On isomorphic representations of commutative automata
with respect to x-products

By B. IMREH

The purpose of this paper is to study the «;-products (see [1]) from the point
of view of isomorphic completeness for the class of all commutative automata.
Namely, we give necessary and sufficient conditions for a system of automata to
be isomorphically complete for the class of all commutative automata with respect
to the a;-products; It will turn out that if i=1 then such isomorphically complete
systems coincide with each other with respect to different o;-products. Furthermore
they coincide with isomorphically complete systems of automata.

By an automaton we mean a finite automaton A=(X, 4, §) without output.
Moreover isomorphism and subautomaton will mean A-isomorphism and A-sub-
automaton. ;

Take an automaton A=(X, 4,35) and let us denote by X* the free monoid
generated by X. The elements p€X™ are called input words of A. The transition
function & can be extended to AXX*—~A4 in a natural way: for any p=p’x
(p'eX*, x¢X) and a€A 8(a, p)=05(5(a, p’), x). Further on we shall use the more
convenient notation ap, for §(a, p) and A’ p, for the set {ap,: a€ A’} where A'c A4
and p€X*. If there is no danger of confusion, then we omit the index A in ap,
and A’p, . Define a binary relation ¢ on X™* in the following manner: for two input
words p, g€ X*, p=q (o) if and only if ap=ag for all a¢ 4. The quotient semigroup
X* /o is called the characteristic semigroup of A, and it will be denoted by S(A).
We use the notation [p] for the element of S(A) containing p€ X*.

An automaton A=(X, 4, 0) is commutative if ax;x,=ax,x; for any acA
and x;, x,€X. Denote by & the class of all commutative automata.

Take an automaton A=(X, 4, ) and let w be an equivalence relation of the
set 4. It is said that w is a congruence relation of A if a=b(w) implies ax=bx(w)
for all a,b€A4 and xcX. The partition induced by the congruence relation  is
called compatible partition of A.

Let A=(X, 4,5) be an automaton. Define the relation C of A4 in the following
way: a=b(C) if and only if there exist p, g¢ X* such that ap=b and bg=a.
It is clear that C is a congruence relation of A if the automaton A is commutative.
In the following we use the notation C(a) for the block of the partition induced
by C which contains a. On the set A/C={C(a): a€ A} we define a partial ordering
in the following way: for any a, b€A4, C(a)=C(b) if there exists p£ X™* such that
ap=b. If C(@)=C(b) and C(a)#C(b) then we write C(a)<C(b).
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The automaton A=(X, A4,9) is called a permutation automaton if for any
a,b€A and pcX*, ap=bp implies a=b. The automaton A is connected if for
any a, b€ A there exist p, g€ X* such that ap=bgq.

Let A,=(X,, 4,,0,) (t=1,...,n) be a system of automata. Moreover, let X
be a finite nonvond set and ¢ a mapping of 4;X... X4, XX into X;X...X X, such
that o(ay, ..., a,, )=(¢1(ay, ..., @y, X), ..., 9,(ay, ..., a,, X)), and cach @;(1=j=n)
is mdependent of states havmg indices greater than or equal to j+i, where iis
a fixed nonnegative integer. We say that the automaton A=(X, 4,8) with
A= AIX XA and 5((01, A n)7 x) (51(01’ (pl(al’ <oy 4y, X)), . 5 (ana (pn(aly

> Qs x))) is the o-product of A (t=1, ..., n) with respect to X and ¢. For this

product we use the notation ]] A (X, @) and A, XA,(X, ¢) for n=2. Moreover,

=1
if in a;-product A, A,=B for all ¢ (t=1, ..., n), then A is called an o;-power of
B and we use the notation A=B"(X, ¢).

Let B be an arbitrary class of automata. Further on let X be a system of auto-
mata. X is called isomorphically complete for B with respect to the a;-product if
any automaton from B can be embedded isomorphically into an «;-product of
automata from Z. If B is the class of all automata and ¥ is isomorphically complete
for B, then it is said that X is isomorphically complete.

Let us denote by E,=({x, y}, {0, 1}, 6g) the automaton for which &z(0, y)=0,
6E(0, X)=1, 5E(1’ x)=5E(1’ }’): 1.

An automaton A=(X, 4, d) is called monotone if there exists a partial order-
ing = on A4 such that a=6(a, x) holds for any a€4 and x€X.

For monotone automata the following result holds:

Lemma 1. Every connected monotone automaton can be embedded 1somorph1—
cally into an ay-power of E,.

Proof. We proceed by induction on the number of states of the automaton.
In the cases n=1 and n=2 our statement is trivial. Now let n=>2 and suppose
that the statement is valid for any natural number m-<n. Denote by A=(X, 4, §)
an arbitrary connected monotone automaton with n states. Since A is connected
thus among the blocks C(a) (a€ 4) there exists exactly one maximal element under
our partial ordering of blocks. On the other hand, since A is monotone thus the
partition induced by C has one-element blocks only. Denote by a, the element of
the maximal block. Since n=2 thus there exists an a€ 4 such that C(a)<C(a,).
Denote by g, an element of 4 for which C(q,)<C(a,) and C(a)<C(a) implies
a=a, for any a€A. Obviously there exists such an a,. It is also obvious that
(X, H, 0,5<x) is a subautomaton of A, where H={a,, a,} and the restriction to
HXX of the function ¢ is denoted by d;z.x. Let us define the automata A;=
=(X, (ANH)U{#}, ;) and A:,-(((A\H)U{ele})xX HU{O}, d,) in the follow-

ing way:
8(a,x) if 6(a,x)¢H,

51(‘1’ x) = { * otherWiSE,

0,(%,x) = %, ( (
8(a, x) if &(a, x)EH,
52([],(0, x)) = { 0 otherwise,
d5(a’,(a, x)) = a’, 3,(a’,(*, X)) = 8(a’, x), 3,(0, (%, X)) = O
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for all ac AN\ H, x€X and a’c H. Take the ao-productl B=A;XA,(X, ¢) where
1 (X)=x, ¢ (v, x)=(v, x) for all x€X and ve(AN\H)U{*}. It is easy to prove
that the correspondence

(a,00) if acANH,
v(“)z{(* a) if acH,

is an isomorphism of A into B.

Now let us consider the automata A, and A,. Since A, is a connected monotone
automaton with n—1 states thus, by our assumption, A; can be embedded iso-
morphically into an oty~power of E,. Denote by U the set of input s1gnals of A,
and take the following partitions of U:

U, = {(a, x): a€AN\H, x€X, 5(a, x)¢ HYU{(*, x): x€X},
U, = {(a, X): a€A\H, x€X, §(a, x) = a,},

Us = {(a, x): a€A\H, x€X, 6(a, x) = a,},

V, = {(a, x): ac AN\H, x€X}U{(*,x): x€X, 5(a;, x) = a;},
Ve = {(*,x): x€X, 6(a;, x) = a,}.

Consider the og-product E2(U, ¢) where @,(u)=y, ¢;(u)=0¢1(u)=x,
02(0, 1) =05(0, u) =y, @20, uz)=x, ¢,(1,v)=y and @,(1,v5)=x for all u,cU;
(=1,2,3) and v;€V; (j=1,2). It can easily be seen that the correspondence

0,0, ¢, O) and a,--(1, 1) is an isomorphism of A, into E2(U, ¢). Since
the formation of the oco-product is associative thus we have proved that A can be
embedded isomorphically into an oy-power of E,.

For any natural number n=1 let M,=({x, ... X,_1}, {0, ..., n—1}, 8) de-
note the automaton for which &(j, x)=j+/(modn) for any j€{0,...,n—1}
and .x,€ {xg, ..., x,_1}, where j+/(mod n) denotes the least nonnegative residue
of j+I modulo n. Moreover let 9t denote the set of all M,, such that » is a prime
number.

It holds the following

Lemma 2. If the number of states of a strongly connected commutative auto-
maton A is a prime number, then there exists an automaton MeIR- such that A
is isomorphic to an o4-product of M with a single factor.

Proof. First we prove that every strongly connected commutative automaton
is a permutation automaton. Indeed, denote by A=(X, 4, §) a strongly connected
commutative automaton and assume that there exist a, b€ 4 and p€ X* with ap=bp.
Since A is strongly connected thus there exist input words ¢, w€ X* such apg=a
and aw=>b. Using the commutativity of A, we have bpg=awpq=apgqw=aw=b.
Therefore, a=apq=>bpg=>b, showing that A is a permutation automaton.

Now let us assume that the number of states of A is prime and denote it by r.
Let a€A and pcX™* be arbitrary and -consider the states a, ap, ap?, .... Since A is
a permutation automaton thus there exists a ¢ (I=t¢=r) such that a=ap'. Denote
by (a, p) the set {a, ap, ..., ap'~'}. Assume that (a,p)cA. Let a’€¢AN\(a, p) and
consider the set (@, p), which is defined as above. Since A is a strongly connected
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automaton thus there exists a g¢ X™ such that ag=a’. Using the commutativity
of A we have ap'q=agp'=a’p' (i=0, ...,t—1). From this it follows that (a, p)
and (a’, p) have the same cardinality since A is a permutation automaton. On the
other hand it can easily be seen that (g, p) and (a’, p) are disjoint subsets of 4. There-
fore, the set ¢,={(a, p): a€ A} is a partition of A4 and the blocks of ¢, have the same
cardinality. Since r is prime thus we get that g, has one-clement blocks only, or it
has one block only. Now we choose an x¢€ X such that g, has one block only. The
automaton A is strongly connected therefore such an x€X exists. Let a€4 be a
fixed state of A and write ay=a, a,=ayx* (i=1, ..., r—1). Thus the mapping induced
by x on A can be described in the form a;x=a;, 1 (moary (=0, ..., r—1). Now let y be
an arbitrary input signal of A and assume that a,y=a; for some jc {0, 1, ..., r—1}.
From the commutativity of A we have g, y=a,x'y=a,yx'=a;X'=a;, j(moar for ail
i€{0,1,...,r—1}. Take the «,-product B=IIM,(X, ¢) with a single factor,
where @(x)=x, if ayx=a, for all xcX. It is easy to prove that A is isomorphic
to B, which completes the proof of Lemma 2.

Lemma 3. Every strongly connected commutative automaton can be em-
bedded isomorphically into an a4-product of automata from IR,

Proof. We prove by induction on the number of states of the automaton. In
case n<4, by Lemma 2, the statement holds. Now let »=4 and assume that our
statement is valid for any natural number m<n. Denote by A=(X, 4, ) an ar-
bitrary strongly connected commutative automaton with # states. If » is prime then,
by Lemma 2, the statement holds. Assume that » is not prime. Let pc X™* be ar-
bitrary. Consider the partition g,. Since A is commutative thus g, is a compatible
partition of A. Denote by @ the set of all partitions ¢, of A such that [p]¢ S(A)\ {[e]},
where e denotes the empty word of X*. Take the partition ¢ of A given by o= ) ¢,.
We distinguish two cases. €0

First assume that ¢ has one-element blocks only. In this case it can easily be
seen that A can be embedded isomorphically into the direct product of the quotient
automata A/g, (0,€ Q). On the other hand, for any ¢,€Q the quotient automaton
A/g, is a strongly connected comimutative automaton with number of states less
than n. Therefore, by our induction hypothesis the statement is valid.

Now assume, that there exist a, b6 4 such that a=b and a=b(p). Take an
input signal x of A such that the mapping induced by it on A is not the identity.
Then 0,€Q and thus g,=g¢. Therefore, a=b(p,). This means that there exists
a natural number />0 such that ax'=b. Since g is compatible thus ax'=bx'(g).
From this, by the above equality, we get that the states g, ax!, ax?, ... are in g(a).
Therefore, (a, x)& o(a). On the other hand g.=¢ thus (a, x")=¢(a), showing
that p.=¢. Denote by p the word x' and assume that ¢(a)={a, ap, ..., ap*~1}.
We show that k is prime. Indeed, if 1<wv<k and ,* then (a, p®)c(a, p) which
contradicts the relation ¢,.=0. Denote by ¢(ay), g(a), ..., ¢(a,_,) the blocks of g.
From the equality g=g, it follows that o (a;)={a;, a;p, ..., ;p*~*} (i=0, 1, ..., s—1).
Thus n=k-.s. From this we get that s1 because k is prime. On the other hand,
since A is strongly connected thus there exist words p;, ¢; (i=0, ..., s—1) such that
app;=a; and a;q;=a, for all i€{0,1, ..., s—1}. Using the commutativity of A
we have app/pi=a;p’ and ap'qi=ap’ for any j€{0,1,..,k—1} and
i€{0,1,...,s—1}. Now define two automata A;=(X,0,8,) and A,=
=(¢X X, 0(ay), 6,) in the following way: 8,(¢(a), x)=¢(5(a;, x)) for all g(a)co
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and x€X, 8,(aop’, (0(a), x))=aop’pixq, if ¢(8(a;, x))=0(a,) for all ayp€o(ay)
and (¢(a;), x)€gXX. Take the oy-product B= A, XAy (X, @), where o,(x)=x
and ¢,(e(a), x)=(o(a), x) for any x€X and ¢(a)€g. It is not difficult to prove
that the correspondence v: a;p/~(o(a), a,p’) (i=0, 1, —1; j=0,1,...,k=1)
is an isomorphism of A into B. Now consider the automata A1 and A,. T hey are
strongly connected commutative automata with number of states less then #n. There-
fore, by our assumption, the statement holds.

For any prime number r, let M,=({x,, x,, ..., x,}, {0, ..., 7}, 6) denote the
automaton for which o(/, x;)=/+j (mod r), é(r, x) r, o(l, x,) r and o(r, x,)=r
for any /€{0, ...,r—1} and x, €4{x0s s Xq)-

The next Theorem gives necessary and sufficient conditions for a system of
automata to be isomorphically complete for & with respect to the o,-product.

Theorem 1. A system X of automata is isomorphically complete for & with
respect to the «,-product if and only if the following conditions are satisfied:

(1) There exists Ay Z such that the automaton E, can be embedded isomorphi-
cally into an ay-product of A, with a single factor;

(2) For any prime number 7 there exists A¢X such that the automaton M,
can be embedded isomorphically into an ay-product of the automata A, and A.

Proof. In order to prove the necessity assume that X is isomorphically complete
for & with respect to the o,-product. Then E, can be embedded isomorphically
k

into an «g-product ]] A;({x, }, @) of automata from X. Assume that k=1 and.

let 4 denote a sultable isomorphism. For any j€{0, 1} denote by (a;;, ..., a) the
image of junder u. Among the sets {ay, a;,} (¢=1, ..., k) there should be at least
one which has more than one element. Let / be the least index for which ay#ay,.
It is obvious that the automaton A,;€ZX satisfies condition (1).
~Now take an arbitrary prime number r and consider the automaton M,. By
our assumption M, can be embedded isomorphically into an o4-product
k

IT Ai({xo, ..., x,}, ) of automata from X. Assume that k>1 and let u denote
i=1

" a suitable isomorphism. For any #€{0, ..., #} denote by (ay, ..., ay) the image of
t under p. Define compatible partitions =; (j=1,...,k) of M, in the following
way: for any u, uE{O o), uso(n) if and only if Ay =0y, ..., Q,;j=a,;. It is
obvious that n;=n,=...=mn, and x, has one-element blocks only. On the other
hand M, has only one nontrivial compatible partition: ¢={{0, ..., r—1}, {r}}.
Denote by s the least index for which o=>m,. It is not dlﬁ‘icult to prove that the
automaton A €X' satisfies condition (2).

To prove the sufficiency of the conditions of Theorem 1 we shall show that
arbitrary commutative automaton can be embedded isomorphically into an ¢,-
product of automata from R where N={E,}U{M,: r is a prime number}.

We prove by induction on the number of states of the automaton. In the case
n=2 our statement is trivial. Now let n=>2 and assume that for any m<n the
statement is valid. Denote by A=(X, 4, ) an arbitrary commutative automaton
with n states.

If A is not connected then it can be given as a direct sum of its connected sub-
automata. Denote by A,=(X, 4,,9,) (¢=1, ..., k) these subautomata of A. Take
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an arbitrary symbol z such that z¢ X. Define the automata A;=(XU{z}, 4;, 5;)

{i=1, ..., k) in the following way: 8&;(a;, xX)=6,(a;, x) and &;(a;, z)=a;, for all

a€A;and x€X (i=1, ..., k). Take the ay-products B;=E,XA;(X, ¢?) (i=1,..., k)

where o (x)=y, (0, x)=z and @{?(l,x)=x for all xeX. It is clear that A
ok

can be embedded isomorphically into the direct product [J B;. On the other hand,
i=1

for any index i (1=i=k) the automaton 4; is commutative with number of states
less than n. Therefore, by our induction hypothesis the statement holds.

Now assume that A is connected. Consider the partition {C(a): a€ A} and the
partial ordering of blocks introduced on page 1. Since A is connected thus among
the blocks there exists one maximal only. Let C(a) denote this block. We distinguish
two cases.

(D Assume that the cardinality of C(@) is greater than one. In this case
(X, C(@), 6\c@xx) is a strongly connected subautomaton of A. If C(@)=4 then,
by Lemma 2 and Lemma 3, the statement holds. If C(a)c A then we distinguish
three cases.

(a) Assume that the cardinality of C(a) is prime and denote it by r. Let us
define the automata A,=(X, (ANC@)U{*},,) and A,=(((A\C@)U{*} XX,
C(@U {0}, ,) in the following way:

o(a, x) if d(a, x)¢C(a),
51 (a: x) = { H
%  otherwise,
51(* > x) =%, .
52(0’, (a: x)) = a,’ 52(‘1’: (7"1 X)) = 5("7,’ X), 52(D7 (*’ x)) =D,
d(a, x) if 6&(a, x)€C(a),
O otherwise,

3:(0,(a, x)) = {

for all x€ X, a€ ANC(a) and a’¢€ C(a). Take the ay-product B=A, X A,(X, ¢) where
¢ (x)=x and @,(v, x)=(v, x) for any x€X, ve(AN\C(@)U{*}. It can be proved
easily that the correspondence
{(a, Q) if acAN\C(@),

V@ =, a) if aeC(@),
is an isomorphism of A into B. Consider the automata A; and A,. A; is a com-
mutative automaton with number of states less than n. Therefore, by our induction
assuption, it can be decomposed in the form required. For investigating A, we need
the automaton C=({x,,...,x}, {0,...,r},6c) where Jc(/, x)=I+i(mod r),
Oc(l, x)=1, dc(r, x;))=i and dc(r, x,)=r for any I€{0, ..., r—1}, x;€ {xq, ..., X, _1}. -
Now denote by U the set of the input signals of A, and consider the following parti-
tions of U:

Uy = {(+, %): x€X}U{(a, x): a€ANC(@), x€X, 5(a, ©)¢ C@),

U, = {(a. x): acAN\C(@@), x€X, 6(a, x)€C(a)},

Vi = {(a, x): acANC(a), x€X},

Ve = {(*,x): x€X}.
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By Lemma 2, we have that (X, C(a), Oic@yx x) is isomorphic to an a,-product of
M, with a single factor. Denote by p this isomorphism. We write a=a; if p(i)=a
(i=0,1,...,r—1). Now take the oy-product E,XC(U, ¢) where for any #,€U,,
u€ Uy and 0,€Vy, 0:€Ve, @)=y, @1(u)=x, ¢:(0,u)=x,, @00, u)=x; if
0.(0, u)=a;, @1, v))=x, and @,(1,v)=x; if 0s(ay, v)=a;. It is clear that
the correspondence v given by v(0O)=(0,r) and v(a)=(1,7) (¢=0,...,r-1) is
an isomorphism of A, into E,XC(U, ¢). On the other hand, it is not difficult to
prove that C can be embedded isomorphically into an «,-product of E, and M,.
Thus A; can be embedded isomorphically into an o,-product of E, and M,. Taking
into consideration the above decomposition of A,, this ends the discussion of (a)
in case (I).

(b) Assume that the cardinality of C(a) is not prime and the partition ¢ of
(X, C(@), 8,czxx) has one-element blocks only where ¢ is defined for (X, C(a),
5|C(a)xx) in the same way as in the proof of Lemma 3. Now for any @,€%,
define the partition g, of A in the following way:

2,(a) = { {a} if acANC(a),

0,(a) otherwise.
Now let @ denote the set of all such g,. It can easily be seen that A can be embedded
isomorphically into the direct product [ A/g,. On the other hand for any g,€ Q
2,8

e

the quotient automaton A/g, is commutative with number of states less than .
Thus, by our induction assumption, we have a required decomposition of A.

(c) Assume that the cardinality of C(a) is not prime and the partition ¢ of
(x, C@), Jic@) x x) has at least one block whose cardinality is greater than one.
Then, by the proof of Lemma 3, (X, C(a), Jic@xx) can be embedded isomorphically
into an o4-product of automata A,=(X, o, 5)1) and A,=(¢XX, ¢(a,), ;) where
A, is isomorphic to an «,-product of M, with a single factor for some prime r<n.
Define the automata A,=(X,(A\C(@)Ue¢, d,) and A,=((A\C(@)Uog)XJX,
e(apU {0}, 8,) in the following way: for any a€AN\C(a), o(a)€g, x€X and
ap’€g(ay)

51(9(‘%), x) = 51(Q (a), x),

5(a, x) if d(a, )EANC@) .
du(a, x) = { o(a) if 8(a,x)eC(@) and &(a, x)€0(a),
52(“01""’ (a, x)) = a,p’, 52(“0Pj’ (e(ay), x)) = 32(‘1017]’ (e(ay, x)), '
62(51 (e(ay)s x)) =0,
6(a, x)q, if 6(a, x)€o(ay),
5(0, (@, ) = { o if &(a, x)¢ C(@).

Notations used in the above definition coincide with those used in the proof of
Lemma 3. Take the oy-product A;XA,(X, @) where ¢,;(x)=x and @,(v, x)=(2, x)
for any x€X and v€(AN\C(a))Upg. It can easily be seen that the correspondence

(e D) if acANC(@),
v(a)_{(g(ai),aop") if ace(a) and a=a;p/,
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is an isomorphism of A into A;XA,(X, ¢). Consider the automata A; and A,.
The automaton A, is commutative with number of states less than n. Therefore,
by our induction hypothesis, it can be decomposed in the form required. The auto-
maton A, can be embedded isomorphically into an «,-product of automata E,
and M,. This can be proved in a similar way as in the case (a). Thus we get a re-
quired decomposmon of A.

(I) Now assume that the cardinality of C(@) is equal to one. Denote by R’
the set of all a€ 4 for which the cardinality of C(a) is equal to one and C(a)<C(b)
implies b=a for all b€ 4. Let R be the set R"U{a}. We distinguish two cases:

(a) First assume that R’ is nonvoid. Then (X, R, 6|z «x) is a connected monotone
subautomaton of A. Define the automata Al—(X (ANR)U{*},6,) and A2—
=(((A\RU{#PXxX, RU{O}, ;) in the following way: for any a€ A\R, a’€R
and x¢X

6(a,x) if é(a,x)¢R,
% otherwise,

bula, %) = |

51(*,'-\’) =%,

8:(a’, (a, %)) =a’, 85(a’, (%, %)) = 6(a’, %), 5:(0, (%, ¥)) = O
S ) if | |

3,(00, (a, ¥)) = {0(“’ x) if &(a, X)ER

[0 otherwise.
Take the o,-product A; XA,(X, @) where @,(x)=x, ¢,(v, x)=(v, x) for any x€X
and v€(ANR)U{*}. It is obvious that the correspondence

(a, O) if acA\R,

V(@) = {(*, a) if a€R,

is an isomorphism of A into A;XA,(X, ¢). Consider A, and A,. A, is commutative
with number of states less than »n. Thus by our induction assumption, it can be de-
composed in the form required. On the other hand A, is a connected monotone
automaton thus, by Lemma 1, it can be embedded isomorphically into an «,-power
of E,. Therefore, we get a requlred decomposmon of A.

(b) Now assume that R’ is empty. Denote By Q the set of all blocks C(a) for
which the cardinality of C(a) is greater than one, and C(a)<C(b) implies b=a
for all A€ A. Since A is connected and R’ is empty thus the set Q contains at least
one block. We distinguish two cases.

(1) First assume that Q contains the bloks C(ay), ..., C(q) where k=1. De-
fine compatible partitions g; (i=1, ..., k) of A in the following way:

{ {a} if a&C(a)U{a},
i(0) = C(apU{a) otherwise.
It is not difficult to prove that o;={{a}: a€ A}. From this we get that A can

]S;S
be embedded isomorphically into the direct product ]] A/g;. On the other hand,
i=1

for any i€{l, .:., k} the quotient automaton Afg; is commutative with number of



‘

On isomorphic representations of commutative automata with respect to e.-products 29

states less than n. Therefore, by our induction assumption, we have a required
decomposition of A. : :

(2) Now assume that Q contains one block only and denote it by C(b). Since
C is a compatible partition of A thus {X;, X,} is a partition of X where X;=
={x: x€X, C(b)xS C(b)} and X,={x: x€X, C(b)x=a}. It is clear that X; and
X, are nonvoid sets and B=(X;, C(b), iy x x,) Is a strongly connected commuta-
tive automaton. Now we distinguish three cases according to Lemma 3.

(i) Assume that the number of states of B is prime and denote it by r. Define
the automata A,;=(X, (AN\(CG)U{@)U{x},48,) and A,=(((A\(COU{a)U
U{*})xX, C()U{a, O}, 5,) in the following way: for any x€X, a€AN\(C(H)U
U {a}) and a’cC(b)U{a}

6(a, x) -if 4&(a, x)¢ C(b)U{a},
91(a, x) = { % otherwise,
51(*’ x) = ¥,

5,(0, (a, x)) ={

S(a’, (@, 0) = @, 8(a, (%, %) = 8(a’, %), 6,(0, (%, %) = 0.

Take the «,-product A; XA,(X, ¢) where ¢,(x)=x and ¢,(v, x)=(v, x) for any
© xeX, ve(AN(COIU{@P)U{*}. It is clear that the correspondence

{(a, 0) if- a¢cUa),
Y@ =(s a) if acCh)Ua

is an isomorphism of A into A,XA4,(X, ¢). Consider the factors of the previous
op-product. A, is commutative with number of states less than n. Thus, by our
induction assumption it can be decomposed in the required form. For investigating
A,, we need the following automaton. Denote by W=({x,, ..., x,, X}, {0, ..., r, F},
dw) the automaton where dw(/, x))=I+i(modr), Sw(#, x)=i, ow(l, x,)=r,
dw(l, ¥)=Il, dw(r,x)=r for any I€{0,...,r—1} and x;€{x,,...,x,_4}, and
Sw(r, x)=0w(r, X)=0w(F, x,)=r, dw(F, X)=rF. Now denote by U the set of the input
signals of A, and take the following partitions of U.

U, = {(*, 0): x€X}U{(a, x): ac AN(C(HYU{@)), x€X, 6(a, )¢ C(b)U{@}),
U, = {(a, x): acAN(C(b)U{a}), x€X, 5(a, x)C(b)},

Us = {(a, x): ac AN\(C(b)U{a}), x€X, 6(a, x) =a}, n

vy ={(a, x): acAN\(C(H)U{a}). xeX},

Ve = {(*,x): x€X;} and V3= {(*,x): x€X,}.

By definitions, we have that (V;UV,, C(b), 62|C(,,)X(V1Uyg)) is a strongly con-
nected commutative automaton with r states. Thus, by Lemma 2, it is isomorphic
to an ay-product of M, with a single factor. Denote by u a suitable isomorphism,
and for any #€{0, 1, ..., r—1} denote by b, the image of ¢ under u. Now take the
ap-product E,XW(U, ¢) where o¢,(u)=y, ¢)=¢1(u)=x, ¢5(0,u,)=%,

8(a, x) if &(a, x)eCh)U{a},
O otherwise,
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@20, up)=x; if 6x(0, u)=b;, @20, u)=x,, @s(1,0)=%, @o(l,v)=x, If
0a(bg, Vo) =b;, @-(1,v5)=x, for any €U, (t_l 2,3), v;€V; (j=1,2,3). Tt is
obvious that the correspondence v given by v(O)=(0, r), v(a) 1, ), v(b)=(1, 1)
(i=0,...,r—1) is an isomorphism of A, into E;XW(U, ¢). On the other hand,
it is not “difficult to prove that the automaton W can be embedded isomorphically
into an «y-product of E, and M,. Thus we get a required decomposition of A.

(ii) Assume that the number of states of B is not prime and the partition ¢
of B has one-element blocks only where g is defined for B in the same way as above.
Now for any g, € define a partition g, of A in the following way:

%
{a} if a€cA\C(a),
¢,(a) otherwise.

0p(a) = {

Let Q denote the set of all such g,. It is clear that A can be embedded isomorphi-
cally into the direct product ]] A/g,. The quotient automaton A/g, is commuta-

LEa
tive and its number of states is less than n for any g,€ Q. Thus, by our induction
assumption we have a required decomposmon of A.

(iii) Assume that the number of states of B is not prime and the partition ¢
of B has at least one block whose cardinality is greater than one. Then, by Lemma 3,
B can be embedded isomorphically into an o,-product of the automata B,=
=(X1, 0,8,) and B,=(oX X, 0(by), §;) where B, is isomorphic to an «,-product
of M, with a single factor for some prime r. Define the automata A,;= -
=(X, (A\C(b))UQ, 8;) and A, =((A\C®)HU XX, o(bpU{*, O}, 8;) in the
following way: for any a€ ANC(b), o(b)€0, x€X and b, p’€ o(by)

8(a,x) if 6(a, x)¢C(b),
01(a, x) = {g(é (a, x)) otherwise,
' 5:.(e(b), x) if x€X,,
Si(e(b), %) = {a (if xG)XZ,
Su(bop’, (a(b), ®) if x€Xy,
5ot (oo, ) = | 20 400 )X
O if  8(a, )€ AN(C(b)U {@)),
8:(0, (a, x)) =1 6(a, x)g, if d(a, )€ (dy),
* if é(a, x) =a,

52(b0pjs (aa x)) = bopj, 52(*: (a’ X)) = 62(*9 (Q(b!)’ x)) = *,
52(5, (e(by, x)) =0

(The notations coincide with those used in the proof of the Lemma 3.) Take the
ap-product A, XA,(X, @) where ¢,(x)=x and @,(v, x)=(v, x) for any x€X and
vE(A\C(b))UQ It is not difficult to prove that the correspondence

(a, 0 if . ac AN\(C(h)U {@)),
v(a) =1(e(b), bop?) if a€C(b)- and a = b;p’,
(a, #) if a=a,
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is an isomorphism of A into A;XA,(X, ¢). Consider the automata A; and A,.
The automaton A, is commutative with number of states less than n. Thus, by our
induction assumption, it can be decomposed in the required form. The automaton
A, can be embedded isomorphically into an «,-product of E, and M,. This can
be proved in a similar way as in the case (i). Thus we get a required decomposi-
tion of A.

The following statement is obvious for arbitrary natural number i=0.

Lemma 4. If A can be embedded isomorphically into an a;-product of B with
a single factor and B can be embedded isomorphically into an «;-product of C
with a single factor, then A can be embedded isomorphically into an oproduct
of C with a single factor.

The next Theorem holds for «;-products with i=1.

Theorem 2. A system X of automata is isomorphically complete for & with
respect to the a;-product (i=1) if and only if for any prime number r there exists
an automaton A€Z such that M, can be embedded isomorphically into an o
product of A with a single factor.

Proof. To prove the sufficiency, by Lemma 4, it is enough to show that ar-
bitrary automaton with n states can be embedded isomorphically into an a, -product
of M, with a single factor for some prime r=n. This is trivial.

To prove the necessity take a prime r. First we prove that M, can be embedded
isomorphically into an «;product of automata from X with at most i factors if
M, can be embedded isomorphically into an o;-product of automata from X. In-
deed, assume that M, can be embedded isomorphically into the o;-product

k
B=J] A;({xo, ..., X,_1}, ®) of automata from X with k=i and denote by u
j=1

such an isomorphism. For any /€{0, ..., r—1} denote by (ay, ..., ay) the image
of / under u. We may suppose that there exist natural numbers s#t (0=s, r=r—1)
such that ay>a,, since in the opposite case M, can be embedded isomorphically
into an a;-product of automata from X2 with k—1 factors. Now assume .that there
exist natural numbers uzv (0=u,v=r—1) such that a,=a, (=1, ...,i). Then
1@y o5 Qs X)=1(@01, -, A, X)) for any x;€{x,,..., x,_1}. Thus in the
o;-product B the automaton A, obtains the same input signal in the states a,, and
a,; for any x;€{x,,...,X,_;}. Since pu is an isomorphism thus we have that
Ayt j(mod 1 =p+jemodry fOT any j€{0,...,r—1}. On the other hand, r is prime
thus from the above equations we get that @,,=a, for any I€ {0, ..., r—1} which
contradicts our assumption. Therefore, we have that the elements (g, ..., q;)
O=l=r-1) are pairwise different. Take the following a;-product

C= [T A({xo, ..., X,_1}, ¥) where for any j€{l,...,i}, (ay, ..., €A X... X 4;
=1
and x,€ {Xq, ..., X,_1}

@;j(an, .., ajyi-1, x) if j+i—1=k and there exists
0=1!=r—1 such that a,=qa,, @w=1,..,1),
Yilay, ..., 8, x) =1 9;(an, ..., ag,x) if j+i—1>k and there exists
_ O0=Il=r—1such thatag,=qa, u=1,..,1i),
arbitrary input signal from X; otherwise.
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It is not difficult to prove that the correspondence v(/)=(ay, ..., a) (=0, ..., r—1)
1is an isomorphism of M, into C.
Now we prove that if M, can be embedded isomorphically into an «;-product

k
IT A;({xo, ..., X,-1}, @) of automata from X with k=i, then there exists an auto-
J=1

maton A€ZX such that Mprimcllv:]

i
product of A with a single factor, where prime [V?] denotes the largest prime less

can be embedded isomorphically into an o;-

i
than Jr. Denote by pu such an isomorphism. For any /{0, ..., r—1} denote by
(@, ..., ay) the image of / under u. Since g is a 1 —1 mapping thus the elements
(ay, ..., ay) (=0, ...,r—1) are pairwise different. Therefore, there exists an s
{1=s=k) such that the number of pairwise different elements among ay,, a5, ..., @, _15

1
is greater than or equal to prime [l/;] Let a;, ..., a;,_,s denote pairwise different

i
elements, where u=prime [Vr], and denote by X the set {x,, ..., x,_;}. Take the
ao-product C=ITA (X, ) with a single factor, where for any a;.€{a;;, ..., a;,_,s}
and xDEXa ‘p(aj,s, xv) =(ps(aj,1’ cen aj,k’ xd) if 5M,.(u_1(aj,1: tery aj,k)’ xd)=
=UTH@,, smoaiol? <> Bes vmoawk): 1T 18 DO difficult to prove that M, can be em-
‘bedded isomorphically into C which ends the proof of Theorem 2.
From Theorem 2 we get the following.

COROLLARY. A system X of automata is isomorphically complete for & with
tespect to the a;-product if and only if it is isomorphically complete with respect
‘to the a-product (i=1).
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