
Deterministic ascending tree automata I 
By J. VlRAGH ' 

1. Introduction 

In the early 60s Automata Theory was considerably influenced by the methods 
and results of Universal Algebra. In fact, if we regard the input signs as unary oper-
ational symbols over the state set, then the automaton can be identified with a special 
universal algebra (unoid). Allowing non-unary input signs Thatcher and Wright [7] 
and Doner [3] came to the notion of the generalized or tree automata which accept 
arbitrary trees instead of the linear words of ordinary automata. 

Two types of tree automata are investigated in the literature. The first one, 
the descending tree automata (known also as frontier-to-root or sinking auto-
mata, cf. [3], [6], [7]) proceed the input trees from the leaves along all branches 
towards the root. All results of the 'classical theory' such as the equivalence of 
the deterministic and nondeterministic devices, the minimization algorithm, Nerode's 
theorem, regular (tree) grammars, regular expressions and the Kleene-theorem 
can be generalized for this type of automata (cf. [1]—[3] and [6], [7]). 

A less investigated generalization led to the notion of the ascending (called 
also root-to-frontier or climbing) tree automata, cf. [4], [6]. This device reads the 
input trees starting at the root proceeding then towards the leaves along the branches. 
Our investigations were inspired by the results of Magidor and Moran [6] especially 
by Section 6 of their paper. 

Our aim is to generalize the results of the classical theory for ascending tree 
automata. In this part I we investigate a generalization of the Kleene-theorem and 
the characterization of sets accepted by ascending tree automata as sets generated 
by special regular tree grammars. The algebraic notations developed by Gecseg 
and Steinby in [4] will be used throughout this paper. Nullary operations will be 
excluded. This restriction is necessary by some investigations concerning ascending 
tree automata, cf. [4]. 

2. Preliminaries 

For arbitrary set A, 3P(A) denotes the power set of A. N stands for the set 
of all positive integers, i.e., N={1 ,2 ,3 , . . . } . 

Let F be a finite nonvoid set and r a mapping of F into N. We call the ordered 
pair (F,r) a type. The . elements of F are the operational symbols. If f£F and 
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r ( / ) = « , then we say that the arity of / is n or / is an n-ary operational symbol. 
We often refer to the type (F, r) simply by F and we take the set F as the (disjoint) 
union U (F„\n£N) , where F„ is the set of all n-ary operational symbols from F. 

Let X= x2, ...} be a countable set of variables and X„={xlt x2, ..., xn} 
for every n£N. We define the set TF „ of n-ary F-trees as the smallest set satisfying 

(i) I „ g r f > „ and 
( ¡ 0 / 0 » ! , . . . , /»J67>,„ whenever pu ...,pmeTFi„ and / £ F m for some m£N. 

We note that the set TFi „ is identical with the set of all n-ary polinomial symbols 
of type F in the sense of Gratzer [5]. The subsets of TF „ are called n-ary F-forests 
or simply forests when n and F are specified by the context. TF stands for the 
set U(7>.„|«€JV). 

Next we define devices capable of recognizing forests. To this we need some 
preparations. 

Let F be an arbitrary type. The ordered pair 'H=(A, Fffl) is called a non-
deterministic F-algebra if A is a nonempty set and F f f l = ( / a | / £ F ) is a set of non-
deterministic operations on A, i.e., if f£Fk, then f® is a mapping 

In that special case when f(a1, ...,ak) is a singleton for every / £ F and 
(alt ..., ak)£Ak, we speak about F-algebra. Identifying the singletons with their 
elements (and that will be our practice in the following discussions) we can define 
an F-algebra as a system 91=(A, Fai), where every operation is a mapping 

/ai[Ak -~'A.) 

The triple A = (21, a, A') is called an n-ary nondeterministic descending F-
automaton if 

(i) 91=(A, F a ) is a nondeterministic F-algebra, whose carrier A is called 
the state set of the automaton, 

(ii) a=(A(1),A(2),...,A(n))€(0'(A))" is the initial vector, 
(iii) A'QA is the set of final states. 

If 21 is an F-algebra and all components of the initial vector are singletons, 
then we say that A=(21, a, A') is an n-ary deterministic descending F-automaton. 

Every automaton A induces a mapping /?A: TF n~^&'(A) in the following 
manner: 

(i) p*(xj) = AU> (Xjexn, j = 1 , 2 , . . . , « ) , 

(ii) P(p)=U(f*(blt...,bJ\bj£P(pj), j = 1 ,2 , . . . , k) if P=f(Pl,...,Pk). 

Then T(A)= {p\p£TFi„ &pA(p)C)A'¿¿0} is the forest recognized by A. If A is de-
terministic, then j?A(/>) is a singleton for every p£ TF n and T(A) can be written as 

r(A) = {p\paF,„&PHP)ZA'}. 

Now we present the necessary definitions for our second type of devices, the so-
called ascending tree automata. 

The ordered pair 23=(5, F s ) is called a nondeterministic ascending F-algebra 
if B is a nonempty set and F ® = ( / ® | / 6 F ) is a set of nondeterministic ascending 
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operations on B, i.e., if f£Fk, then /® is a mapping 

/®: B+0>(B*). 

Again, if for all / £ F and b£B, /®(b) is a singleton, then we say that © is a de-
terministic ascending F-algebra and we write the operations as mappings 

/®: £'-*• Bk. 

The triple B = (S , B', b) is called an n-ary nondeterministic ascending F-
automaton, if 

(i) © = (B, F®) is a nondeterministic ascending F-algebra, and B is called 
the state set of B, 

(ii) B'QB is the set of initial states, 
(iii) b = (B(1\ B(2\ ...,B(n))£{S?{B))n is the vector of final states. 

If © is a deterministic ascending F-algebra and B' is a singleton, then we say that 
B = ( S , B', b) is an n-ary deterministic ascending F-automaton. 

With every ascending automaton B we associate a mapping aB: TFtn-*0>(B) 
as follows: 

(i) a*(xJ) = BM (xjdXn, j = 1,2, ....,11), 

(ii) aB (p) = {b\fm(b) H aB(pi) XaB (p2) X.. • X a B ( p k ) ^ 0} 

if f£Fk and p =f(p!,p2, Pk)-

The forest recognized by B is defined by 

F(B) = {p\p£TF,„ &a»(p)r)B'^ 0}. 

If B is deterministic and B'= {b'}, then we can write simply 

T(B) = {p\peTFt„ & b'ea*(p)}. 

Our definitions are rather general because we allow even infinite state sets 
of automata. But this general case is needed only by some later discussions. In this 
Part I by automata we always mean finite automata. 

Two automata, A and B are called equivalent if F(A) = F(B). Two class of 
automata, Cx and C2 are equivalent if for every A from Q there is a B from C2, 
equivalent to A, and conversely. The following statements are well known, 
cf. [6], [7]. 

Proposition 1. The classesof deterministic descending, nondeterministic de-
scending and nondeterministic ascending automata are equivalent. Taking an 
arbitrary automaton from one of these classes, we can effectively construct two 
automata belonging to the two other classes equivalent to it. 

Let #"REC denote the class of forests, recognizable by deterministic descending ( 
automata and !FA the class, recognizable by deterministic ascending automata. 

Proposition 2. 3Fa g Ĵ REC. 
Since forests are subsets of TF n, we may define the usual set-theoretic oper-

ations U (union), H (intersection) and ~ (complementation) on them. Let us now 
define two more operations the x rproduct and x riteration. 
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The x¡-product of the forests 7\ and T2, denoted by Tt • XlT2, is the forest which 
can be obtained by replacing every occurence of x{ in some tree from 7\ by a tree 
from T2. The xriteration of the forest T, denoted by T*x,, is defined by T**,= 
- U (Tk-xi\k=0, 1, 2, ...) where 

(i) T*-*=x„ 

(ii) Tn-x'=Tn-1'x<UT-XlTn-1'x' 

or n£N. We refer to the operations union, ^-product and ^.-iteration as regular 
operations. It is well known that ^ R E C is closed under the regular operations, 
but: ¿Fa is not. 

Let us take some language S£ suitable for describing the sets accepted by 
automata. In Automata Theory the following two problems play an important role: 

(1) Given an automaton A. Describe the set accepted by A in terms of ££. 
(2) Given a description of the set T in the language =S?. Construct an auto-

maton accepting T. 
The solution is given by the famous Kleene-theorem if is the language of regular 
expressions. Next we review briefly the generalization of this theorem for deter-
ministic descending automata. First of all, we have to define the language «S? of 
(generalized) regular expressions. 

Let F be an arbitrary type. The set 0lF of regular F-expressions is the smallest 
set for which 

(0 

(ii) if p£TF, then pe@F, and 

(iii) if J f j , Jir2e@F and idN, then C^+JT^, ( J f \ i j f 2 ) , ( j Q * 1 ^ ^ . hold. 

If F is known from the context, we speak about regular expressions simply. An 
occurrence of the variable xi in is called bounded if this occurrence is in ĈCi 
for a subexpression JT 1 / J f 2 of J f . All other occurrences of xt are called free. X; 
is a free variable of J f if x ; has at least one free occurrence in J f . j f is an n-regular 
expression if all its free variables are in X„. 

Each regular expression denotes a forest ¡JTj given by the following 
rules: 

(i) if J f — 0, then | J f I is the empty forest, 

(ii) if JT = p(p€TF), then | j f | = {/>}, 

(iii) if j f = (JTx+JTj), then \X\ = m U W , 

(iv) if j f = ( ^ 1 ^ ) , then \ j f \ = m • Xl\Jf2\, 

(v) if " JT = W , then \Jf\ = 

T is a n n-regular forest if T= \X\ for some «-regular expression JT. Moreover, 
T is a regular forest if T is n-regular for some n£N. Finally, stands for the 
class of all regular forests. 
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Proposition3. (Kleene-theorem, cf. [7]) ^REG^^REC- More precisely, for an 
arbitrary deterministic descending automaton one can effectively construct a regular 
expression denoting the forest accepted by this automaton, and conversely. 

Regular tree grammars are direct generalizations of the well known regular 
(string) grammars. The following definition is equivalent to the usual one, cf. [2]. 

Let F be a type, a regular F-grammar is a system r = (Q, F, P, S), where 
(i) Q is a finite nonempty set of nonterminal symbols, 

(ii) SQQ is the set of initial symbols, 
(iii) P is a finite set of rewriting rules of the form 

q^ 'Xi (q£Q, x £ X ) or q -*f(qx, ..., qk) (q, qi, ..., qk£Q, f£Fk). 
If all variables occuring in the rules of P are from Xn, then we say that F is an 
n-ary regular F-grammar. When n and F are not specified, we speak about regular 
(tree) grammars. The n-ary regular F-grammar F induces a binary relation =>r 
on the set TFiQ\jXn, t=>r r iff r can be obtained from t by replacing a nonterminal 
q in t with the right side of some rule q^f(qi, qt) or q-*x( from P. Let =>F 
denote the reflexive, transitive closure of the relation =>r. 

The set T(r) = {p\p£ TF n & (3-?)C?€ S & s^Fp)} is the forest generated by F. 
T is called generable, if T=T(F) for some regular grammar F. #"GEN denotes 
the class of all generable forests. 

Proposition 4. (Bra inerd [2]) .^REC—^GEN-

3. Closed forests 

In this section we show that every f o r e s t " c o n t a i n s all trees composed 
from the paths of some trees belonging to T. We shall use this characteristic feature 
for deriving a connection between ^ R E C and 

With every type F we associate a new type 5(F) of unary operational symbols 
in the following way: 

(i) if f€Fk, then 5 ( f ) = { f , f 2 , ...,fk), 

(ii) if then 5 ( f ) fl 5(g) = 0, 

(iii) 5(F) = U(5(f)\feF). 

Now let us define the functions ¿¡: &,(TF)-*3?(TL{F)) for all i£N as follows 

! f xk if i = k, 
(1) 5i(xk) = | g o t h e r w i s e ; 

(2) d-Xfifr, ..., pk)) = f [Si (p j ) U/2 («5,- (p2)) U . . . Ufk (¿j (pk)), 

(3) ¿,.(r) = u ( a i ( 0 l / e r ) . 

Let 5: 0>(TFi„) be the function for which 

8(T) = U(<5;(F)|i = 1, 2, ..., n). 
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• Speaking informally, S(t) consist of all words which can be read along the 
paths of t. The inserted indices show the position of the node to be visited next. 
The elements of 5(T) can be regarded as words of the free semigroup generated 
by 3 ( F ) U A ; as well. 

Lemma 1. The function 5 is monotone and commutes with the regular opera-
tions, i.e. 

(i) if Tx g T2, then d(Td E ¿ ( T J , 

(ii) 5{Tx\JT2) = ¿ ( r j u á ^ ) , 

(iii) &(T l . X t T¿ = 5 ( T J ' X l 5 { T ¿ , 

(iv) 5(T*X>) = (d(T))*xi. 

Proof, (i) and (ii) are obvious. For verifying (iii), first we show the inclusion 
¿(Ti)• xtHT^QS^-XIT2). If ged^) • x.5(T2), then we must distinguish the 
following two cases: 

1) gdSjiTJ and j^i. This directly implies gtS^-XiT2). Therefore, 
gtSpx'^TJ. 

2) g-gi • x,g2 where g^S^tJ for some tx6TX and g2£5j(Q for some t2£T2. 
Then g£Sj(t3) holds for the tree h = tx. Xit2dTx-XIT2. Thus g<ib(Tx. xtT2). 
The inclusion S(TX- X¡T2)Q ó(Tx) • x¡3(T¿) can be verified in a similar way. 

Using (ii), (iii) and the identity T"-x' = T"~1'xI[JT-x¡Tn~^x' it is easy to prove 
by induction on n that (iv) holds, too. • 

R E M A R K . From Lemma 1 it follows that the regularity of T implies the regular-
ity of § (T). The converse is not true. For this it is enough to consider the forest 
T of all balanced trees in TF n. 

Let á " 1 : ^(THFh„)^^(TFi„) denote the inverse of <5, i.e., S~1(U) = 
= {t\d(t)^U} for every UQT3(Fhn. We define the operator A: 
as the composition <5_1 • 5 

A(T) = {t\d(t)QS(T)} ( r g y . 

Lemma 2. A is an algebraic closure operator on ¿?(TFt„), that is 

(i) TXQT2^ A(TX)QA(T2), 

(ii) T^A(T), 

(iii) A(T) = A{A(T)), 

(iv) if t$.A(T), then t£A(T¿ for some finite Tx Q T. 

Proof. Obvious. • 

We say that TQTF¡„ is A-closed if A(T) = T. Let denote the class of all 
-closed forests. 

Lemma 3. If F has at least one non-unary operational symbol then !FC and 
#"REC are incomparable. 
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Proof. For the sake of simplicity assume that F2?£0 and / 6 F2 . Let 

= { / (* ! , / (* l ,Xl ) ) , / ( / ( * ! , *l), *l)} 
and 

T2 = r 3 n r 4 , where 

7 3 = T(F), r = <{S, i?}, {/}, {S ~f(R, S), Xl}, S) 
and 

Ti = {p\p is composed from an arbitrary number of / ' s and a prime 

number of XJ's}. 
7 \ £ J W is obvious, but F ^ J ^ . because of / ( x l 5 X J X ^ ^ ) and / ( X ! , xx)$ 7 \ . 
On the other hand T 2 f ^ c , but T 2 ^ R E C would lead to a contradiction. • 

Now we generalize the construction of the well-known powerset automaton 
for ascending tree automata. Let A = ( 9 l , A', a) be an n-ary nondeterministic 
ascending F-automaton. The powerset automaton, belonging to A is the n-ary de-
terministic ascending F-automaton PA=(^321, A', b), where tyS&={0>(A), F) is 
the deterministic ascending • F-algebra with operations / !p iH defined by 

/ » " ( C ) = J 7 ( U ( n i ( / « C c ) ) | c 6 C ) ) 
¡=i 

for every C^A and / £ Fk, b = (B(1\ B(2), ..., Bw) with =(D\D<^A&Df] A(i) jt 0) 
and 7T| denotes the zth projection. 

Now we recall some concepts from [4]. For any state a of the «-ary non-
deterministic ascending F-automaton A we define 

T(A,a) = {plpeTFin&aeocA(p)}. 

A state a is called a 0-state if 7(A, a ) = 0 . We say that A is normalized if, for all , 
a£A, ndN and / £ F „ either all of the components of fm(a) are 0-states or none 
of them is a 0-state. 

Lemma 4. For any nondeterministic ascending automaton A an equivalent 
normalized nondeterministic ascending automaton A* can be constructed. 

Proof. This lemma is a generalization of Theorem 3 in [4] for nondeterministic 
automata. The proof can be performed similarly. • 

Lemma 5. For- every normalized nondeterministic ascending automaton A, 
r ( P A ) = 4 ( r ( A ) ) . 

Proof We shall verify the inclusion 7(PA) § A (7(A)) first. Let t£ 7 (PA) 
and g€dj(t) for some l^j^n. It follows from the definition of 7(PA), that in 
this case we can correspond to the branches of g a sequence a0, at, ..., a„ of states 
from A such that 

(i) ak£A (O^k^u), a0eA' and av£Aa\ 
(ii) fli+i€7Tfc(/a(ai)) if a,- (O^i^v - 1 ) corresponds to the branch labelled by fk. 

We can complete g to a tree J accepted by A because A is normalized. Thus 
g€&j(f) = &j(T(A)) which implies t£A (7(A)) since g and t were arbitrary. 

The reverse inclusion can be verified in a similar manner. • 
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REMARK. We show by a simple counterexample that the preceding Lemma does 
not hold for unnormalized automata. Let A=(21, A', a) be the automaton where 

A = {a0,d}, F=F2 = { f } , n = 1, 

/*(«„) = {(d, flo), (a0 , d)}, / » ( d ) = {(d, d)} 

A' = A™ = {flo}. 

Then f ( x l t XL) is in T(PA), but not in A (T(A)). • 

If we apply the construction of P A for a deterministic automaton A, we get 
an automaton equivalent to A. From this assertion, using Lemma 5, it directly 
follows. 

Corollary 6. The regular forest T can be recognized by a deterministic ascend-
ing automaton iff T is closed. 

Corollary 7. It is effectively decidable for every regular forest T whether T 
is recognizable by a deterministic ascending automaton. 

Proof. Let T=T(A), where A is a nondeterministic normalized ascending 
automaton. In this case, by Corollary 6, iff 7 \A) = T(PA). By Proposition 
2.1 we can construct two deterministic descending automata equivalent to A and 
PA, respectively. For this type of automata the equivalence problem is decidable. • 

4. D-reguIar operations and the generalized Kleene-theorem 

It can easily be seen that J ^ is not closed under the regular operations. In 
fact, it is not closed under the polinomials of these operations, either. More pre-
cisely, this is true for almost all- polinomials but those unary ones constructed by 
unions only. Since 2FA can be obtained as the J-closure of ^ R E g it seems reasonable 
to define 'D-regular operations' by combining A and the regular operations. This 
enables us to derive a 'Kleene theorem' for 

Now let us define the D-regular operations for any Tt and T2 f rom TF as follows: 
(1) ¿-union 1 j : T ^ T ^ A i T ^ T ^ , 
(2) (A, XJ)-product ©Xi: O Xi T2=A(T1 • X{T^), 
(3) (A, X;)-iteration * X l : (T)*Xi=A{T**i), 

where on the right sides U, - Xl and * Xi stand for the ordinary regular operations. 

Lemma 1. The D-regular operations preserve regularity and recognizability 
by deterministic ascending automata. 

Proof. Follows from Proposition 2.3 and Corollary 3.6. • 

Lemma 2. For D-regular operations the following identities hold 

(i) TSJT2 = A(T,)UA(T2), 
(ii) TtQ XiT2 — A(T^) o A(T2), 

(iii) (T)*Xi = (A(T)fXl. 
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Proof. These identities can be derived applying the function < 5 f o r both sides 
of the equations 

( * ) 0(T1{JT^ = 0(A(TJ{JA(TJ), 

(**) Ô(T1.XIT2) = Ô(A(T1).XIA(T2)), 

(***) S((T)**,) = ô(A(T)**,). 

We know from Lemma 3.1 that <5 commutes with the regular operations. It is also-
easily seen that 3(A (Tj)=ô(T) holds for every forest T. These assertions imply 
the identities ( * ) — ( * * *) . • 

Next we introduce a new 'D-regular interpretation' | | j f [| of the regular ex-
pression X 

(i) if J f = 0, then || J f || is the empty forest, ; 

(ii) if x = p(per,), then i m i = {p}, 

(iii) if j f = ( J f Y + J Q , then | |X| | = l l^ l l U| |Jf2 | | , 

(iv) if _ j f = ( ^ / J Q , then | | j f | | = HJfJ O J | J f 2 | | , 

(v) if ¿T = (JTI)*1, then ||JT|| = 

7 is a D-regular forest if r = | | X | | for some regular expression j f . 

Lemma 3. For every regular expression j f , \ \ j f \ \ = A ( \ û f \ ) . 

Proof By induction on the number of the symbols of regular operations in 
using Lemma 2. • 

Theorem 4. The forest T is recognizable by deterministic ascending automata 
iff T is Z>-regular, and this connection is effective. 

Proof (1) Let T be given by the deterministic ascending automaton A. Ac-
cording to Proposition 2.1 and 2.3 we can effectively construct a deterministic 
descending automaton B and a regular expression j T such that 

T = T(A) = T(B) = \X\. 

T is closed (see Corollary 3.6) thus T=A(T)=A{|X |). But this yields, by Lemma 3, 
T= ||JT||. 

(2) Now let us assume that T— ||JT|| for the regular expression J f . By Pro-
position 2.1 and 2.3 we can effectively construct a nondeterministic ascending auto-
maton C accepting C can be assumed to be normalized (see. Lemma 3.4). 
Proceeding as in Lemma 3.5 we get the deterministic ascending powerset auto-
maton PC for which T{?C)=A{T{C))=A(\iï\)=\\iï\\ holds. • 

R E M A R K . In the preceding proof we used Proposition 2 . 3 in both directions. 
Theorem 4 could be proved without it, but in that case the proof would be more 
lengthy and difficult. 
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5. D-regular tree grammars 

In Proposition 2.4 we have established a close connection between forests 
.generable by regular tree grammars and forests recognizable by deterministic 
descending automata. In this section we shall give a similar characterization for 
forests accepted by deterministic ascending automata. To this we define a special 
kind of regular tree grammars. 

The regular tree grammar r=(Q, F, P, S) is called deterministic regular, or 
'briefly D-regular if 

(i) S is a singleton and 
(ii) for every nonterminal q and operational symbol / there is exactly one 

•derivation rule in P, whose left side is q and whose right side begins with / . 

Theorem 1. The forest T is recognizable by deterministic ascending automata 
iff T is generable by D-regular tree grammars. 

Proof. The well-known constructions of converting a regular tree grammar 
into an equivalent (nondeterministic) ascending automaton and vice versa ^can 
be used. The only thing to be noted is that the assumptions (i) and (ii) in the de-
finition guarantee the preservation of the determinism in both directions. • 

Corollary 2. For every regular tree grammar r one can decide effectively whether-
T(T) can be generated by D-regular tree grammars. 

Proof Since a nondeterministic ascending automaton accepting T(T) can 
•effectively be constructed (cf. Proposition 2.1 and [2]) Corollary 3.6 and Theorem 1 
immediately imply our Corollary. • 
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