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I. Introduction 

The use of the relational model of data structures proposed by E . F . CODD 
[2, 3] is a promising mathematical tool for handling data. In this model the user's 
data are represented by relationships. For definition, let Q be a finite non-empty 
set, and for each b£Q let Tb be a nonempty set associated with b. The elements of 
Q are called attribute names and Tb is said to be the domain of b. Now a relationship 
over Q is defined to be any finite subset of JJ Tb. A relationship R over 

b£Si 
Q={a1, . . . ,#„} can be represented by a two-dimensional table in which the columns 
correspond to attribute names and rows correspond to the elements of R: 

fll a2 ... 

g g ( « l ) g(«2) g(a„) 

(geR and g{a^Ta). 
This table is not unique, the order of columns and that of rows are arbitrary. 
The concept of functional dependency is due to E . F. CODD [2, 3]. For the 

definition, let A and B be subsets of Q and let J? be a relationship over Q. We say 
that B functionally depends on A in R (in notation A B or simply A —— B) if 
for all g, heR 

(Va€A)(g(a) = h(a)) =>(Vb£B)(g(b) - h(b)) 
is satisfied. The link A-£-»B is said to be a functional dependency. 

From the above definition we can obtain three other concepts of dependency 
by changing the quantifiers. Particularly, the concept of ¿-dependency is introduced 
as follows: 

DEFINITION. Let A and B be subsets of Q and let R be a relationship over Q. 
B is said to be d-dependent on A in the relationship R (in notation A -j-» B or simply 
A-±~B) if for any g, h£R 

(3a£A)(g(a) - k(a)) =>(3b6£)(g(b) = h(b)) 
holds. 

4 Acta Cybernetica V/l 
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In any relationship of a time-varying data structure at a particular moment 
of time there are dependencies. Some of them may be fortuitous or unimportant, 
but it is reasonable to require that at least certain dependencies be present at any 
time. Organizing the data structure and some of the user's activities can be based 
on these constant dependencies. In case of functional dependencies this has been 
shown in Codd's papers [2, 3]. Now we want to show the applicability of in-
dependencies in this aspect. For this reason we give an example. Let 

Q = {author, title, room, bookcase} 

and let a relationship R be given in the following table: 

author title room bookcase author title room bookcase 

1 1 1 2 10 10 3 2 
2 2 1 3 11 11 3 3 
3 3 1 1 12 12 3 1 
4 4 1 2 1 4 1 1 
5 5 2 3 5 8 3 3 
6 6 2 1 4 1 1 3 
7 7 2 2 7 10 3 2 
8 8 2 3 6 10 2 2 
9 9 " 3 1 6 9 2 1 

For the sake of visibility we can think R is a library in which eighteen books are 
stocked. The library consists of three rooms, each room has three bookcases, and 
only two books can go in each bookcase. The library is organized so that 
{author, title} {room, bookcase}. Furthermore, the book with au thor= t i t l e= / 

0 = 1, 2, . . . , 12) is in the [ — | p ] - t h room in the | l + 3 j y j j - t h bookcase. (Here [x] 

denotes the largest integer not greater than x and {x}=x—[x].) A reader who 
knows that either the title or the author of a particular book is, say, i can find the 

book by scanning the p ^ j - t h room and the | l + 3 j y j j - t h bookcases only. 

Now in connection with this example we try to express why the concept of 
¿-dependency can have some practical importance. The task of obtaining informa-
tion from a given data structure is closely connected with the dependencies that 
are present in the data stucture. So, when we list some possibly advantageous prop-
erties of using ¿/-dependencies below, we restrict our interest to the case of obtain-
ing information only. Suppose the user "knows" the values of attributes of a given 
set A of attribute names and wants to learn the values of attributes of another set B. 

(1) If A - i ^ B (in a given relationship R) then the user is not assumed to know 
all the attribute values from A. If he knows the value of at least one attribute in 
A and the «/-dependency A-^-B is also given (by a suitable family of functions 

¿a (a£A), da: Tg— ]J Tb, compare with the functions and 1 + 3 j y j in 
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our example), then he can find the values of attributes in B by scanning a part 
of R only. (The values of attributes in B can be not unique if A —-B does not hold.) 

(2) Suppose both A B and A B hold. (This was the case in our example 
with A = {author, title} and B= {room, bookcase}.) Sometimes, in spite of scann-
ing a part of R, the method of (1) can be more immediate than making use of the 
explicit function (p: J] Ta — JJ Tb which describes the functional dependency 

a(A biB 

A-^B, since such a function <p can be given by another table in general. 
(3) One can have A - ^ - B without having A - ^ - B . 
(4) The user can need only at least one value of attributes in B (without knowing 

which one is correct). E.g., this can occur when he is interested in C, B is an inter-
mediate step, and B-~*C holds in an other relationship Q. 

For a given relationship R over Q let 

= {04, B): A c Q, B Q Q, A-^B) 
and 

9r = {(A, B): AQQ, BQ Q, A 5}. 

2Fr and S)R are called the full family of functional dependencies of R and the full 
family of ¿-dependencies of R, respectively. In [1] W . W . ARMSTRONG has given an 
abstract characterization of full families of functional dependencies. Our main 
goal here is to give an abstract characterization for full families of ¿-dependencies. 
Due to duality between the concept of functional dependency and that of d-
dependency, a considerable part of Armstrong's paper [1] is dualized and used in 
the present paper. 

II. Abstract characterization of d-dependencies 

Let Q be a finite non-empty set and let P(Q) denote the set of all subsets of Q. 
We define a partial order ^ over P(Q)xP(Q) by (A, D) iff AQC and 
B ^ D . We recall a definition from Armstrong's paper [1]: 

A subset J* of P ( Q ) X P ( 0 ) is called an abstract full family of functional de-
pendencies over Q if the following four axioms hold for any elements A, B, C and 
D in P(Q): 

(Fl) (A,A)£P.-
(F2) (A, and (B, C i m p l y (A, C)€Jz r . 
(F3) If (A,B)e^ and (A, B)^(C, D) then 
(F4) If (A,B)£^ and (C, £>)€P then (A\JC,B\JD)£F. 

Now Armstrong's abstract characterization of functional dependencies is the 
following: 

A subset 37 of P(Q)xP(Q) is of the form for some relationship R 
over Q iff is an abstract full family of functional dependencies. 

To formulate our main result the following definition is needed. 

4* 
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DEFINITION. A subset Qi of P(Q)XP(£2) is called an abstract full family of 
d-dependencies if the following live axioms hold for any elements A, B, C and D 
in P(Q). (The notation Y will be used instead of (X, 

(Dl) A-~A. 
• (D2) If A - ^ B and B - ^ C then A - ^ C . 

(D3) If A-+B and (C, D)^(A, B) then C - - D . 
(D4) If A-+B and C - - D then AKJC-^BUD. 
(D5) If A-^0 then A=0. 

In the main theorem below an abstract characterization of ¿/-dependencies 
is given. 

Theorem. Let Q be an arbitrary non-empty set of attribute names. Then, for 
any non-empty relationship R over Q, 3>R is an abstract full family of d-dependencies. 
Conversely, for any abstract full family 3> of d-dependencies over Q there exists 
a nonempty relationship R over Q such that !3=3>R. 

REMARK. The case R=0 is excluded from the Theorem. However this fact 
does not mean the loss of generality, since trivially can be characterized by 
@q=P(Q)XP(Q). 

HI. The proof of the Theorem 

It is a straightforward consequence of definitions that &R is an abstract full 
family of (/-dependencies. 

To prove the converse several lemmas will be needed. In what follows all 
concepts and statements concern a fixed set C2={a1, ..., a„} of attribute names. 
For an abstract full family 3> of ¿/-dependencies let us denote the set of 
maximal elements of 

Claim 1. Let us denote (A, B)£Ji3 by A/B. Then Jla has the following four 
properties: 

(Ml) For any AeP(Q) there exist X and Y in P(Q) such that (A, A)i£(X, Y) 
and X/Y\ 

(M2) \ f A / B , C/D and (A,B)^(C,D), then ( A , B ) = ( C , D ) ; 
(M3) If A/B, B^LC and C/D, then AQC; 
(M4) If A/0 then A = 0; 

where A, B, C and D are universally quantified over P(Q). 

Proof. Ml , M2 and M4 are trivially satisfied. Suppose we have A/B, B^C 

and C/D. Then B-^C (i.e., (B, C)e@) follows from D l and D3, whence A—^D 
follows by D2. Now D4 yields AUC-^D. The maximality of (C, D) in 3) implies 
AUCQC, whence we obtain the required inclusion AQC. • 

Let a subset Jl of P(Q)XP(Q) be called an m-family if it satisfies the axioms 
Ml , M2, M3 and M4. 



¿-dependency structures in the relational model of data '53 

Claim 2. For any m-family Jt the set 

3>M = {(A, B)£P(Q)XP(Q)\ there exists (C, D)dJt such that (A, B) ^ (C, Z>)} 

is an abstract full family of ¿-dependencies. 

Proof. It is trivial that 3M satisfies D l , D3 and D5. To check D2, let (A, B) 
and (B, C) belong to 3M. Then (A, BJ and (B, C)^(B2, C2) hold 
for some (A1; B^ and (B2, C2)£Jl. From B1'^BQB2 and M3 we obtain A1QB2. 
Now (A, C)£3M follows from (A, C)^(B2, C2). 

As for D4, suppose (A, B) and (C, D) are in 3)M. Let (A1, B{) and (C l 5 Dx) 
be taken from Jt such that (A, B)^(A1, BJ and (C, £>)2i(Cl5 DJ. Now M l 
yields the existence of an (U, V) in Jt with the property (BX\}DX, B^JDJ^f U, V). 
Since B t Q U and D ^ U , M3 applies. We obtain A ^ U and C ^ U . Thus the 
required (AUC, BUD)£3Jt follows from (A\JC,B\JD)(A^U Q, . ^ UD±) 

• 

Lemma 1. For any abstract full family 3 of ¿-dependencies the family Jla 
of maximal elements of 3 is an m-family. Conversely, any /«-family Jt is the family 
of maximal elements of exactly one abstract full family 

3>M = {(A, B)eP(Q)xP(Q): (A, B) : (C, D) for some (C, D)£jl) 

of ¿-dependencies. 

Proof. D3 yields that any abstract full family 3 of ¿-dependencies is uniquely 
determined by Jl9. The rest has already been proved in Claims 1 and 2. • 

Now we could deal with m-families instead of abstract full families by Lemma 1• 
However, the concept of m-families is still complicated to our purposes. Surprisingly^ 
certain semilattices will be suitable to characterize both abstract full families and 
m-families. For the sake of brevity, 0—1 subsemilattices of P(Q) will be called 
d-semilattices. I.e., y is a ¿-semilattice over Q iff it is a subset of P(Q) containing 
0, Q and the intersection of any two of its elements. The following statements will 
show the significance of ¿-semilattices. First, for an m-family Jt, the semi-
lattice according to Jl, is defined by 

¥M = {A: AQQ and (A, B)£Jt for some B). 

Similarly, for an abstract full family 3, £fa is defined by SpmS). 

Claim 3. SfM and are ¿-semilattices for any abstract full family 3 of in-
dependencies and m-family J(.- ' H 

Proof. It is enough to check that f f M is a ¿-semilattice. From Ml we conclude 
"that Qdifji. M l and M4 yields that Suppose A and B are in SfM, and let 
C, D be chosen so that (A, C)£Jt and (B, D)£Jt. By Ml a pair (U, V)£Jt is ob-
tained such that (AC\B,A^B)^{U,V). Since VQA and V<=B, M3 applies 
and we obtain UQA and UQB. Hence Af)B=U implies AC\Bc£fj{. • 
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Claim 4. For any ¿-semilattice y over Q the family 

Sy = {(A, B)£P(Q)XP(Q): for any X^Sf BQX implies A g X ) 

is an abstract full family of ¿-dependencies. 
The proof is straightforward and so it will be omitted. 

Lemma 2. For any abstract full family & of ¿-dependencies •9'3 is a ¿-semilattice. 
Conversely, any ¿-semilattice coincides with Sf a for exactly one abstract full 
family Q) of ¿-dependencies, namely for 

Proof. We have already proved that Sly is an abstract full family of d-
dependencies and S f a is a ¿-semilattice. First we show that Suppose 
A£Sf and choose BeP(Q), B^A, such that B is minimal with respect to the prop-
erty (A,B)£&y. In order to show that (A, B) is a maximal element in Sy, we 
assume that (A, B)<(C, D)eSy. Then AcC because of the coice of B, and 
we have (A, 2?)<(C, B)^(C, D). Hence we obtain (C, B)£&y. Now B^AiSf 
and the definition of 3>y yield CQA, which is a contradiction. Therefore (A, B) 
is maximal in S y and so 

To show the converse inclusion, suppose A . Then (A, B) is maximal 
in 2iy for some B. Let J f denote the set {X: X£P((2) and AczX}. Since (X , B)i@y 
(XfEJt?), we can assign an element UxC£f such that BQUx and X%Ux. Since 
¡f is a finite semilattice, H= D {Ux: Xe^f} belongs to Now BQH and 
(A,B)eSf implies AQH. If we had He J? then H%UH would contradict 
H=f]{Ux: I ^ } g t / H . Consequently, A<£H and so A = H T h e equality 

has been shown. 
For the uniqueness of 3) we assume that ¡P= = £ f Q i . We denote JtSl 

by Jit. Suppose (A,B) belongs to We can choose elements (Ah Bt) f rom Jti 
( / = 1 , 2 ) such that (A, B)^(AU B^ and (B, B)^(A2, B2). Since A2£^, 
( A 2 , C ) e ^ i for a suitable C. Now M3 yields A1QA2, which implies (A, B)^ 
S(A2, B2). By D3 we obtain (A, B)£&2. We have shown the inclusion 
while ^ Q ® ! follows similarly. • 

A map <p: P(Q)-+P(Q) is called a closure operator (on Q) if for any 
X, Y£P(Q), XQ Y, 

X^X<p = (X(p)q> 
and 

Xcp Q Yep , 

hold. For any ¿-semilattice i f we define a closure operator <py by the following way: 

Xcpy = f l { r : YeSf and XQY}. 

It is easy to see that, for any X£P(Q), Xcpy^. Moreover XeSf iff X=X(py 

Lemma 3. Let a ¿-semilattice and XeP(Q). Then Xcpy={a: ({a}, X)eSy}. 

Proof. Let U denote the right-hand side of the above equality, and let 2)=3y. 
D1 and D3 yield XQU and (X, U)£S. We have (U,X)eS> by D4. Let A be a 
minimal (with respect to Q ) subset of X for which (U, A)eSl. We claim that 
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(U, A)£M3. TO show this let the opposite case, (U, A)<(V, be assumed. 
By the choice of A we have UaV and (U, A)<(V, B). We obtain 

(F, A)£® by D3, 
(A, X)£@> by D1 and D3, 

(V, X)d® by D2. 
Now ({0}, X)£2! for any V by D3. This means VQU, which contradicts Uc.V. 
Thus we have shown (U, A)£Jia. Therefore U(i£fa, whence U^Hf by Lemma 2. 

Now X ^ Q U follows from X Q U and U££f. To make the proof complete 
we have to show that if XQC£SP then U ^ C . Suppose X ^ C ^ y and choose 
an element D£P(Q) such that (C, D) is a maximal element in Since ((/, A) is 
also a maximal element in 3 and A § XQ C, we obtain UQC from M3. • 

A 
COROLLARY. Let y be a rf-semilattice and let X£P(Q). Then X£Sf iff ({a}, X)£@<r 

for a£X only. 
The concept of ¿-semilattices is already simple and worth being connected with 

relationships. A natural connection is given in the following definition. 

DEFINITION. Let R be a relationship. We define ¿fR, the ¿-semilattice associated 
with R, t o be SF3R. 

Now, by Lemma 2, we have only to prove that for any ¿-semilattice Sf there 
exists a relationship R such that ¿f The simplest case is settled in the 
following 

Claim 5. Let y = {0,£2}. Then ¡P=yR for any one-element relationship R' 

The proof, which is trivial by definitions, will be omitted. 

For A£P(Q) we define an at most three-element ¿-semilattice9~A to be {0, A, £2}. 
A relatively simple case is handled in the following 

Lemma 4. Let A£P(Q), A^0 and A^Q. Then where R={g,h} 
is a two-element relationship defined by 

g(a)=l for all a£Q, 
h{a)=2 for a£A, 
h(a)=l for a£Q\A. 

Proof. The relationship R can be visualized by the following table: 

Since ({*}, A)$@ r for x$A, we have A£SfR by the Corollary. Hence Now 
suppose X£P(Q), X^A, X^0, X^i2. If / 4 \ X is non-empty, say u£A\X, then 
({«}, X)£@r. Hence u£X<pyR\X. If A\X is empty, i.e. AaXczQ, then 
({»}, X)d@R and v£X(pyR\X for any v£Q\X. In both cases X^X(pyR, whence 
X ^ y R . Therefore 3TA=£fR. • 

and 

A 
a b . 

QjA 
c d 

g 1 1 

h 2 2 
1 1 

* 1 1 
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For ¿-semilattices (ie/) we define the sum of to be the smallest 

d-semilattice containing ¡fx for all iel. It is easy to check that : 

Claim 6. Let (ie I, I finite) be ¿/-semilattices over Q. Then the following 
equality holds: 

= M X } -
, ¡a •€/ 

Now we introduce an addition concept for relationships, which will be in 
a close connection with the addition of ¿-semilattices. 

DEFINITION. Let J?F (iel, I finite) be non-empty relationships over Q, where 
IJTb. i - For iO and f£Rt we define f e ff ({¿}xTbJ) by f ( b ) = (i, f(b)) 

(be Q). Set R[= { / ' : feRi). Then % Rt, the sum of Rh is defined to be (J Ri-
ta HI 

Roughly saying, we obtain 2 Rt if we make Rt (¿e I) pairwise disjoint by in-
¡6/ 

dices and take their disjoint union. 
A crucial step of our proof is 

Lemma 5. Let Rt (ieh I finite) be arbitrary relationships over Q. Let 2 Ri 
¡6/ 

be denoted by R. Then SPR= 2 SFR.. 
»6/ 

Proof. Let S)R, 3>R., SPR and i f R . ( i e l ) be denoted by y and re-
spectively. First we show that for any (A, B)eP(@)XP(Q) • 

(A,B)e@ iff (A,B)eS>i for all iel. (1) 

Suppose (A, B)eS. Let g, heRi such that g(a)=h(a) for some a£A. Then g'(a) = 
=h'(a) as well, whence gi(b)=hi(b) and so g(b)=h(b) for some beB. I.e., 
(A, B)e@i. Conversely, let (A, B)e2'i for all iel- Suppose g\ hJeR and gi(a)=hJ(a). 
Then (i, g(s))=(j, h(a)) implies i=j and g(a)=h(a) in Rt. Therefore there 
exists beB such that g(b)=h(b), from which we obtain g'(b)=(i, g(bj)=(j, h(b))= 
=hJ(b). Thus (1) has been shown. 

Now let us assume that AeSf. We compute by Lemma 3, Corollary 1 and (1) 
as follows: 

A = Ay? = {a: ({a}, A)e®} = {a: ({a},'AK@i for iel} = 

= fl{«: ({a},A)e®] = n ^ r ier mi 

Therefore Ae Z ^ by Claim 6. We have obtained that i f c To prove 
izi mi 

the converse inclusion let AeS^i and suppose Then there exists an ae i2 such 
that aeA<py\A. We have ({a}, A)e@ by Lemma 3 and ({a},A)e@i by (1). But 
({a}, A)e2>i implies aeA<py=A, which is a contradiction. Hence Ae£f and there-
fore V. Finally, &'iQ£/'(iei) implies 2 = ^ which completes the proof. i i l 

Now we can prove 
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Lemma 6. F o r any ¿-semilattice y there exists a relat ionship R such 
that 

) 
Proof. If SP has a t least three elements then L e m m a s 4 and 5 together w i th 

the equali ty 
sr= 2 AZS? 

imply our s ta tement . T h e rest is included in Cla im 5. • 

Finally, L e m m a s 2 and 6 complete the p roof of Theorem. 

Abstract 

The concept of ¿-dependencies in relationships is introduced. An axiomatic description of 
¿-dependencies in an arbitrary relationship is presented. 
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