
Synthesis of abstract algorithms

B y L . VARGA

1. Introduction

In the second half of the sixties the programming methodology evolved on
the basis of the recognation that the correctness of a program, corresponding to
a given specification can be proven, and during the last ten years, the programming
methodology has become one of the most important branches of computer science.

The programming methodology has been changed radically and it now in-
cludes broad research areas that deal with both practical and theoretical questions
of program development and management. The current research directions in pro-
gramming methodology is summarized in [14] and a more detailed description of
its principal subareas can be found in the books [13], [15].

Within the scope of programming methodology important research has been
concentrated on studying the correctness of programs. In recent years there has
been increasing activity in this field. There are two different approaches to achieving
program correctness.

1. The engineering approach has been aiming at turning the art of programming
into an engineering science. Its aim is to develop more efficient software tools and
specify standard that can be used in the process of development of programs as
a means to improve the relaibility and reduce the software cost. Complete systems
called automated software evaluation systems, for different phase of software life
cycle have been developed such a system includes automatic tools for requirement
and design analysis, testing, maintenance etc. A comprehensive survey of the soft-
ware tools and automated software evaluation systems can be found in [12].

Altough the engineering approach generally is not capable of demonstrating
the correctness of a program, this approach seems to be an effective approach to
the validation of programs in practice.

2. The analytic approach uses program verification methods to ensure that
the desired program conformes to its correctness specifications. The role of soft-
ware verification, the proof techniques and various verification systems are dis-
cussed in the survey papers [5], [7].

As far as the analytic approach is concerned, in the beginning the attention
was focused on a posteriori verification of programs. That is, the problem of the
program correctness proof was approached in the following way. Given a program

•60 L. Varga

and a specification, it is to be proven, that the program realizes exactly the mapping
stated in the specification.

Later on, however it turned out, that different programs, which realize the
same mapping may be essentially different from the point of view of the correctness
proof. The difficulty of a proof depends on the complexity of the program.

This led to the conclusion, that the correctness of a program has to be established
during its construction. Programs have to'be designed such'a way, that the proof
of their correctness should be simple. In fact, first a correctness proof has to be
constructed and than a corresponding program to this proof should be given. This
is the constructive approach to achieving program correctness, which represents
one of the most significant advance in programming methodology. This approach
has produced various program design and construction methods ([1], [3], [10], [17]).
This methods require as input a specification of what is to be achieved and produce
as output a program text which is a specification of how is to be achieved.

The methods initiated by the constructive approach have made a fundamental
contribution to the synthesis of programs in extracting principles for deriving pro-
grams systematically from their specifications. These principles are formulated pre-
cisely enough to be carried out by an automatic synthesis system in [8], [9].

The main steps of an automatic program synthesis system are.
1. The system accepts specifications, which describe some function to be real-

ized by means of primitives of a well defined system. Generally these primitives
are the statements of a programming language.

The basic approach is to transform the specifications step by step according
to certain transformation rules, which are guided by two kinds of strategic controls:

2. Some transformations attempt to transform the specifications into equivalent
specifications or replace them by stronger assertions about the states of the desired
programs. The aim is to produce an appropriate form for applying programming
strategies.

3. Other transformations attempt to transform the specification into the de-
sired program text, decomposing a given program description into subprogram
descriptions.

These new descriptions are transformed into newer ones repeatedly until a pro-
gram text of a source programming language is obtained.

In this paper we concentrate on the third problem, and programming strategies
are formulated for developing the desired abstract programs step by step using the
Hoare's deductive system [3]. The levels of abstraction are used with the Vienna
Definition Language [16]. This language permits concentration on logical solutions
to problems, rather than the form and contraints within that the solution must be
stated. The language helps the programmers to think in terms of hierarchy of macro
statements and express structured programming logic in stepwise refinement of
a program and its data structure.

We are influenced by the strategies formulated by N. Dershowitz and Z.
Manna [2]. The essence of our paper is the presentation of similar strategies
applied to VDL-programs.

The programming strategies are based on the Hoare's deductive system. Ex-
tending the Hoare's methods to VDL-statements of similar structure to the state-
ments of usual programming languages is relatively simple. However the inde-
terminism — which means, that the VDL-language allows programs to be written

Synthesis of abstract algorithms 61:

in that the execution order of the statements is not predefined — presents a special
problem. The programming strategies of such structures can be formulated by
using the results of correctness proof of parallel programs [4]. A detailed treatment
of correctness proofs of parallel programs can be found in Gries and Owicky's
papers [11].

The next section presents the b a ^ strategies for developing VDL-programs
from appropriate forms of specificatiOTS.

In Section 3 the VDL-graph is defined as an abstraction of a class of data
structures. The VDL-graph specify a connected graph which has one entry node
at least, but may have several terminal nodes and there must be a path from one
entry node at least to a terminal node through every node in the graph.

In Section 4 the deductive technique is illustrated by the example of an abstract
graph walk algorithm. Sections 5 and 6 demonstrate the application of VDL-graph
to specifying a linkage editor and an inverse assembler model, respectively.

2. Strategies for stepwise refinement

In this section the main strategies are formulated for developing a VDL-
program from its specification.

The following notation will be used

№ p №

where Q and R are logical statements about states of the abstract machine (VDL-
machine) and P is a VDL-program (program-tree). This may be interpreted as
follows: If Q is true before execution of a VDL-program P, and if the execution
terminates, then R will hold after executing P. This notation expresses the partial
correctness of a VDL-program P with respect to its input specification Q and out-
put specification R.

Our initial goal is to synthesize a program of the general form

{*(£)} stmt(Xl, x2, ..., xn) {Q(c0)f\xx = / I (£ „) A X 2 = / 2 (£ O) A . . . A X „ = / „ (£ „) }

where C0 is the initial state of the abstract machine and / l s / 2 , . . . , f„ are given func-
tions. We require that the output state c of the desired program stmt satisfy the
given specification R(J;), provided the initial state c0 satisfies the given input speci-
fication 0).

In order to synthesize the program this top-level goal may be transformed
into equivalent goal or it may be replaced by a stronger goal, which can be achieved
by an assignement (value returning) instruction or reduced to subgoals by using
the following strategies.

2.1. The strategy of assignment. Given the goal of the form

< s - q : e'j), ..., (s—cn: e^»)} e'0: stmt (x1 ; ...,xk) {Q(x 1(...,xk\ £)}

where the selectors s—cl,s—ci,...,s—cn are independent, and

e'i = xk; £), ' = 0> "

•62 L. Varga

then this goal can be achieved by the following value returning instruction

PASS: e0(xi, ..., xk; 0
s-ct: e1(x1, ...,xk; 0

2.2. The conditional strategy. A goal of the form

{q1Vq2V...Vqn} stmt {p}

can be reduced by the conditional instruction

stmt =
Pi — stmt!
p2 " stmt2

T — stmtn
to the subgoals

{ f t } stmt! {pAPi}, {q2} Stmt2 {pA~\p1Ap2}, ..., {qa} stmt„ {pA 1 pjA... A 1
Any control tree can be constructed by using only the following two macro

definitions:
stmt ~

stmti,
stmt2

and
stmt —

null;
stmtl5

stmtn

The strategies for these basic forms will now be given.

2.3. The strategy of composition. A goal

{r} stmt {p}

can be decomposed by the instruction

stmt =
stmti,

stmt2
to the subgoals '

{q} stmt2 {p} and {?} stmt1 {q}.

2.4. The strategy of indeterminism. Given a conjunctive goal of the form

{q1Aq2A...Aq„} stmt fo A ft A... Ap„}

Synthesis of abstract algorithms 63:

then it can be reduced by the instruction

stmt =
null;

stmt1,
stmt2,

stmt„
to the following subgoals

{<¡1} stmt! {P!>, {q2} stmt2 {p2},..., {qn} stmtn {p„}

provided these theorems are interference-free. This property of the theorems is
defined as follows:

Definition 2.1. Given a control tree t with the theorem

M * to (0

and the value returning instruction stmt with some precondition pre (stmt). If the;
execution of stmt after t does not alter the validity of q, that is

{q} stmt {pre (stmt)A q}

and the execution of stmt before any st within t does not alter the validity of the
precondition of st, that is

\

{pre (si)} stmt {pre (stmt) A pie (s/)}

then we say that stmt does not interfere with theorem (i).

Definition 2.2. Given the theorems

{?i} stmt! { p j , {q2} stmt2 {p2},..., {qn} stmt„ {/?„} (ii)

and let sti be a value returning instruction within stmt^. If for all i, i= 1, 2, ...,n
sti does not interfere with

{qj} stmtj {pj}; j = 1, 2, ..., n, j ^ i

then the theorems (ii) are interference-free.
Accordingly, in applying the strategy of indeterminism, we must ensure the

interference-free. If qi,q2,...,qn are statements about different components of
the state £ and similarly pi,p2,...,p„ do not contain common variables and the
macros stmtx,stmt2,...,stmt„ operate on independent components of £ then the
interference-freeness obviously satisfies.

The conditional strategy has an important special case:

2.5. The strategy of iteration. A goal of the form

{9} stmt {/>}

•64 L. Varga

•can be decomposed by the iteration

stmt =
px — stmt2
T - stmt;

stmti
t o the subgoals «

{p} stmt! {pA ~1 Pi} and {q} stmt2 {pA px}

provided the iteration terminates.
Here the conjunctive goal pApv is achieved by forming an iteration so that

the predicate p remains invariant during the iteration until the predicate pt is
found false.

In the special case of q=pApl} the instruction

stmt =
Pi — null
T - stmt;

stmti

can be used for reducing our goal to the subgoal

{p} stmti {pAlPi} .

At last a rule will be given here, which can be used for proving the termination
of an iteration.

2.6. The rule of termination. Let the iteration

stmt =
Pi — null
T — stmt;

stmti
with the precondition

pre {stmt) = p
be given.

Let u be an integer function of the appropriate variables. If

a) p u ^ O

b) pA*lpx z> u > 0

c) {«' < u} stmti { p A l p J (u' is the value of u after stmtj)

d) and any assignment statement, that can be executed parallel with the
statement stmt does not interfere with the theorem c;

then the iteration terminates.
For example, the termination of the iteration

process (t) =
length (list)=0—null
T-»process (tail (/));

proc (head (t))

Synthesis of abstract algorithms 65:

is guarantee!, because for the function

u(i) = length (0
with the precondition

is-pred-list (t)
all the criterions a)—d) hold.

3. The VDL-graph

The graph, that can be walked from its entry nodes, plays an important role
in programming. In this section the definition of the VDL-graph is given, which
can be viewed as an abstraction of graph data structures.

Let
is-node-set=({(s: is-node)|is-select (s)})

is-node=((.?-value: is-pred), (s-desc: is-select-list))

where "is-select" and "is-pred" represent arbitrary predicates. Such an object is
shown in Figure 3.1, where

ad {x|is-pred (x)}
and

s, s;6 {s'|is-select (s')}
Let

is-node-set (/) = T
The notation t£f is used if

(3 s, is-select (s) = T) (s (f) = t).

Definition 3.1. Let t£f and «€/. The node n refers to t if and only if

(3 /, l á i á length (s-desc («))) (elem (t')(s-desc («))(/) = t).

Notationally, we shall use the form

Definition 3.2. The node tk is reachable from node t1, or there exists a reference
path from t1 to tk if and only if

«

t1=>t2=* ...=>tk, (t^f i = 1 ,2, ..., k).

We shall use the following notation for the reference path

h=>*tk.

Definition 3.3. The set of VDL-graph is

{g|is-pred-graph (g)}
where

is-pred-graph = is-node-set

and there exists a non-empty subset M(g) of the nodes of g distinquished with the
property that any node n£g and n$M(g) can be reached from at least one
element of M(g).

S Acta Cybernetica V/l

©

•66 L. Varga

The elements of M{g) are called directly reachable nodes. - •
Consequently each node of a -VDL-graph can be reached from at least one

directly reachable node.

Definition 3.4. Let root (/) be the function, for which

next (i)(n) - (elem (i) (s-desc (n))(g), 1 ^ i ^ length (s-desc (n)).

These functions can be used as selectors; for example

value.next (2).next (1).root (3)(g)=value (next (2)(next (l)(root (3)(g)))).

Using the functions defined above, the structure of a VDL-graph can be visual-
ized by a graph. For example, the VDL-graph, denoted by the following relations

g = /¿ 0«root(l) : «!>, (root (2): n2>, (s3: n3), <s4: n4), (s-D: n5>),
= /¿0((s-value: a), (s-desc: (s3, s4)>).

H, = ¿¡0((s-value: b), (s-desc: (s4))),
«3 = /i0((s-value: c), (s-desc: (>)),
«4 = ^o(<s-value: d), (s-desc: (s5, s2))),
«5 = >o((s-value: e), (i-desc: (») ,

if

and' let

root (/) = s¡, i = 1, 2, ..., n

M(g) = {Si(g), s2(g), ...,s„(g)}

value (n) = s-value (n),

., n

can be represented by the graph shown in Figure 3.2.

root(l) root (2)

I
next(l) next(2) next(l) next(2)

a

elem(i')

I next(l)

Fig. 3.1
A node set

Fig. 3.2
A VDL-graph

The nodes of the graph in the Fig. 3.2 are circles and the values yielded by the
nodes are put in the circles. The relationships between the nodes are represented
by arrows and the arrows are named by the function next (/).

Synthesis of abstract algorithms 67

t

The figure of a VDL-graph reflects its structure in this way, but the formula
of a VDL-graph does not do it directly. However it is not difficult to construct
a formula that also satisfies this requirement. This problem is not dealt here.

In Definition 3.4 selection operations are defined on the VDL-graph. Con-
struction operations can also defined on it, but we intend to deal with statical VDL-
graph only, hence construction operations' are not defined.

4. The synthesis of the graph walk algorithm

The graph walk is a fundamental operation. Most of the selection and con-
struction operations of a graph can be established on it.

A graph walk can be carried out according to different strategies. In a graph
walk algorithm each node of the graph is processed one after the other. The walk
strategy determines the order of the nodes to be processed. In the following, we
present a systematic development of a general graph walk algorithm, where the
walk strategy and the operations over the nodes are not specified. In this way an
abstraction of the graph walk algorithms is given from which concrete graph walks
can be deduce by the specification of the walk strategy and the operation over
the nodes.

Our top level goal is

Goal 1.

{is-target-graph (g')} g': walk (g) {is-source-graph (g)}

where the map trans: {jt|is-source (x)} — {>|is-target (>•)}

is not specified. Therefore the function trans will be used as a parameter of the
desired algorithm:

walk (g; trans).

Let the set of states of the abstract machine be '

{ijis-state (£)} where

is-state=«s-graph: is-pred-graph), (¿--table: is-table), (¿-control:is-control)).

The component ¿-graph (c) is the graph g to be walked. The component
¿-table (c) is used to mark which nodes of the graph g have been processed. Therefore

is-table=({(s: is-value)|is-select (5)})
where

is-value = {Y, N}
so that

s(s-table (c)) = Y

if and only if the s-value (s(g)) has been maped to a target value. .

5*

•68 L. Varga

We do not intend to specify the walk strategy. Therefore we introduce the
function •

next-selector
as follows: .

Definition 4.1. The function next-selector is a function over the set

{f|is-table (0}
and the range of the function is

is-selectU {i2}
so that if

(3 s, is-select (s) = T)(s(t) = F)

then next-selector provides a selector s with the property

s(t) = N
else

next-selector (t) — Q.

Informally, the function next-selector (t) provides one of the selectors of the
table t as s(t)=N, if such an J exists and the object Q otherwise.

It is supposed that if the function next-selector is applied to the same table
t several times the result is the same.

The function next-selector will also be used as a formal parameter of the desired
algorithm and the formal parameter g will be omitted, because it is a component
of the state £:

walk (; next-selector, trans)

and it is not a value returning macro.

We can now define the initial state c0 of the abstract machine as follows

<j;0 = /i0((s-graph: g), (s-table: t0), (s-control -.walk (; next-selector, trans)))

where is-source-graph (g) = T
and

/„ = »<>({(*•• N)\s(gKM(g)}).

Hence the input specification is

<H£o): s-table (^0) =/i0({<s: N)\s(g)eM(g)})A is-source-graph (g)Ag = s-graph (g),

and our goal is

Goal 2.
{is-target-graph (s-graph (£))} walk (; next-selector, trans) {<p (iu)}

where the formal specifications of the formal parameters next-selector and trans
are disregarded.

In order to synthesize the program, we must find a sequence of transformations
to yield an equivalent description of the specification, that can be reduced by apply-

Synthesis of abstract algorithms 69:

ing one of the strategies given in Section 2. First let us intend to prepare the applica-
tion of the strategy of iteration.

To produce an appropriate form of the output specification, let us specify
the invariable properties of the data structures.

Let
a(s, c) = s(s-table (c)). . .

Our graph walk strategy could be the following: Each node s'(g) with the
property

a(s', Q) = Q

must be reachable from at least one node s(g) that waits for being processed with
the property

• Hence, the formal specification of the data components of £ is

&(£): R^i, g)AR2(c, g)AR3(Z, g)ARi(L g)AR5(g)Ag = s-graph (£),
where

R,(Q, g): (Vs, a(s, 0 * Q)(s(g) * i2)Ais-table (s-table (0),
R2(q, g): ('is, cc(s, 0 = y)(is-target (s-value (s(g)))),
R3(Z, g): (YG, is-target (s-value (s(g))))(a(s, 0 = Y),

g): (Vi ' , s'(g) * QAa(s\ 0 = £2)((3s, a(s, 0 = N)(s(g) => *s'(g))),
(g) '• is-mixed-graph (g) A is-mixed = is-sourceVis-target. • i

Theorem 4.1. v

QiC&zxptf «)•
Theorem 4.2.

8i(0 A next-selector (¿-table (c)) = Qz) is-target-graph (s-graph©).

Hence our goal may be

Goal 3.

{2i (i) A next-selector (¿-table (c)) = £>} walk (; next-selector, trans) {2i (£)}•

This suggests achieving Goal 3 with a recursive call applied to the macro walk
as follows:

walk (; next-selector, trans) ==
next-selector (s-table (£))=i2—««// .
T-^walk (; next-selector, trans);

process (; next-selector, trans)

which reduces Goal 3 to the subgoal

Goal 4.

{Qi(0} process (; next-selector, trans) {Qx (<;) A next-selector (s-table (£)) ̂ .

a

•70 L. Varga

Furthermore we must ensure the termination of the iteration. To achieve the
termination, we could require that the number of the nodes s(g) with the property

«(s, 0 = Y
be strictly increased with each iteration. Let £/(£) be the number of nodes with
the above property, then our goal is

Goal 5.
{21(?)A£/(<;) > a} process (; next-selector, trans)

{ Q i 0 0 A n e x t - s e l e c t o r (s - t a b l e (£))?* Q A U(C)=A}.

Using the strategy of composition this can be achieved by the macro
process (; next-selector, trans) =

process-node (s; trans);
s: produce-selector (; next-selector)

reducing Goal 5 to two subgoals

Goal 6.

{2i(0Aa(s , 0 = Y A 1/(0 =a +1} process-node (s; trans)

and

Goal 7.

{6i(0Aa(s , c) = NAU(c) = a} s: produce-selector(; next-selector)

{Qi(OAnext-selector (¿-table (C,))^QAU(C)=a}.

Goal 7 can.be achieved by the strategy of assignment:
produce-selector (; next-selector) =

PASS: next-selector (s-table (£)).

In order to find a strategy for reducing Goal 5, let us isolate the effect of selector
s on predicate Predicate Qx has five components. The predicate

« (s , f) = rV«(s ,- i) = JV

is of no effect on the first component of Qt.
Let us consider the components R2 and R3.

Theorem 4.3.

Kit, g)AR3(Z, g) = Xei(Z, g, S)AR31(Q, g, s)AQ21(£, g, s),
where

^21 g, s): (Vs', a(s', £) = YAs' * s)(is-target (s-value (s'(g)))X
R3i(Z, g, s): (Vs', is-target (s-value (s'(g)))As' ^ s)(a(s', 0 = Y),
621 (£> g. s): a(s, 0 = YA is-target (s-value (s(g))).

Let 'us see the component R4. We have different cases:

Synthesis of abstract algorithms 73:

1- H3" *s'(s) (s'(g) is not reachable from s(g)),
2. s(g) => s*(g) => * s'(g) and . a(sV 0 * O,
3. s (g)=>s*(g)=**s ' (g) and a(s*, c) = i3,

4. s(g) => s'(g).

Obviously, we have hot to bother with the first two cases. Hence

Theorem 4.4.
w , g) = R,^, g, s) A e M (i , r , g, S)

where

g, s): (Vs-, s'(g) * QAa(s', c) = i2A l ((s (g) s*(g) => *s'(g)A

a(s*, 0 = G)Vs(g) => s '(g)))(3s, a(s, £) = JVA5 * s)(s(g) =>*s'(g)), 1

fis«(i. g, s): (Vs', s(g) - s*(g) => s'(g)Aa(s*, 0 = «(«', i) = 0)(«(s*, §0 = AO A

(Vs', s(g) - s '(g)Aa(s' , 0 = 0)(a(s ' , O = N).
Theorem 4.5.

ei(OA«(s, <T) = rAtftf') = a + l = s) A g 2 1 (f , g, s)AQ22(£, g, s)
, where

S) = ^ (c ' , g) A * 2 1 (f , g, s)AR3l(Z\ g, s)ARil(Q', g, s)ARs(g)A
J g = s-graph (<f).

Theorem 4.6.
s)Aa(s, 0 = iVz)-fi1({)Aa(s,.{) = iV.

Hence our goal is

Goal 8.

(Q2(C/, s)AQ21(C, g, s)Ag2(£, g, s)} process-node (s(s-graph ({)); s; trans)
{Q2(Jl> s)Aa(s, £) = N}.

We try to achieve it with the strategy of irideterminism of the form

process-node (n, s; t rans)=
process-value (trans (s-value (n)), s),
process-desc (s-desc («))

reducing Goal 8 to the siibgoals "'

Goal 9.
S)AQ21(£, g, s)}process-value (v, s)

{QziZ, s)Aa(s, c) = NAv = trans (s-value (s(g)))}

and

Goal 10.

{g2Of, s)AfiM({' , g, s)} process-desc (list) {Q2(£, s)Alist = s-desc (s(gj)}

provided these are interference-free.

•72 L. Varga

Goal 8 can be achieved by using the strategy of assignment:

process-value (v, s) = •
s-graph: /¿(s-graph (i) ; (s-value0s: v»
s-table : //(s-table (£); <s: y » .

Let us consider Goal 10. The significant part of the specification is Q22. In
order to try to achieve it by iteration, we attempt to apply the following transfor-
mation:

Theorem 4.7.

Ô22 (<T, <--> g, s) = Q22l (Wi, W2) A length (w2) = 0,
where

' ô m f a ; (Vs', s(g) =• s*(g) => s'(g)Ax(s*, 0 = a(s', ç) = QAs*6w1)

(a(s*, O = 7V)A(Vs', s(g) => s'(g)Aa(s', 0 = QAs'£Wl)

(<x(s\ ç') = N)A WjW2 = s-desc (s(g)).

We can now achieve our goal by creating an iteration whose exit is length (w2)=0
and whose invariant assertion is Q2AQ221. The desired program is

process-desc (w) =
length (w) = 0 — null
T — process-desc (tail (vv)) ;

set (head (w))

which reduces Goal 10 to the subgoal

Goal 11.

s)a42I(w1<s*>, tail (w2))} set (s*)

{Q2(Ç, S)AQ221(W1, W2)AS*= head (wa) A length (w2) ^ 0}.

Obviously, the termination is now ensured.
Goal 11 can be achieved by the conditional strategy:

set (s) = '
s (s-table (0) ^ Q - null
T - link (s)

which reduces Goal 11 to thé subgoal

Goal 12.
{a(s, ç) = N} link (s) {a(s, ç) = Î2}.

Goal 12 can be achieved by a simple assignment:

link (s) =
s-table: \i(s-table (£); <s:iV>).

Synthesis of abstract algorithms 73:

Theorem 4.8. The theorems in Goal 9 and Goal 10 are interference-free. The
complete program is

walk (; next-selector, trans) =
next-selector (¿-table (¿;)) = i2 — null
T—walk (; next-selector, trans);

process (; next-selector, trans)

process (; next-selector, trans) =
process-node (s(s-graph (c)), s; trans);

s: produce-selector (; next-selector)

produce-selector (; next-selector) =
PASS: next-selector (¿-table (£))

process-node (n, s; trans) =
process-value (trans (s-value («)), s),
process-desc (s-desc (n))

process-value (v, s) =
¿-graph:/¿(¿-graph (|) ; (¿-value, s: v))
s-table: ju(s-table (£); {s: Y))

process-desc (list) =
length (list) = 0—««//
T-* process-desc (tail (list));

set (head (list))

set (¿) =
s(s-table(0)^Q-null
T—link (:s)

link (s) =
j - table: / i (s- table(0; (s:N)).

5. An abstract linkage editor

Let us consider a programming system where the segments refer to each other
only by the segments name. Then the graph walk algorithm can be applied fo r
defining- a linkage editor of this system as follows:

Let
is-r /¿-program=is-segment-code-graph

and
is-select = is-segment-name.

In detail:
i s-r/6-program=({< s: is-node)|is-segment-name (s)}),

is-node=((¿-value: is-segment-code), (j-desc: is-segment-name-list)).

Let
editor (r)

•74 L. Varga

be a function that maps a segment-code to an appropriate form as needed for link-
ing. The actual mapping is not relevant here.

Then an abstract linkage editor can be characterized by the VDL-machine
with the initial state:

c0=/<0((s-input: p), table: /„}, (s-ccntrol: walk (; next-selector, editor)))

where
is-r/^-program (p) = T.

A linkage editor model of the system in which the segments may refer to each
•other by entry names different from the segment name, can be defined by a general-
ization of the VDL-graph and the graph walk algorithm.

6. An inverse assembler model

Semantics of a class of inverse assemblers can also be defined by the graph
walk algorithm.

First of all, let us define the machine code program. A machine code program
is an ordered set of codes, where a code according to its function, may be an instruc-
tion or a data. That is, those programs are considered where the instructions and
•the data are not separated.

Definition 6.1. The set of machine code program is given by
(p|is-code-list (p)}

where
is-code = is-dataVis-simi.

It is assumed that the program does not alter the instruction code at all .and
•each instruction code contains the address of the next instruction explicitly that
•should be executed.

The instruction code part of a machine code program is called an actual
program. It is assumed, that an actual program has a finite set of entries, and for
any instruction at least one entry can be found where starting the program results
in the execution of the instruction, that is the flow graph of an actual program is
a VDL-graph:

Definition 6.2. The set of actual program is given by
{/|is-instr-graph (f)}

that is '
is-instr-graph = ({(s: is-stmt)\is-select (s)}),

is-sfmr = «s-value: is-instr), (s-desc: is-select-list))

where the predicate "is-iimf" is used instead of "is-node" in the definition of the
VDL-graph.

Definition 6.3. Let
is-code-list (p) = T

and
is-instr-graph (i) = T.

Synthesis of abstract algorithms 75:

The actual program Ms a part of the program p if and only if

(Vs, s(t) * Q)((3 i)(elem (i)(p) = s(tj).

Definition 6.4. Let

{a|is-ass-instr (a)}

be the set of assembly form of instructions be considered. Let the function

translator: {y|is-instr (t>)} — {«|is-ass-instr (a)}
be given. Then the abstract inverse assembler is specified by the initial state of
abstract machine

£o = ^o«s-input: p), (s-table: /0), (s-control: walk (; next-selector, translator)))

where
is-code-list (p).

7. Conclusions and remarks

This paper can be viewed as a contribution towards the solution of. some actual
problem of program synthesis. The specifications used in this paper, describe the
invariable properties of states of an abstract machine rather than the input-output
relationship which is expected to be realized by the desired program. The same
techniques can be applied to specify programs, which are never intended to
terminate.

Our example demonstrates the application of deductive techniques for deriving
program that manipulates the structure of complex data structures like list
and graphs.

We have concerned with some aspect of transformation rules for achieving
more than one goal simultaneously by checking the protection condition of inter-
ference-free.

Abstract

Our purpose in this paper is to illustrate a deductive technique for developing abstract pro-
grams systematically from given specifications using the Vienna Definition Language.

The role and the importance of program synthesis within the scope of programming methodology
is emphasized. The basic principles and the main steps of a deductive technique for deriving pro-
grams systematically from their specifications is summarized.

Programming strategies are formulated for attempting to transform the specifications into
a desired VDL-program and the technique is illustrated by the example of an abstract graph walk
algorithm. The example includes the definition of an abstract data graph too.

An abstract linkage editor and a general inverse assembler model are given by specifying the
graph walk.

KEYWORDS: Abstract data structures, derivation of programs, program veri-
fication, program synthesis, programming methodology, Vienna Definition Language.

DEPT. O F MATHEMATICS
L. EÖTVÖS UNIVERSITY
M Ü Z E U M KRT. 6—8.
BUDAPEST, H U N G A R Y
H—1088

76 L. Varga : Synthesis of abstract algorithms

References

[1] DIJKSTRA, E. W., A discipline of programming. Prentice Hall, Englewood Cliffs, New Jersey,
1976.

[2] DERSHOVITZ, N . and Z . MANNA, On automating structured programming, Proc. IRIA Symp.
Proving and Improving Programs, Arc. et. Senans, France, July 1975, pp. 167—193.

[3] HOARE, C . A. R . , An axiomatic basis of computer programming, Comm. ACM, v. 1 2 , 1969,
pp.576—583.

[4] HOARE, C. A. R . , Parallel programming: An axiomatic approach, Computer Languages, v.
1, No. 2, 1975, pp. 151—160.

[5] LONDON, R . L . , A view of program verification, Proc. International Conference on Reliable
Software, April 1 9 7 5 , pp. 5 3 4 — 5 4 5 .

[6] M A N N A , Z., Mathematical theory of computation, New York, McGraw-Hill, 1974.
[7] M A N N A , Z. and R. WALDINGER, The logic of computer programming, IEEE Trans. Software

Engrg., v. 4, 1978, pp. 199—229.
[8] M A N N A , Z. and R. WALDINGER, The automatic synthesis of recursive programs, SIGPLAN

Notices, v. 12, No. 8, 1977, pp. 29—36.
[9] M A N N A , Z . and R. WALDINGER, The synthesis of structure-changing program, Proc. 3rd Inter-

national Conference on Software Engineering, Atlanta, Georgia, USA, May 1 0 — 1 2 , 1 9 7 8 , pp.
1 7 5 — 1 8 7 .

[10] MILLS, H. D . , How to write correct programs and know it, Proc. International Conference of
Reliable Software, Los Angeles, Calif., April 1 9 7 5 , pp. 3 6 3 — 3 7 0 .

[11] O W I C K I , S . and D . GRIES. Verifying properties of parallel programs: An axiomatic approach,
' Comm. ACM, v. 19, 1976, pp. 279—285.

[12] RAMAMOORTHY, C. V . and S . B . F . Ho, Testing large software with automated software evalua-
tion systems, IEEE Trans. Software Engrg., v. 1, 1975, pp. 46—58.

[13] RAYMOND T. Y E H (Ed.), Current trends in programming methodology, Vol. 2. Prentice Hall,
Inc., Englewood Cliffs, New Yersey, 1977.

[14] WEGNER, P., Research directions in software technology, Proc. 3rd International Software
Engineering Conference, Atlanta, Georgia, USA, May 1 0 — 1 2 , 1978.

[15] WEGNER, P. (Ed.), Research directions in software technology, MIT Press, 1979.
[16] WEGNER, P . , The Vienna Definition Language, Comput. Surveys, v. 4,1972, pp. 5—63.
[17] W I R T H , N . , On the composition of well-structured programs, Comput. Surveys, v. 6, 1974,

pp. 247—259.

(Received Oct. 24, 1979)

