' Dominant schedules  o'f a Steady job-flow pair*

By J. TANKO

A specific approach to some non-finite deterministic scheduling problems is
the scheduling of a steady job-flow pair model. Its non-preemptive scheduling prob-
lem was discussed earlier [4). The more general preemptive scheduling is discussed
below. A very simple scheduling discipline leads to the dominant set of the so-
called consistent economical schedules (CESs). The proof of dominance is the main
goal of this article. An algorithm to evaluate the dominant schedules and choose
an optimal one is given as well.

1. Introduction

In an earlier article [4] we defined the general scheduling model of steady job-
flow pairs as a new approach to some non-finite deterministic scheduling problems.
There we referred to the study [2] and to the dissertation [3] of the author dealing
~ with this problem and to other works dealing with scheduling problems related

to our problem. Some practical cases the model may be applicable in are men-
tioned there. .

Some statements below bear some resemblance to those of non-preemptive
scheduling [4] but, for example the cardinal of the dominant set, is not bounded
as in the non-preemptive case. The task of determining the optimal schedule under
the restriction of non-preemption is simpler than without this restriction. In a non-
preemptive case the dominant set of the so-called consistent natural schedules have
six elements maximum. These elements can be evaluated at once, e.g., by the method
of reduction [4]. The general problem of determining or producing an optimal
schedule (preemptive if necessary) for any steady job-flow pair is not completely
solved until now.

" We reduce below the set of feasible schedules to a dominant set of consistent
economical schedules containing optimal schedules and give an algorithm to choose
an optimal schedule by evaluation of the whole set if it is finite.

* This article reports on some results of a study of the author supported by the Computer and
Automation Institute of the Hungarian Academy of Sciences.
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2. Definitions

The scheduling problem of steady job-flow pairs is to schedule three pro-
cessors P=(P,, Pp, Pp;) to service, without conflicts, pairs Q= (QW, 0®) of
steady job-flows 0V ={C;, j=1,2,...} consisting of task-pairs ~-—(A,J, B;)
with service demands »; and 9 on processor P, and Pg;, respectively. The order
of servicing the tasks is strictly serial within job-flows but it is not restricted among
job-flows. Conflicts might only be on the processor P, and the efficiency of a schedul-
ing R is measured by the utilization of the processor P,. Define P,-utilization of
a section from time ¢, to time f, of a scheduling R by A(¢,, 2,)/(t.—t,) with P -usage
A(t,, t,) as the sum of activity durations of P, in the while from ¢, to 1,. Let A(¢)=
=2(0, #). The efficiency of a scheduling R is defined by the limit

=& = lim 200 )

The efficiency of any scheduling cannot be greater than 1 or the sum y®+9® of
the P, -utilizations of the job-flows @M and Q® which are given by y®=pn/1,,
i=1,2. We use the notations .

=m+9, i=12 n=m+n,, 9=9i+92-

The scheduling procedure is a decision process determining for all moment
1=0 and state of processors and job-flows the way of continuation of the servicing
process. The plan or result of a scheduling procedure is a schedule R as an ordered
set of situations g. The situation o characterises the state of processors, the state
of demand cycles under service, if any, of both job-flows and the duration of these
states in a given phase of the scheduling.

Two components of ¢ are the functions BY(r), i=1,2, =0, the value of
B®(z) being the demand not served yet from the demand cycle started but not
finished (active), if it exists, of the job-flow Q®@, and 0 otherwise.

A schedule is consistent if the scheduling decision is the same when the situa-
tion ¢ has the same value. A schedule is tight if processor is never idle when demand
it could serve exists. A schedule is non-preemptive if the service of every task finishes
without breaks after its beginning. The specific class of non-preemptive schedules
is discussed in [4]. Here now we allow the service of a task to be preempted and
resumed later on the same processor.

The instance of a scheduling problem is fully determined by the values
Q=(m; %; n:; 95) of the service demands of tasks type 4,, B;, 4., B,, respec-
tively. 1y, 9,, 15, 9, are called parameters and the quaternaries Q are called con-
Sfigurations. The non-negative sixteenth 2 of the four-dimensional Cartesian space
constitutes the configuration space. The goal of the study of the model defined is
to find a method for choosing a schedule R* for every configuration Q¢.2 for which
y(R*) exists and has the maximum value among all the feasible schedules. This
schedule is called an optimal schedule.. Simple method for finding optimal schedule
for all Q¢2 i.e. an optimal scheduling strategy is not found yet.

Two schedules R and R’ are essentially-the-same and denoted by R=~R’ if
they are congruent after some finite initial sections of them. y(R)=y(R’) if R=R’.
The schedule R’ dominates the schedule R if for the efficiency values y(R") and y(R)
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defined by (1) the relation y(R’)=y(R) is true. The set £’ of schedules is a dominant
set if for every feasible schedule R there exists an R’€ %’ dominating it.

Looking for an optimal schedule the investigation of a dominant set %’ is
enough for. We obtain a dominant set of schedules by means of the concept of
the dominant decision.

The scheduling decision s’ dominates s in a situation ¢ if the minimal next
following cycle-finishes of both job-flows are not later by s” than by s. A decision
s is economical if-decision s” dominating it does not exist (see Fig.-2 below). A schedule
R is an economical schedule (ES) if the scheduling decisions in its every situation are
economical. Let #(Q) denote the class of all economical schedules for the con-
figuration Q€ 2. Let #= U Z(Q). We will show that # is a dominant set of
schedules.

3. Economical schedules

The importance of the economlcal schedules (ESs) lies in. their dominance
which we show below. . .

Theorem 1. The class & of economical schedules constitutes a dominant set.

Proof. Let R be any feasible schedule having scheduling decisions not economical.
Let s be a not economical decision in the situation ¢ of R. There exists an economical.
decision s’ in ¢.dominating s because s would be economical decision otherwise.
By exchanging s for s” both the next following cycle-ends could come forward and.
this eventually makes possible to anticipate all cycle-ends. This transformation
does not diminish the function A(z) and, consequently, y in (1). The new schedule:
R’ obtained by this transformation dominates R as a result. Starting from =0
and initial situation ¢=g,, we can construct a dominating ES R’ for any feasible
schedule R. This was to be proven. 0O

The class £ is a true part of the set of all feasible schedules but it can be very
big to choose an optimal schedule by direct evaluations. To show this and to look.
for further reduction of the dominant set we investigate the characteristics of the ESs.

It is easy to be seen that the economical decision is unique in all situations o
except an enumerable set of situations for every ES. The exceptional situations
are called critical situations. The economical decisions made in this sifuations are
defined as critical decisions. The initial situation g, of every schedule and the initial
decision s;, i=1, 2, for servicing the task A, first, are always critical but we mean
by first critical situation of an ES the next one if it exists. Fig. 1 shows the types.
of critical situations and the possible alternative critical decisions. These and their
conditions are the following:

Type | Decisions Conditions
Og 515 Sg BV(@) = p2@) =0
9i,1 Sos Si O =0, 95, <pC () <15y, i=1,2

Fig. 2 illustrates the dominance of scheduling decisions. The graphs (a) and
(b) illustrate that the idleness of a processor cannot be a dominating decision if
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Critical situations and decisions

demand waiting for service does exist. The graphs (c)—(d) show that the decisions
.s{ causing preemption for not a complete service of the preempting task are not
-dominant as well. The graph (¢) shows the non-dominance of the preemption of

.a preempting task.

It follows that the ESs are tight, usually preemptive schedules but have no
-superfluous preemptions. Only cycle-ends f; can be critical situations and they
really are if the processor P, is busy or demanded simultaneously by the other
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job-flow. Preemption can only occur in critical situations and every critical decision
causes a delay of the service of the job-flow not preferred by the decision. Delay
is not caused by decisions other than critical. Between critical situations the sections
of any ES are uniquely determined by the initial situation and decision. These
sections are, therefore, called determined sections. The infinite section starting with
the last critical situation if it exists, is the /ast determined section.

All ESs start with the service of the task A4;, without preemption in the interval
(0, n;) in accordance with the initial decision s;, i=1,2. Accordingly, the class
% bursts into two subclasses #®, i=1,2, consisting of ESs with the initial deci-
sions s;, i=1, 2, respectively. The initial decision s; uniquely determines the first
determined section together with the closing critical situation — the first — if it
exists. It follows that all elements of 2 (Q) have the.same first determined sections
and critical situations g; if the latters exist at all. Let 77 be the length of the first
determined section. There is no preemptlon and delay on the first determined sec-
tion except the initial delay of Q®-? in the interval (0 #:). Use the notation ¢(?
for the situation of schedules R€Z in the point #/ =n;.

The concepts of critical situation and decision were introduced for the natural
schedules defined in [4] as well. The types of critical situations were o, and o;,
i=1,2, and the conditions for o, were the same as here. The conditions of o;
there and the Fig. 1 show that a situation type o; ; in ESs is always preceded by
a situation type g3.;, being critical situation of a natural schedule but not of an
economical one. This simultaneousness of a;_; o and ¢; ; has a particular importance
at the first determined sections playing a central role in the discussion of ECs
(see Theorem 2). Out of types gy, 6, and o0;; the natural and economical deci-
sions are the same for every situation and cause no preemptions or delays. The
first determined sections for the ESs are, therefore, almost the same as for the
natural schedules. The differences are only in the last subsections of the ESs starting
with 6;_; , and ending with ¢; ,. The processor P, is busy throughout the subsec-
tions. If the first critical situation does not exist, the set Z consists of a single
schedule R;, being natural schedule, simultaneously.

. The connection between the first critical situations of the natural and economlcal
schedules allow us to simply prove an important theorem concerning typical situa-
tions by reference. Typical situations of an ES are defined as its critical situations
and the f;-situations which are not ¢( situations directly following critical situations
[4]. Bi-situation is a situation in which an A;-task finishes and an A,_;-task starts
at the same moment. Let o} denote the first typical situation of the ESs of #(Q)
if it exists. The possible first typical situations are illustrated in Fig. 3. We also use
the wording characteristic situations for the critical and every f;-situations.

Theorem 2. In one and the same cases all elements of #®(Q) have a first typical
situation o) iff the simultaneous inequalities

0=4,=1 w,=(,0) 2

have a solution, where w,=(B,, A,) are integers and 4,=B,t,—A,t3_,, a=1, 2.

When (2) has no solution, Z®(Q) consists of the single (non-preemptive and
consistent) schedule R,,. This occurs in the cases

n=0, 9, and 9, are rationally independent 3)
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First typical situations and their conditions (47 = Bf 1, — A% 1)
and

'9“ > 0, T3g — 0- (4)

When (2) has a solution, the type (and place) of o7 is determined by the error
A% of the least solution w}=(B;, A} of (2) according to the table .

*

G, Conditions

Ba 4; =0<n,
Bs-a | 4a=n=>n, 95-,>0
C 0, AX=n, or AX=n=n, bt J3_,=0
Our | Ma=<4ds <1
O3—a1| 0 < 47 <1,

Proof. The assertions of the ;cheorem follow from Theorem 4 of the article [4]
and the comments made above. [J

The problem of finding the least solution of (2) is a coincidence problem [2].
If 6@ is not a critical situation, it is always a B,-situation. It follows that B,
returns periodically and o] does not exist if o;=f,. If af=p,_, then the first
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Fig. 4
The cyclic graph G, of the first determined sections

determined section of #(Q) from its B,_,-situation on is congruent with the first
determined section of #3-9(Q) from its ¢3-9=pg,_,-situation on.

The assertions of Theorem 2 are. well illustrated by the cyclical graph G, of
Fig. 4 showing the possible characteristic situations of the first determined sections
of ESs. The vertices of the graph represent situations and the (directed) arcs succes-
sions or identities. The arcs are labeled by critical decisions after critical situations
and by conditions for A} and the parameters after other vertices. The vertices framed
by circles or squares can be the situations of Z® and #®, respectively, until the



94 J. Tanké :

first typical situations. The graph G,
represents all the possible cases for the
whole ‘configuration space 2. For every
Q€2 only one arc going from a not
critical situation is right. The graph can
be partitioned into four subgraphs by
Fig. 5. On the graphs the results of
the decisions in the first critical situa-
tions are drawn by broken arcs.

-‘Before we investigate = further
characteristic situations of the ESs, we
-show an example by Fig. 6. The part
(a) shows the Gantt-chart of an
ReRM(Q), the part (b) is the graph
Go(Q) and the part (c) illustrates
the graph G(Q) of the ESs of
Z(0Q). )

Fig. 5
The partitioning of the graph G,

EXAMPLE. Q=(4.5; 3.5; 1; 2),7,=8; 1,=3,1=5.5, 9=5.5. '
wi=(1,1), 4;=5¢(4.5; 5.5) and so of=a,,.
w3 =(1,0), 45=3€(1; 5.5) and so o65=0,,.

It is seen that always the characteristic situation ¢®-9¢G, occurs after the
critical decision s, in a critical situation type o, ;. This means that new characteristic
situation value can only be generated by decision s; in a situation type o; ,. The type
of the generated critical situation can be either of ¢;,, j=1, 2,0, and B;, j=1, 2.
The situations except type o; , are not new and lead back into the subgraph G,.
But the generated critical situation value must be new if its type is a;,, j=1, 2.
This is the consequence of the fact that determined sections are determined by their
closing critical situations as well. Returning of an earlier ¢; , value after ¢; ; would
contradict this fact.

All the possibilities of the ES elements R¢Z can well be illustrated by G,
and the further critical situations according to the graph G on Fig. 7. The vertices
0;,, all illustrate different values of critical situations of type ¢, ; and o, , independ-
ently of each other. The graph G is composed from five subgraphs by Fig. 7/b.
G, a=1,2, are the branches of G. The number of different vertices of G is in-
finite as we show below.

For any given configuration Q€2 the elements R€Z(Q) can similarly be illus-
trated by a graph G(Q) which is the subgraph of G (see Fig. 6/c). The dotted arcs
on Fig. 7/a, b may be present only of a branch of G(Q) is finite or missing. From
the arcs going out from G{® at most one can be present in any G(Q). The number
of vertices of G(Q) can be infinite. Examples for infinity are the configurations with

Na93-.=0, 3, and 73_, rationally independent N6

(see Fig. 8/b, c). The general conditions of the infinite vertices of G(Q) is an opeh
question. Perhaps, the above conditions are necessary.
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Grapbhical illustrations of the ESs for the configuration Q=(4.5; 3.5; 1; 2)

For any Q¢ 2 every REZ(Q) can well be illustrated by a subgraph G(R) of
G(Q). The configurations Q€2 and the schedules R€Z(Q) can be classified e.g.
by some significant characteristics of their graphs as well. Such characteristics can
be the existence and number (one or two) of the branches G{®(R), the finiteness
the number of loops in G(R), etc. We will use some classifications below.

95

Let REZ(Q) be an ES and G(R) the graph representing it. G(R) may have

finite or infinite vertices. Let us call the rour of R the passage along the arcs and:
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vertices of G(R) in accordance with all the characteristic situations of R. The passage
of R may be finite ending in a vertex R,y or infinite with finite or infinite number
of loops. A simple loop in any graph is a loop having no other loops as its part.
For any loop in G(Q) there is at least one path from the vertex o, to the loop with-
out any other loop. The first vertex of the loop reached by the path from g, to the
loop is called a root of the loop.

For some reasons it may be necessary to allow demands of tasks to be zeros.
The job-flow Q@ is defective if one of n; and 9; is zero and is degenerate if both are
zeros. For degenerate configurations (for which 7,=0 or 1,=0) we can impose
specific restrictions to better model practical cases in which demands of one job-
flow are negligible with respect to others. In such cases our methods could lead
to optimal schedule not reasonable with regard to other optimal schedules. A re-

S
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Fig. 8
Examples for CESs not periodic and having infinitely many different
critical situation values

striction may be the prohibition of servicing repeatedly the cycles of the same de-
generate job-flow alone [2, 3]. Such restrictions further complicate the discussion
of the schedules. In degenerate cases the ESs are non-preemptive and are discussed
in the course of non-preemptive scheduling of steady job-flow pairs [3].

4. Consistent economical schedules

After the preparations made in the previous paragraph, we are near to be able
to prove our most important assertion: the class of consistent economical schedules
is a dominant set.

An ES is a consistent economical schedule (CES) if its critical decisions are
consistent: they are the same in every occurrence of the same critical situation
values. Note that two situations of the same type, o;, say, may well have different

values by having different values of f®(t) or @ (¢), for instance. Let Z(Q)c2(Q)

be the class of CESs for Q and Z= U Z(Q).
Qe

The graphs G(R’) of CESs R’€Z have specific characteristics. It can only
have one out-arc from any vertex except the vertex Ry, i=1,2, if it is in G(R').
R, has no out-arc. Any vertex has only one in-arc except eventually the vertex o,
and one more. g, has no in-arc if R,y is in G(R") or G(R’) is infinite. In case
of a finite number of vertices and without R;,, G(R’) has exactly one simple loop
with root ¢, if 6, has an in-arc or with another root which has two in-arcs then.
The CES R’ is said constructed from this loop. For any simple loop of G(Q) there
is at least one G(R’) composed from the loop and a path leading from o, to. the root
of the loop. The tour of R’ is the path from ¢, to the root and infinitely many rep-
etitions of the loop after. The efficiency of the CES so constructed is the P,-

7 Acta Cybernetica V/1
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utilization of the constituent loop. This CES is periodic with periods represented
by the loop. If G(Q) is infinite, let R, .. denote the CES with a tour from o, through
0@ and vertices 6, , to the infinity without any loop.

Theorem 3. The class & of the consistent economical schedules is a dominant set.

Proof. Let REZ be any ES with efficiency y(R). We will show a CES R'€¢ %
dominating R. The dominance follows if R is CES or is essentially-the-same as
a CES R

If the graph G(Q) does not have loops, all ESs are consistent and R may not
be other as well. If the P,-utilizations of the simple loops of G(@) have a maximum,
the R’ constructed from a simple loop with maximal P -utilization will dominate
every other ESs except eventually those which are essentially-the-same as Ry,
or R, i=1,2.

The only crucial G(Q) is that in which the P,-utilizations of simple loops
have no maximum. But if the G(R)CG(Q) has a simple loop with P -utilization
not less than y(R), the CES R’ constructed from this loop will dominate R. Thus
the dominatedness of R with finite G(R) by CESs is proved. If G(R) is infinite
but with a finite' number of simple loops, the tour of R cannot have a loop after
a finite initial section and is essentially-the-same as an R; ..

The only crucial G(R) is, therefore, that which has infinitely many simple loops
without one having maximum P, -utilization. Whether such a G(R) does or does
not exist is an open but irrelevant question now. The length of loops cannot be
bounded in this case. The schedule R is composed from two kinds of simple loops
represented by Fig. 9.
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The two possibilities of simple loops
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By definition (1) of y(R) we can choose a sequence X,, %, ..., Z,, ... of initial
sections of R which are ending with simple loops and for which

A(Z)
1)

where A(Z,) and t(Z,) are the PA-usage and length, respectively, of the section
Z,. But

y(R) = 11m

AZn)
1(Z,)

is the weighted mean of the P ,-utilizations of the finite many simple loops composing
2,. Let 4Z,, A%,, ... a sequence of simple loops carved out of Z;, Z,, ..., respec-
tively, with maximal P,-utilizations. By assumptions

Y = y(42,) < v(R)

and so the convergence y(4Z,)—y(R) is true. The sequence A4ZX;, 4%, ... must
have a subsequence with monotonically increasing length and P, -utilization because
the contrary would lead to contradiction with the assumptions y(4Z,)—y(R) and
no finite loop with y(4ZX,)=y(R) exists. Let 4%,, A%,, ... be this subsequence
already. Clearly y(42,)—>7(R). Every 4Z, could be composed either from an ini-
tial section X, of an R; ., i=1, 2, and a section 4, of bounded length or from an
initial section XV of R1 o, an initial section P of R;,., a section 4 and a sec-
tion A of bounded lengths as in Fig. 9. Because of boundedness of sections
4;, 4 (1) and 4® they do not influence the limit of y(4Z,) and

lim y(4Z,) = lim y(ZP UZP)
n-+co n-+co

(2, =

allowing one of X and X(® to be missing. In the sequence AZ,, AZ,, ... at least
one of Z(V and X @ tends to Ry Or R, ., tespectively. y(4X,) cannot be greater
in limit than the maximum of limits of y(Z) and y(Z(®). Therefore, the maximum
of y(R;,) and y(R;,.) will not be less than y(R) and the corresponding CES R; .. .
dominates R. This concludes our proof. O

The set #(0Q) of CESs can have fairly many — if not infinite — elements in
general. Methods for reducing further the dominant set or a simple algorithm to
choose an optimal schedule from £(Q) are not known. A direct method to determine
the optimal schedule is to survey the whole set £ and compare the efficiencies of
the elements. In some cases this is a feasible arrangement. To judge better the
amount of work on this way we can use the number Ny (Q) of simple loops in G(Q)
and the number N(Q) of elements of #(Q). To determine these we need the graph
G(Q) or at least some data of it.

Let us define the following data (see Fig. 6 and Fig. 7 as illustration):

n, is the number of R, vertices in G(Q)
n,; is the number of vertices g;, of the branch G (Q)

©)

T*
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fora=12 j=1,2

{1 if the last arc of G leads to vertex o)
aj =

0 otherwise ™
for a=1,2 j=0,1,2 and ¢© = g,.
Use the notations
na = nal+na2’ a= 1, 2 (8)

n, is the number of vertices in the branch G{® (Q) All the data can be read from
two schedule-sections 2@, a=1, 2, constructed in the following way. For 2@
schedule O economically with crmcal decisions s(0)=s, and s(o;,)=s;, i=1, 2,
until the first typical situation other than ¢, , occurs. This procedure is finite iff
G(Q) is finite. From these two schedule-sections we can read the P,-usages 1(42)
and lengths #(42) of determined sections AX which are necessary to evaluate the
CESs of Q. These two schedule-sections enable us to draw simply the graph G(Q)
and determine the data (6)—(8). To illustrate this method, Fig. 12 below can be
considered. The way to use the data to determine N;(Q) and N(Q) is stated by the
following lemma.

Lemma 1. The number Ny of the simple loops of G(Q) and the number N of the
elements of R(Q) can be. expressed as

Ny = (11 + 019+ 619) (Ngg + 09+ 021) + (M1 + 015+ 011) + (a1 + 020+ 020) — 610050 (9)
N= ("11"‘512)(”2+520+521+522)+("22+521)(n1+510+511+512)+
+(n1g+ 819+ 011) + (1121 + Jog+320) + 11 (10)
where n;, n,; and d,; are defined by (6)—(8).

Proof. Consider Fig. 7 as illustration. We count the number of simple loops
of the graph G(Q) and the number of different paths from g, to the loop without
other loops.

The number N @ of loops not leading out from the subgraph G is the number
of vertices o5_,,; plus one if the last arc of G@ leads to the vertex ¢®@. This gives
N =n, 5_ ++6... The root ¢‘@ of these loops can be reached directly from o,
or through ¢®-9 if arcs connect G@=9 to 6@, The number of the latter arcs is the
number of vertices o, ; in G®~? plus one if the last arc of G®~9 leads to ¢®. This
gives the number of paths from o, to 6@ as 1+n;_, 5_,+05_,, and the number
N of the CESs as N“9=(n, 3_,+8,)(14+n3_, 5 «+03_0.). Further loops arise
from arcs leading from G® to ¢® and back from G® to ¢®. The number of arcs
leading from G to ¢©®-9 is the number of vertices o, ; in the branch G{® plus
one if the last arc of G* leads to 6®~? as well. This gives the number N * of simple
loops as N{®=(ny +015)(Mes+351). Any of these loops can be reached directly
through ¢® or ¢® giving the number of CESs as N©=2(n;, +6,,) (125455
There are loops between ¢, and G if the last arc in G leads to o,. Because the
vertex o, is the component of the loop, one or other of the paths ¢,—~o® and
6o—~0'® is an arc of the loop and determine the possible loops. The arc 65—~
is the part of only one loop if J,=1. The arc g,~6®~9 is the part of loops
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0y>0C"V~g;_, 5 ,~0®—>0g, the number of which is n3_,3_,+8;_,,. These
give the number of loops N{®=(1+n3_,35_4+83-4,0)000- Each loop is the con-
stituent of exactly one CES and this fact gives the number N@=(1+n;_,3_,+
+63 a,a)5n0

Adding up the numbers for a=1 and a=2, we have

NL — N£11)+N£22)+N£0)+NI(‘1)+N£2) —
= N1s+ 017+ Mgy +0ga+ (1131 + 012) (Nge + 051) + (1 + 1y +612) O+ (1 + 120+ 021) 04
and T _ _ _ : ‘
N'=NOO+NE+NO L NO+NO =(ma+61) (1 + 10+ 020) +
+ (Ngy +050) (1 + 133 +819) +2(1133 + 615) (e + 5o + (1 + "11'*‘512)520"'(1_ +Nga+05)010-

If GP®(Q) contains the vertex R,y, the subgraph G{ in Fig. 7/b has no out-arc
and cannot take part in any cycle but represents a CES the path of which ends in
vertex R,. This means that the value N’ obtained above must be corrected by
adding n, to the number of CESs generated by loops. The identity of the so ob-
tained expressions of Ny and N’+n, with (9) and (10) is obvious. . OO

For the example of Fig. 6 we get
mp=1, np =0, 9p=0, 6;;,=0, =1 |
gy =0, nyp=4, dy5=1, 95y =0, 8y =0.
From these data the numbers are
Ny=11 and N=19.

If G(Q) has no branches, i.e. n,;=0,a=1, 2 1—1 2 then the particular for-
mulae are

NL(Q) = (610+612) (050 +021) +(S10+ 1) + (520 +329) — 019029 = 2 %)
N©) =2. (10) -

The relations can be proved simply by taking the possible values of n, and
every d,;
The CESs having the same simple loop as their constituent (period) are essen-

tially-the-same. The number of essentially different CESs is N, and 2(Q) represents
at most N, different efficiency values.

Except the trivial cases of existence of a vertex R,y in Gy(Q) — which can only
be in the defective cases (3) and (4) — the relations

6a0+6a1+6a2= 1, a = 1, 2, n0=0 . (11)

are always true and the expressions (9) and (10) can be written in the simpler forms
Ny = (1 +1=061) (Maa+1—020) +(m1a+ 1 —815) +(ngy + 1 —831) — 619020 )

N_ = (N +012) (M + 1)+ (M2 +0y) (1 + 1) + (g + 1 = 530) 4+ (ny; +1—35).  (10)

The expressions (9) and (9”) show how the number N, of the possible CESs
representing different values of efficiency depends on the numbers n,;, a, j=1,2,
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of the vertices.in the branches of G(Q). N, is finite if all n,; are finite and if* ny=co
but ny5_;,n,_;; are finite and ny_; 5 i+03_;0+0;_;,;=0 (provided that thls
last case is possible for some conﬁguratlon 0).

For the sake of reference, we have to identify the elements of %(Q) In view
of evaluation, the identification of the simple loops is enough: We introduce a sym-
bolism for this purpose.

We identify the vertices of the branches G®,a=1,2, by numbering them
serially with 1, 2, ..., n, in the order of occurrences in G{®. Let the vertex ¢® have
the serial number 0 and the vertex of G (Q) the last arc of G (Q) leads to the serial
number n,+ 1. This last vertex can be either 6, or o or ¢‘®. The serial numbers
of vertices of G™M-and G® of our example in Fig. 6 will be 0, 1,2 and 0, 1, 2, 3, 4, 5,
respectively. The last number of G® represents the vertex 0'(2) and the last number
of G® represents the vertex 4,. Every simple loop is composed from one or two
sections belonging to subgraphs G® and G®, respectively. Every loop-section of
G starts with the ‘vertex .¢(®, goes through some further vertices of G{® if they
exist, and finishes in oy, ¢V or ¢®. A loop-section of a given G(Q) can be identi-
fied by the maximum of serial numbers of its vertices. The character of a loop-
section can well be given by a code (abc) constructed from the number “a” of the
subgraph it belongs to, from the maximal serial number “b” of its vertlces and

&6 09

from the code “¢” of its last vertex by the coding:

/ type | 6o 6V 0(2)

ccode [0 1 2

The code (ac) identifies the shape of the loop-section which can be symbohzed in

the following way: _
c
;x o 1 2 6o —~ 0@

= =& N
2 | = E. =)

The simple loops are composed from one or two sections dlrectly or by means of
a section' 6y—0® or .g,~c® symbolized by \_and /.

" To identify a 51mple loop we can, use the b-codes of its component loop-
sections. The loop identified with (b, b,) has vertices from G and G® with maximum
serial number b, and b,, respectlvely If 'a loop has no vertex from G, the com-
ponent b, is zero.

The_elements ‘R of Z can be characterized by the code (byb,) of its simple.loop.
The CESs R,; for degenerate conﬁguratlons (3) and (4) will be characterized by
* the code (00): The code (b, b,) of a CES is called its zype. The code (b, b,).represents

an essentlally-the -same class of Q?(Q) the number of which was counted in_the proof
of Lemma 1.

“Not ‘every codé (b, b,) can represent an ex1$t1ng loop in G(Q). In Table 1 we
marked by, sign_.+ -or.— that a loop of code (b,b,) composed froin the existing
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loop-section pair (1b,¢,), (2b,¢,) did or did not exist, respectively. The code (00)
is possible if at least one vertex R,, of G(Q) exists (and 7n,=0, of course). In this
case the only possible value of b, is 0. The other (b,b,) entries of Table 1 for given
(abc) codes can be easily made. We put sign — in every entries of rows with ¢, =1
and of columns with c¢,=2 except their first entries. In row b,=0 we put — in
entries with heading c,=1 and in column b,=0 we put — in entries with heading
c;=2. If an entry with ¢,=c,=0 existed, we put — in it. In the remaining entries
we put signs +.

Table 1. The existing codes (b, b,) of simple loops.-.

- b | 0 .. R :
TN @ - - — ' Example of Fig. 6
. 2 ) = i e | . .
\\ - (Reo) =r = N 5|0 1 2 3 45
b i AN , 2 1 o 2-1 N G
-1 1110
0 (Rig) (+) -+ - + + - bl
' 0 — |- - - - = ®
I 2 |- @ + + + +
— 1| =« o _ 2{ 2 |- @ + + + +
b, i
I
= 0| + - + - =+
T e + - - - - =

L, 2| - -+ o+ -+

Table 1 says which loops have to be evaluated for determining the optimat
one. The possibilities for some specific types of CESs are represented by Fig. 10/a,

The set Z(Q) always contains exactly two non- preemptive schedules- R, o,
-a=1, 2, which are the two tight consistént natural schedules defined in [4]. These
are the non-preemptive priority. schedules, at the same time [2] Two other remark-

" able elements of Z(Q) are the priority schedules R34, a=1,2. R, ;_, is defined
as the CES in which the job-flow Q(") has absolute priority against 9@~ which
‘means that every task 4,;, j=1,2, ..., is serviced by P, at the moment it is ready
for service, independently of the state of P,. The priority schedules .are schedules
of great practical importance. With the help of Table 1 it is easy to determine the
types (bib;) of the priority schedules R, o and R, ;_,, a=1,2, by their ‘definitions.

R, ¢ is determined by the restriction that no preemption is allowed and s(0)=s,
This means. that R, O—Rao and has type (00) if the vertex R, exists: Otherw1se
b.=1, b3 a=0, except if ¢,;=3-a when b; =1, and ¢g_, =c a1—3 -a. when
b’ 0 moreover,.

R, 3418 determined by the fact that any task" type A,_, must and any task
type A4, must not be preempted in conflicting situations ¢;,, i=1,2. This means
that s(aa V=5, and s(o5-,,)=5,. The possibilities are 1llustrated by Fig. 10/b.
If the vertex Rao exists, then R, 3 .=R, =R, with type (00). Otherwise, b, cf
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R(Oo)v L
R, .=R;,= Ry (cases (3) and (4))
R(lo)
=%
|
- TTT T
9 =0 é ! :E] X 44 X R,.=R
1 L. L-V:_ 1,2 1.0
R(ll) ‘ _ _
l N -~} - - 3—
. < < <
Ry = Rao _L_i:l - L= l_:j_ e
= Roy=Roor Ri,=R;,x — -
R, =Ry, 2; R 02,0 1,; R‘,,:'o o R,
R, (b>1) ' g |
" :—? b :' 4 ==
| 1 -1 I «-—1——3 11 < 1 b
e e o = R L NG
I Y I L. ¥, | 2 A ;__
L Yy | SIS S K. e 1t __
o =1 10=1 Ny >0

ROV, (b =>1)

ny, =0, 0 =1,
Nys+0s >0

(n,b) (b)

@

< b

b

-
1
1

il e

Ny, >0

(b0)

u

<Tm

L__3_vyd
Ry =0,0,=1
("10)

(..ol

1 n
1 2ny

™
v b4 v Ve
n;3=0,0;, =1 N =0,0,, =
Ny =0, 05 =1 Ny =0,y =1
(nyn) ©Ony)
" Fig. 10

Special types R(b1b2) and types of Ry,
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R, s, is the serial number of the first vertex type 65_,, in the branch G{?, if it
exists (n,3-,>0) and b,=n,+1 or b,=0 otherwise (when n,;_,=0). b;=n, +1
if 8,3-,=0 or 0,3_,=1 and n3_, 3 ,+1—03_,3_,>0. b;=0 if 6,, 3—a=
and ny_, 3 ,+1— 63 a.3—a=0. The value of b;_, of Ry, 1s 0 when n, 5 ,,+
+1—90,3_,>0, the serial number of the first vertex d;_,, in the branch GE-9,
if it exists (ny_,3.,0) and n,_,+1, otherwise, when Ny s—at1—0, 3_,,—0

In the completed Table 1 we can pick out the types of R, o and R, 3_,as follows.
R, , is tepresented by the sign + encounters first in counter- clockwise for a=1
and clockwise for g=2 in the left upper 2X2 subtable and R, ;_, is represented
by the first + encounters on the border of the whole table counter-clockwise for
a=1 and clockwise for a=2 starting from the entry (00). If Table 1 consists only
from one row then R, (=R, ,=R;, and if it consists only from one.column then
R, 0=R; 1=Ry.

Let Z#.(Q)= {Ry,5, Ry 1} be the pair of pnorJty schedules. This is a subset
of Z(Q). If Z(Q)=2,(Q) then Z,(Q) is a dominant set. In this case R, 3-.=R, 0,
a=1,2. An example for this is the configuration Q=(1; 4; 2; 5) with R, ,(Q)
optimal. If 2Z(Q)=%,(Q), the set %#,(Q) is not necessarily dominant. Trivial
examples for this are the configurations Q with 3;<n,;_;<23;, i=1, 2. For these
configurations the CESs R, ,~R,, are optimal with efficiency y=1. A non-
trivial example is the configuration @=(4.5; 3.5; 1; 2) in Fig. 6 as we will see
in the next paragraph.

_Though the priority schedules are not dominant, they are interesting on their
own, because they are often used in practice and can be produced by simple rules.
They are investigated in the study [2]. The evaluation of R, , and R, ; is not a trivial
task at all. The priority schedules were investigated also for the stochastic version
of job-flow pairs [1, 5].

5. Evaluation of the CESs

Though the cardiﬁal of the dominant set 2(Q) of the consistent economical
schedules is not necessarily finite, we give an algorithm for the direct evaluation

of the CESs. This is applicable only when £(Q) is finite. Z(Q) is finite exactly
then when the graph G(Q) is finite. For some cases the automatic application of
the given algorithm can be superfluously complicate. Four such cases will be men-
tioned below as cases (i)—(iv). These cases contain the configurations we know
as having G(Q) with infinite vertices. By general case non-defective configurations
are meant. The special cases (i)—(iv) are illustrated by Fig. 11. '

Case (i). 7,7,=0, degenerate configurations (see (4)). The CESs are the R, ,,
a=1,2, and y,,=0. If the number of cycles of the same degenerate job-flow
scheduled directly after each other is restricted, the maximal efficiency y®+y®
can be achieved.

Case (ii). =0, $,3,>0. R, o, a=1, 2, are the only CESs with y=0. R, =R,
and has no typical situations for the configurations (3).

Case (iii).. 1,7,>0, >0 _but Q is defective. If 7,9;,_,=0 then R, ,_, has the
maximum efficiency of y=yG-9 (see Fig. 8). The shape of the graph G(Q) depends
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<5€<%

. %>0  9,>0 9=
Case (ii). =0, 91.92>o

<4

—lrratlonal ——ratlon 1
9, 9, 2

Case (). 7,7, =0

Case (iii). 7,7,>0, >0, 7,729,9,=0

<

=0
9,>0,9,=0, :3 rational 5, = 0, 9,>0, solution of (#) exists
2
Case (iv). 1, > 9, >0, n,> 91 =0
. ﬁ(z)(‘) =9 _ \ﬁm(f) =9
1 2 1 2
Wi R . 1 V/////////////////////////////////////// 1 ’/A
6‘0 B 011 - 011 /32 02,1 0'2.1 By 01,
5 Sp So So . 5,
Fig. 11

Trivial cases for optimal schedule

on the existence and relations of the least non-trivial non-negative integer solutions
X7, X3) of the equations

0
A EXS —X3 aT3_a={

iﬂa -a

- but this fact is irrelevant from the pomt of view of optimality. There is no solutxon
oy (%) in cases (5).

Case (1V)_. 7;=94_,>0, i=1,2. The maximal efficiency of the CESs is y=1
and any R€Z(Q) with decisions s(a;,,)=s, if only BC-9(r)—3;_;<9;, is optimal.
E.g. also the R0, a= 1,2, are opt1ma1 with 7y, o=1.

Before we give an algorlthm for the general case, we show the evaluation of
the CESs of the example configuration Q=(4.5; 3.5; 1; 2).

a=1,2 (%)
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The sections ¥ (), a=1, 2, the priority and the optimal schedules of the example

0=

“4.5; 3.5;1; 2)
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In Fig. 12/a, b we show the Gantt-charts of the two schedule sections T®
and ™ expanded here to provide R, , and R, , at the same time. It can be realized
that every loop-section is composed from consecutive subsections 42, j=1, ..., b,
of X and a section 4 of full P,-utilization as X{?U4{?. This fact is illustrated
by Fig. 12/d. The lengths and P -usages of the subsections can be read from £
and X® andare given in Table 2. The data (lengths and P, -usages) of loop-sections are

1(EEN+4 and A(ZP)+49

with b

I = 4z®, b=12,..,n+1, a=12
i=1

These data are given in Table 2 as well.

Table 2. The data of loop-sections of the example of Fig. 12

a b|Typeofsect.| ¢ " A(4X) t(4X) A4 I(Z+4) 1+
0 o - = - 4.5 - -
11 61,1 2 15 3.5 0.5 2
2 o - 2 6 8 0 7.6 11.5
0 @ ~ _ _ 1 _ -
1 03,1 1 2 2 2.5 4.5 4.5
, 2 Ga,1 1 3 3 0.5 55 5.5
"3 o1 1 35 6 35 12 14.5
4 Gan 1 3 3 1.5 13 15.5
5 Go 0 35 6 0 15 20
Table 3. The simple loops and their characteristics for the example of AFig. 12
No. Gb) G Composition . AX) 1) () Rmk.
1 ,5) £/ ZBUA® 16 21 0.762 Ra,y
2 (1,1 E zuanyz®ya® 6.5 8.5 0.765 Ry,0~R:,,
3 1,2) E TMyUAMYZP Y@ 1.5 9.5 0.789 R*
4 1,3) E—I TOYUAR UZP YA 14 18.5 0.757
5 1,4) |: PRAVY ILIUPH AW O 15 19.5 0.769
6 1,5 [:.:: ZOyudaPuzPuap 21.5 28.5 0.754
7 @0 | TOUZE Y AP 12 16 0750 Ry,
8 @2 E MU ULP 13 17 0.765
9 2,3 ’:) PAAOPN AP 1Y 19.5 26 0.750
10 @y [ meumpup 205 27 0159
11 2,5 3 TMyreyarm 27 36 0.750
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I3

The c-codes of the loop-sections are easy to determine from the fact that the
result of the decision s(o;,,)=s, is 6®~9, i=1,2, and the vertex the last arc of”
G leads to can be obtained as the last typical situation of 2@ with B;=c®, i=1, 2.

From the possible (abc) codes Table 1 of the possible types (b, b,) of the simple
loops can be completed. The data of the simple loops can be obtained from those
loop-sections which are shown in Table 3. The last datum is y(X), the efficiency
of the corresponding simple loop. Comparing these data we can choose the max--
imum value as 0.789. The type of the optimal schedule R* is (1, 2) and its Gantt--
chart can be seen in Fig. 12/c.

The table

R (b,b,) R 100y/y*

R* | (1,2) {0789 | 100

Rio| @, »0765] 969
Ryol (1,1) | 0765 | 969
R, (2,1) 075 | 950
R,.| (0,5 |0762] 96.5

shows that the priority schedules are not optimal. The efficiency y* of the optimal
schedule is 88% of the sum y®M+y®=475/841/3=0.896 and the efficiency of

every priority schedule is_less than y*. y; , is the minimum of the efficiency values
of the CESs. This is 95% of the value y* To find a good estimation for the
min y(R)/y* is an open question. A trivial estimation is clearly max yOID 4+ y®),
REA(Q) =5

In the example y, ; is not minimal but there are 8 other CESs with greater effici--

ency. Also R, =~ R,, have better efficiency.

Fig. 12/c shows that the economic decisions in the optimal schedule are chosen
such that the delay d caused by the decision be minimal. This heuristic scheduling
strategy can often give a not bad schedule but not optimal in general. One can argue
that a unit delay of the job-flow with a higher P -utilization y®¥=gn,/t; is worse
than a unit delay of the other job-flow. Therefore, we can expect better schedule-
by the strategy which decides such that the loss of utilization D;=y®d; by the
delay d; of O be minimum. For our example the critical situations of R*, the:
delays d;, the losses D; and the decisions s* are from the Fig. 12/c as follows:

o’ dl : Dl d2 .D2 s*

0.56 | 4.5 | 1.50| s,

Oy 1

Gop | 1 [056] 2.5 (083 s,
g1 1 | 056 0.5 ]0.17 | s,
61,1 | 05028 45 [ 1.50] s

The table shows that the optimal decisions correspond to the strategy of minimizing:
local losses of utilization. This strategy is not optimal in every cases either. We-
show this by the example configuration Q@=(1; 3.5; 2; 1.5) in Fig. 13. The graph
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‘G(Q) with the data A(4Z), £1(4Z) and 4 is the part (d). The data (6)—(10) are"
=0, ny=0, np=0, =1, 6;=0, 6;3=0, n =0,
" Ty =0, np=1, 6y=0, 6y =1, 522=0,>n2=1,
N, =3, N=3.

‘The possible three CESs -are R, ,=R,,, R, and Ry, by Fig. 13/a, b, c. The
<fficiency values are 7,,,=7y,0=0.667, 7,,=0.743, 7;,,=0.727. R*=R,, is the

3
N Riz=Ryo 7= 55 = 0667

.Aél) Az‘{l)

Oy

Tyl L
/////9’1///-;/'/////-////-/////-////-/,

A(2)

L 1 Il 1 R s — =0.74
A® 43P Az 21 V=973 3
© IR S 53
c A '
’/////./////-/////-////-// )
1 L1 o 8 —
lA((’z) AZP AP A z{l)lAsz)l Ry, ¥ = = 0.727
0.5[(M .
;2210
2. ‘ad .
@ 5 @
0, ]
1AGED
Fig. 13

Example configuration for no optimal minimum local losses strategy Q=(1; 3.5; 2; 1.5)
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optimal “schedule. The delays, - ‘losses and opt1ma1 decisions are the following
(W=0.222, y®=0.571):

o' |dy| D, {dy| Dy | s*

oo | 20.444|1 [0.571] s;
05,1] 2[0.444|0.5[0.285] s,

The preemption s(o-2 =5, causes a greater delay (2) and local loss (0.444) than
the decision s(o,, 1) =s, would but it is, nevertheless, optimal. The decision
5(09,1) =5, results in R, , which is not an optimal schedule (see Fig. 13/c). This
example shows that the “locally optimal” decisioris are not “‘totally optimal”.
An evident problem is the ratio y/y* of the efficiency of the schedule w1th m1n1ma1
local losses and the eﬁ‘ic1ency of the optimal schedule.

After the examples we give, now, an algorithm to determine an optlmal schedule
by direct evaluation and comparison of the CESs in finite cases. Formally we
divide the algorithm into two parts and formulate the parts as the S-algorithm and

the E-algorithm.
’ The S-algorithm produce the series of vectors

Zab = ()'ab’ tab, cab)’ b = 1, 2, ...,n,,—{-l, a = 1: 2

with components :
ab - }(Z(a))_*_A(a), tab = t();éa))+AI§a)’ Cab

as P,-usage, length and c-code of the loop-section with code (ab). An auxiliary
variable is in the algorithm X=(4, ¢, 4) as P,-usage, length of subsections of
Z@ and the length of a next section which will be inspected afterwards. Another
auxiliary variable is Y=(/, 7) the cumulated P -usages and lengths of the sub-
sections. The algorithm supplies also the data n,;, 6,; defined by (6)—(7) and used
in (9)—(10)

" S-algorithm. Input data: O=(11; 345 125 $9);
Output data: n,, n,;, j=1,2, 6,;, j=0,1,2, a=1,2, Z,,=a, taps Cap)s

- ob=1,..,n,+1, a=1,2;
Step 0: "-'13—’11+91a Tpi=M+9y; ai=1; ni=1; i:=2;
Step 1: X:=(0,0,3,); Y:=(0, 0);
Step 2: I:=[dA/x)]; A":=4—It;
Step 3: If A"=n; then X:=(A+(+Dn;, t+4,1,—4’), i:=3—iand

go to Step 2;

If A’=n; then Y:=(I+2+(+)y;, i+1+4), Z,,: —-(J i, l), Li=1 and
go to Step 4,

if A’=0thenY: —(I+l+/r1,, t+t+4), Z,:=(,10), 8,: —1 and

go to Step 4;

Vi=@+2+in+A" i4+t+4); di=n—4"; Z,:=(+4,1+4, i);
Nyg—gi=Nyg_,+1; i:=3—i; k —[A/9,], A’ =A4—-k9;

If k>0 then Yi=(141,1+1), Zopsji=(A+4—j9;, i+4—j3;,3-1),
Jj= sk and ngi=n,+k;

n: —n+k
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If A/=0 then Y:=(A+71;,i4+71); Zp:=(4 1, 3—10); nyi=n,;—1;

n:=n—1; 8,3_;;=1 and go to Step 4;

n:=n+1;

If \93_,-'*‘41'—‘9,'%0 then X:':()']i'l'A,, Ti» 93—i+A,—‘9i) and

go to Step 2;

Xi=(+4",ni+A4"+85_;, 9;—85_;,—4"); i:=3—i; go to Step 2;
Step 4: f a=2 then n,:=n and go to End;

n:=n; n:=1; a:=2; i:=1; go to Step 1;
End.

The output data of the S-algorithm corresponds to the data of Table 2 and
the data (6)—(7). From these data the efficiency values of the possible simple loops
¢an be determined by the E-algorithm. The flow-chart of the S-algorithm is shown
in Fig. 14.

The E-algorithm uses the output data n,,a=1,2, and Z,_, b,=1, ..., n,+1,
a=1,2, of the S-algorithm and determines the efficiency values y of the simple
loops and provides the type (b} b3) and efficiency y* of a simple loop with maximum
efficiency. The order of evaluation of the simple loops will determine which of the
possibly more than one simple loops with maximum efficiency will be chosen.
This order can be seen in Table 1: the + entries of the first column with increasing
b,, the + entries of the first row with increasing b, and the other + entries by
rows after.

E-algorithm. Input data: ny, No, 1y, Ney Zoy=0ps taps Cap)y 0=1,2, ..., 0,41,
a=1,2;

Output data: by, b}, v*;
Definition of operatton F: If y=>y* then bf:=b, bj:=b, and y*:=
Begm by =b}:=y*: b :=0; l

For b,:=1 step 1 until n,+1 do if ¢y, =1 then y:=1y [, and F;
If c1b1_0 then y: —()1b1+'11)/(t1b1+’71) and F; b,:=0;
For b,:=1 step 1 until m,+1 do if cpp,=2 then 7! = Agp,/top, and F,
If cp,=0 then y:=(lgp,+12)/(t2p,+12) and F;
For b1 =1 step 1 until m+1 do if ¢, =2 then
begin For by,:=1 step 1 until n,+1 do
if Cop, =1 then y:=(Ay,+ Aop,)/(t1p, +12,) and F;
Ifd6'2b2=0 then y::()'1b1+)‘2bz+’11)/(t1b1+t2bz+’71) and F,
end;
If ¢;;,=0 then for b,:=1 step 1 until n,+1 do *
lf C2b2:1 then ‘y:=(;'1b1+)~2b2+’72)/(t1b1+t2b2+'12) and F;
End. -

Fig. 15 shows the flow-chart of the E-algorithm. This clarifies the meaning of
the “for-step-until-do”’ cycles used in the algoritm.

The verification of the S-algorithm is easy e.g. by following its operations
graphically on the Gantt-charts of some configurations as of Q=(4.5; 3.5; 1; 2)
in Fig. 12. The E-algorithm does not need further verification.
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~

1= M9y = e+ 9y;
a=1;n=1;i=2

[x:=0.03) F=00]

L={4]t); 4= A-1It;

X:=(Z+(+Dn, i+4, 1,-4);

i=3-i

Vi= (A+A+(+ D, I+1+4);
Zypi= (L1 0); 8ai=1

Yi=(I4+2+1n;, i+1+4);
| Zai= (41,00 5,5:=1 @

Y= (A+A+in+d’, i+144); A:=n—47;
Zpi= (A A, T+4,0); My gogi= g 3-+1

® ©

ii=3—i; k:=[4/8); 4":=A4—k&

Yi=(CG+1;, i+1);
Zopsji=(A+4—j9;, i+4-j9;, 3-i);

J=1 ks ny= gtk @

Y= (+1, +1); Zoyi= (L, 1,3-0); [ | X o= (it 4, 1,4+ 8"+ %5, 8—9,_—4');

Nyi= Ny=1; 8y a-pi=1; n:=n-1 i=3=i

no n=n;n:=1; a:=2; i::l—-@

yes

Fig. 14
The flow-chart of the S-algorithm
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[b; i=bii=9":=0; by:=1; by:= 0| —
NG N PN
Cupy =1 .
by:i=by+ 1| po F . T T
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™
es '
b by < ny+1
no,
_ yes { . Jam i
Cy, =0 = ————,m_*_m —
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- FangtdanF
f1py F 12y +

.

- Zapy+Aap, +11,
TR L S

. FigIs .
The flow-chart of the E-algorithm

6. Summary.

No simple rule to produce nor any simple method to choose an optimal
schedule R*(Q) of any job-flow pair configuration- Q is known.  The dominance
of the class of the consistent economical schedules (CESs) is proven here. We in-
vestigated the structure of the CESs and gave a classification for them. This is
based upon the graph G(Q) of the typical (critical) situations of two schedule sec-
tions 2@, a=1,2. The information necessiry to obtain G(Q) and its data can be
got by the S-algorithm if only G(Q) is finite. In this case the E-algorithm supplies
an optimal schedule and its efficiency. The discussion has shown the importance
of some' open problems which require further investigation. Such problems are:
necessary and sufficient conditions for G(Q) to be finite; estimations for the ratio
of the efficiency values of CESs to the maximum value; detailed information about
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some heuristic strategies such as priority schedules and the schedule with minimum:
local losses.

KEYWORDS: steady job-flow pairs, preemptive scheduling, economic schedules,.
dominance.
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