore, there is at least one index j,€[m] such that r; =r}, rj,,
r;,§ X,. More exactly, we may choose g, in such a way that r; =g, (s,) and rj} =g,(sz)
hold for some vectors s,, s, and different operational symbols g;, g,€ G. This implies
that

TA(f(pcl’ et pL‘io_l’ pa13 pCio+1’;"’ pc")) # TA(f(pcl’ cery pcin_l’ paz’ pcio+19 ey pc,.))'

Now let b;=¢(c;) (i=1, ..., n, i#iy). There is a state e B and a tree g€Tg,,
with  f(byxy, ..., b1 X1, bXyy, bigr1Xigs1s o> DpX,)>eq€Z’. Since A and B are
equivalent we have t4(p.)=75(Ps) (=1, ..., , iiy), Ta(Pa)=T5(Pa) (i=1,2),
qi(TA(pcl)i cevs TA(p"io—l)’ TA(pai)a TA(pciO+1), i TA(pc,,)):q(TB(pcl)a ey TB(pcio—l)’
TB(pa,-)’ TB(pcio+1)5 vy TB(pcn)) (I: 17 2)

But TA(f(pclﬁ >pcio_13pa1:pcio+1’ spcn))¢TA(f(pc1’ (AR p"io-—l’ pag’pcio_'_l’ sersy
.3 Pe))- Thus 13(p,)#78(p,,) and path, (¢)=0. Even more, by rj,=rj,
there is a string w¢ path,, (g) which is a prefix of path;, (g,). Now there are two cases.

First suppose that path; (g, is a prefix of pathy(g;) and let p;=
:f(pcp ere ’pcig—l’ Pai,pci°+1> '”,pc,.) (lzl, 2) Then TA(P1)=u(TA(Pa1)) and
tp(p)=u(tg(p,,)) whereu,u’ ¢ Ty, satisfy path (u)=path;(q,) and path (@)=w,
respectively. As w is a proper prefix of path; (g,) and 7,(p,,)=75(p,,) this results
that ,(p)=tg(py), contrary to our assumption 7,=tg. A similar argument
yields a contradiction if path;, (g,) is assumed to be a prefix of path; (g,).

Thus none of the strings path;, (¢,) and path; (g;) is a postfix of path;, (go).
This implies that t,(p))=u(v), 1a(p)=u'(@), tg(p)=u(v) and 15(p)=1'(v)
where u, ' €Ty 1, v, V'€ T satisfy the conditions path (x) =path (#)=w and vv'.
Indeed, v=tg(p,), and v'=14(p,). It is again a contradiction.
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