Functor state machines

By G. HORVATH

In the present paper we introduce a notion of a machine in an arbitrary category.
A machine in a category is a computational device computing a morphism from
a free algebra to another one. The computation is defined by means of homomorphic
extension. We are dealing with two types of machines each of them having a functor
as its state. These two families of machines are related to bottom-up and top-down
tree transformations, respectively. The state functor of a machine working in top-
down way is required to have a right adjoint. We show that every top-down com-
putation can be carried out in bottom-up way.

A special type of machines, namely the generalized sequentlal machines in
categories having binary products are investigated. A generalized sequential machine
is a machine whose state funtor is a product functor and whose final state trans-
formation is the corresponding projection. Morphisms can be computed by general-
ized sequential machines in a category are characterized. We show that the process
transformations of Arbib and Manes, and the generalized sequential machines in
a category have the same processing capacity. Results of the present paper have "
been announced in [6].

1. Preliminaries

We assume the reader to be familiar with the elements of category theory such
as the notion of category, functor and natural transformation. Now we will list
some basw notions, deﬁmtlons and results to be used in the sequel.

DEHNITIONI 1. Let 9[’ be any category and let X: A~ be an-endofunctor.
An X-algebra is a pair (4, d) where A is an object and d: X4A-—~A is a morphism
in X, Given two X-algebras (A4, d), (4’,d’), a morphism A: A—~A" is an X-homo-
morphism if the diagram :

a2 xa

| (.1
nt o TXI: | )
1 -— x4

is commutative.
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DEerINITION 1.2 (Arbib—Manes [3]). Let 4 be an object in 4. A free X-algebra
over A is an X-algebra (X ¥ A4, gy 4) coupled with a morphism nd: A-X¥% A with
the universal property that for every other X-algebra (B, d) and morphism f: A—~B
there exists a unique X-homomorphism f¥*: (X¥ A4, uy4)—~(B,d) such that
f¥.nA=f Thatis, given d and f there is a unique f¥ such that (1.2) commutes.

d
B. «—— YB

/ T roo e (1.2

A nA x*4 Lo A Fod yyr gy

The morphism f¥ in (1.2) iscalled the X-homomorphic extension of f from the
free X-algebra (X¥ A4, uyA4) into the X-algebra (B, d).

Following Adamek and Trnkova (see [1]) we say that a functor X: H#—X"
is a varietor if there exists a free X-.algebra over each object in 2. Arbib and Manes
use the terms input process or recursion process [3, 4] dependmg on context. Let
X: A=A be a varietor. If we fix a choice of nA4: A~X* 4, pgd: XX¥ A~X*A4
in (1.2) for each object 4 in A, and for every morphism f: 4-~B the morphism
X*f: X*A—~X*B is defined to be the X-homomorphic extension of nB-f, i.e.

) 1B Y*B <07 oB XX#
J,T | TX#f .’[XX#f (1.3)
A II()A

A —>X¥ 4 e——XX¥A

then we get a functor X*: J—~#. Moreover, we obtain a pair of.natural trans-
formations : :
N Le—=X¥%, up: XX¥F 2 X¥,

the insertion of generators and the free operation of X, respectively. We omit the
subscript in the identity functor I,: o/~ whenever 2 is understood. Note that
each varietor X yields a family of morphisms u4: X*¥*X#¥A4~X*A4 defined by
the diagram

U, A -
X¥ge————XX*A4
i ,
x¥*4
1A Xud (1.9
# # )
x24T ey g S X A yye xe g
where Lyg o0 X¥FA-X *4 is the 1dent1ty morphism. One can show by an easy

computation that uA is natural in A, i.e. we have a natural transformation
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p: X*X*_2.X* the extended free operation of X, rendering the diagram (1.5)
commutative. . '

Y* <t yx#
s .
y M TXu 1.5)
x* ”X DX x* yrdod X" XX*X*

1

The basic algebraic structure in string processing is X;', the free monoid -over
a set X, of generators. Monads, rather than monoids are fundamental in our de-
velopment. Now we recall the definition of a monad.

DerInITION 1.3. A monad (T, n, 1) in a category A consists of a functor T
A—~A and two natural transformations

n: I=-T, p: IT =T

" which make the following diagrams commute.

T ~ (T '
T._'E‘_...TTQJ_T TTT"'L‘* IT

: Tyl M 1.
T TT —>T.

The diagrams in (1.6) are called unitary and associativity axioms, respectively.
We state, without proof, the following well-known fact: for every varietor X the
triple (X¥, 1, 1) is a monad in %, where 5 is the insertion of the generators.and
u is the extended free operation of X.

DEerNITION 1.4. Let (7, n, w) be a monad in #. A T-monad algebra is a pair
(A, d) consisting of an object A of 4" and a ~morphism d: TA-A such that

v _ A e—d——-TA ’
1 .
./Td TTd | 1.7
nA o ! .
A—> 1A ««—— TTA )

It is easy to prove that the pair (X ¥ 4, u4) is an X ¥-monad algebra for every varietor
X and object A.

ConNveNTION 1.5. In the remaining of this paper if a varietor is referred to by
the letter X, then the insertion of the generators, the free operation and the ex-
tended free operation of X are denoted by #, i, and u, respectively

n: I==X* pyr XX¥ 2o X* p0 X¥X¥ 2 X*,

3 Acta Cybernetica
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If we use the letter Y to denote another varietor then the items above are denoted
by the same letters but with bar, ie. #, i, and .

ProposiTION 1.6. Let X: A~ be a varietor. Given functors F, G: X' —~X"

and natural transformations é: XG-~G, ¢: F=-G there is a unique natural trans-
formation ¢¥: X¥ F=.G such that the following diagram is commutative. '

é

: G =——— XG
| / T(,,# qu,* )
nF HoF S

X#F «——XX*F

Proof is immediate.

DEeFINITION 1.7. An adjunction (F, U, v, ¢): A~ consists of a pair of functors
F: A-%, U: $~A and natural transformations v: I,=-UF, ¢: FU=-1, (called
unit and counit, respectively) subject to the so called “triangular identities’ :

UlgﬂWU . rur<ef

xgm | ‘Fl/ a9

F is said to be a left adjoint to U and U a right adjoint to F. We say that a functor
F has right adjoint, if there is a functor U right adjoint to F.

2. Machines

In this section we introduce a notion of a machine in an arbitrary category.
This is based on the notion of the free algebra. A machine is a computational device
which computes a morphism of a free algebra into another one. The basic idea of
our development — due to Alagi¢ [2] — is to take a functor to be the state of a
machine. Alagi¢ offered in his paper [2] the general concept of a direct state trans-
formation which took the form XQ-=-QY¥, where X and Y are varietors and
QO now is a functor. Arbib and Manes remarked in [4] that the Alagi¢ approach
has one flaw: because Q is a functor rather than an object, thus running the direct
state transformation yields a natural transformation X¥Q-=-QY* instead of a
morphism X#¥A4--Y *B between free algebras. But, in spite of this note there is
a general way in which we can extract from X*Q - QY* a “state-free” input-
output response of the form X¥*A-~Y*#*B. Thus, the benifits of the Alagi¢ ap-
proach can be obtained in any category, not only those having binary products.
Appart from the fact that we actually do not use the notion of the direct state trans-
formation of Alagié in the definition of a machine and its response, there is a close
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relatlonshlp between them. We will show this relatlonshlp Thére are several ad-
ventages of taking a functor to be the state of a machine. First of all this provides
a uniform treatment of top-down and bottom-up computations which are well-
known in the theory of tree transformations (see Engelfriet [5]).

DErINITION 2.1. Let A, B be objects of a category 4, and let X, Y be varietors
in A A machine M: 4, X)~(B,Y) inA is M=(Q, 1,0, p), where

o: A —»9{ is'a functor the state functor,

i: A~QY *Bis a morphism, the initial state-output morphlsm

o:- XQ-==QY* is a natural transformation, the transition,

B: Q—'»I is a natural transformation, the final state transformation.

DEFINITION 22 Let M= Q,i,0,8): (4, X)~(B,Y) be a machine in . The
response of M i 1s the morphism f3,: X*¥4—~Y*B defined by the composite

S X* 42 gy# pEYEB yup @)

where i* is the run map of M, i.e. the X-homomorphic extension

| oy*p2HB QiB or*y Y BXQY B
X Ti# » tXi# ‘ 2.2)
A—"——-+X Ae— O Xx*a

of the initial state- -output i.
By Proposmon 1.6 the transition ¢: XQ--QY* has a unique extension
o¥: X*¥*Q QY * defined by .

. 01+ oyryr e yoye _
ny Ta* 1,\/0# : 2.3)
0 nQ x* QO # o

> Q= XX Q

o¥ is called the extended transition of the machine M. Natural transformations like
o* in (2 3) were studled by Alagi¢ in [2] under the name “direct state transfor-
mation”. -

We show that the response of a machine M can be expressed in terms of the
extended transition of M.

STATEMENT 2.3. Let M=(Q, i, o', B): A4, X )—»(B Y) be a machine in . Then
the response of M is

fu= BY‘*B-’QﬁB-a#Y*B-'X*i. e (2.4)

3‘
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Proof. Consider the following diagram.

o¥*B

or*p <28 oyty*p XQY*B
)\ ) :
) |QiB d) or*ig  © XQjiB
—Y# . # ¥
or*y* 3L oyryryep TY X B vy yep
b) oYE £ ety
Y*B
X" QY*Be HoQ XX*QY*B
|
TX*;’ &) XX¥i
> X ¥4 - to X*4

The parts a), ) and g) are naturality squares for #, ¢, and y,, respectively. Commuta-
tivity of b) and f) directly follow from the definition of ¢* (2.3). The monad iden-
tities (1.6) for the monad (Y ¥, 7, i) imply ¢) and d), thus, (2.5) is completely com-
mutative. Since the homomorphic extension is unique, putting thogether (2.2) and
(2.5) we have = QyB ¥ Y*B.X*i. Hence by (2.1) fy=BY*B-i*=BY*B
-QiB-c*Y*B-X*i. O

Now we introduce a deﬁmtlon of a machine working in such a way that ele-

mentary input produces an elementary output.

DEFINITION 2.4. Let X and Y be varietors in 2" and let A, B be objects of .
A simple machine in A is a system' M=(Q, iy, 04, f): (4, X)—~(B, Y), where

Q: A —~A is a functor, the state functor,

ip: A—~QB is a A -morphism, the initial state-output,

Go: XQ-=-QY.is a natural transformation, the transition,

B: Q—=-1 is a natural transformation, the final state transformation.

The response of a simple machine M=(Q, iy, 6,, f) is the composite morphism

i¥ .
fit X¥A . or+pEYEE yep

2.6)
where if is the run map of M defined by the homomorphic extension.
fi Y*B
OB~ o > Qv*B <—- PULL QYY* = _Zxor*B
ioT Ti;* 1 xit (2.7
A
A s n X¥A - H ‘?A xXx¥4
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DEFINITION 2.5. Let M=(Q, i, 0, 8): (4, X)~(B,Y) be a machine in . We
say that the initial state-output morphism i is simple if it can be factored thorough
QfB: QB—~QY ¥ B, i.e. there is a morphism i;: A—~QB such that

At ov*p |
N, Jois @8
AW

Similarly, the transition o is called simple if there exists a natural transformation
6, XQ =+ QY such that :

X0 2 5 or*
)4

is commutative, where 7, is the embedding of Y into Y*, ie. 7,;: Y L Yy ¥ Zo, y ¥ .

LemMA 2.6. Let -M=(Q, i, 0, f): (4, X)—~(B, Y) be a machine in /, and let
i and o be simple. Then the simple machine M’=(Q, iy, 64, B): (4, X)—~(B, ).
where i, and g, are as in (2.8) and (2.9), respectively, has the same response as M,

Proof. Since the final state transformation of M and that of M’ is B, it is enough
to prove that the corresponding run maps i* and i coincide.
Consider the following diagram.

¢

QYY*B

Ofio B o, Y*B
O Y*B

nB iiB # »
o8-8 oY*B <28 ovrytn <8 xoyts  (210)

ioT / T i* TX;* .
Ho A L

A
A—"" S x4 - XX*A4

By the defining diagram (1.5) of an extended free operation, the equalities
Aiil,Y¥=j,-Yi and j-7fY*=1y+ hold, thus we have

Bl ¥* =i (B Y)Y* = f-ioY* - YAY* = i, YVA-YiY =
=jo Y(@-fiY*) = g-Y1ly# = fg;.

Hence Qp-0m, Y*=Qi, Now, from the factorizations (2.8), (2.9) and the de-
finition (2.2) of the run map i ¥, we obtain that the diagram (2.10) is completely
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commutative, ThlS means that /¥ satisfies the commutatmty of dlagram (27)
which defines i& uniquely. Thus z*:t&*. O : _

The diagram (2.3) defines for every natural transformation o XQ—‘oQY#',
i.e. without ¢ being a transition of any machine, the extension ¢¥%: X #Q =+ QY ¥,
Alagi¢ studied this extension in his paper [2] and proved the followmg theorem
replaced the monad (Y *, 7, i) by an arbitrary one.

- THEOREM 2.7 (Alagi¢ [2], Theorem 2.30, p. 287). Let X, Y: X'~ be varietors,
and Q:A —2 be a functor. Then for every natural transformation ¢: XQ—=--QY #
the extension o*: X*Q -~ QY* defined by (2.3) satisfies the commutativity of
the following diagram:

OY* ear- Qn OY*y* &2 YX QY#
0 Ta#_ o TX#(,# @.11)
Q—lQ»-X O~ i X¥x*Q

THEOREM 2.8. Let f;: X* A—~Y*B, f;: Y*B-~Z*C be responses of machines
M,: (4, X)—~(B,Y) and M,: (B, Y)—(C, Z), respectively. Then the composite
‘morphism f,+f,: X*A-~Z*C is again the response of a machine M: (4, X)—~(C, Z).

Proof. Assume that machines M, and M, are specified by M,=(0,, 7, 6, ﬂl);
M,=(Q,, i5, 65, B;). Consider the machine M=(Q, i, o, ﬂ): (4, X)—~(C, Z), where

0 =0,0., .0'=Q1¢72 01Q2,

0,if 810y
2.0,0,2*C, f=0.0, 280,201

Let us denote by 77 and % the insertion of generators and the extended free operation
of Z respectlvcly By the definition of the responses of M, and M,, f,-fi=B.Z*C-
cif B Y*B.if. Usmg the naturality of B, we have

forh = ﬂZZ#C ﬂ1Q2Z#C Q1lz ”1 = (B,- ﬂ1Q2)Z#C Q1’2 ’1 =ﬁZ#C Q112

The response of M is fo,=BZ*C-i*, where i* is the run map ofM Thus, in order
to prove that the machine M computes the compos1te JoofiL we need only to show

that (2.13) holds )
Q112 . ? i* } . ] (2.13)

Takmg into account that the run map i ¥ is the unique morphism satisfying (2 14), .
it is enough to prove that the left side of (2.13) also satlsﬁes (2 14) :

, (2.12)
i=AL0Q,Y*B

YA

-eg‘gz”—c— 0:0.2%z%C <——XQ1Q2

0:0.2%C

A ’ oA - : ’ !

A o XA - - xx¥4
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Consider the diagram (2.15) below.
. oZ *Cc

QIQZEC J Q10'2 Z# (Vl) 01 Q Z#C I .
010,72 Ce—010:Z* Z* C—Q,Y* 0,Z% C X0, 0, Z* C

® IQu‘f' SR ]QIY*@" (i TXQJ? (2.15)
i X _B Y#
i QlY#Bz Ql/l Qly#Y#BuXQly#B
/(l.) T’l# @ TX"#
A A !
A7 g fo xx¥4

The subdiagrams (i) and (ii) commute by the definition of the run map-if. (iii)
is a naturality square for the natural transformation a,. (v) and (vi) aré commutative
by (2.12). Thus the commutativity of (iv) is remained to prove. By Proposition 2.3
the run map i can be expressed by the extended transition af of M2 as follows

i* = 0,AC-0¥Z*C-Y*i,. T @216)

The diagrams (i) and (iv) in (2.17) commute, being naturality squares for 7 and of,
‘respectlvely (ii) is commutative by Theorem 2.7, finally, the commutatmty of
(iii) in (2.17) foliows from the associativity axiom of the monad (Z*,%, n). Hence,

. 17) is completely commutative. :

. #* ¥ : .
QzZ#C Q&Ii— QzZ#Z#'Cv 012 C Y#Q::Z#C
- " (i) T .= (@iv) T -
i zZ¥ic Y¥Q.uC -
QzuCJ ezre (YA b b v Q24
(VA AT P iy WA AT AT Diklliadiin y*p,z*z*%C @17
a;*z*‘cf (i) cogte T TY*a;‘*Z*_c_ ‘
v*0,2*C o2 - Y'Y 0.2%C
y*fzf RO . T'Y.*Y*fz
Y*B - i ' Y*Y*B

Puttmg together (2.16) and (2.17) we have
01 - 0478 = 04(iF - 7B) = 0,(Q4TEC- 0} Z°C - Y* iy iB) =
—Ql(QzuC oFZ*C. Y#Qz/,LC Y*a ZEC.Y*Y*i,) =
= 010;1C- Q163 Z*C-Q,Y* (Q,iC - of Z*C-Y *iy) =
=010,iC-0,0# Z*C -0, Y *i}f
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Hence the diagram (iii) in (2.15) is commutative which completes the proof
of the theorem. [J

DEFINITION 2.9. Let M=(Q, i, 0, B): (4, X)—=(B,Y) and M,=(Qy, iy, 04, f0):
(4, X)—~(B, Y) be machines in . A simulation ¢: M,—~M is a natural transforma-
tion ¢: Q,—=+ Q rendering the diagrams (2.18) commutative,
Y¥p #

Y
o, r* B————> QY*B QlY*—g—-> QY*

VANV

2) b) )

THEOREM 2.10. Let M: (4, X)—~(B,Y) and M,: (4, X)—~(B, Y) be machines
in of. Whenever a simulation ¢: M,—~M exists then fy=fy,.

&

Proof. Assume that the machines M and M, are given by M=(Q, i, o, B),
M,=(Q,, 11, 61, B). Then the response of M is f,,=BY* B.i* and the response
of M is fy,=pY*B-if. Consider the diagram (2.19).

_—
QY*B*—QL—QY#Y#BQMXQY

. IQY*B (v) |oy*y*B (iii) [ng*B

iB- o Y*B
0,v*B< 288 y¥yrp d <+ ——Xx0,Y*B @219
i _
/ () fi:* (i) TX;',*
p :
A L e Lo  XX*4

The diagrams (i) and (ii) in (2.19) are commutative just they define the run map
i¥ of M,. Since ¢: Q,—=-Q is a simulation (iii) and (v) commute by (2.18b) and
(2.18a), respectively. (iv) is a naturality square for ¢ thus (2.19) is completely com-
mutative. Hence, we have that the morpisms i¥ and gY*B.if both are defined
by homomorphic extensions on the same specification. The uniquenes of the homo-
morphic extension implies ¥ =Y * B.if. Finally, we have

fu=BY*B-i* =pY*B-oY*B-if =(B-Q)Y*B-if =pY*B-if =fy,. O

3. Inverse-state machines

In this section we shall develop a categorial model of Thatcher’s generalized®
sequential machine maps (see [8]), and Engelfriet’s top-down tree transformations
(see [5]). The term “inverse-state machine” is used here because these machines
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are very closely related to the inverse state transformations of Alagi¢ [2]. We shall
show that every top-down, i.e. inverse-state computation can be carried out by
a machine with sutable state functor.

First, we need a theorem whose analogous one was proved in [2] and what
we state as a consequence of our theorem.

THEOREM 3.1. Let (T, 7", 1) be a monad and let (B, d) be a T-monad algebra
in 2. Furthermore, let X: # —~X be varietor and Q: X~ be a functor with
right adjoint. Then for every morphism j: Q4A—B and natural transformation
1: QX—~TQ there exists a unique morphism jy: QX * A~ B satisfying (3.1).

_ d Tjs .
o B+ TBe—TQX*4
J ) ' 3.1
/A( f]# s er*A 3-1)
0A4="s o OX* da— " OXX* 4

Moreover, there is a bijective correspondence between_triples (J, 7, j4) satisfying
(3.1) and triples (i: A~0B, 6: XQ~QT,i*: X¥ 4~QB) satisfying (3.2), where
(0, 0,v, ¢) is an adjunction due to Q. :

0d
0B 2 orpE X0B

A X et xx*4

Mutually inverse passages are given by (3.3) and (3.4 below.
i: A~QB : 0420082
L]

o:‘XQ -QTr S 1 QXﬂ:QXQQ—QﬁZ»QQTQﬂ-TQ (3.3)
i*: X¥4 0B ju: QX*A425.00B B

j: QA ~ B i: 422004 %. 0B
1 QX=-TQ 4 o: X022 QQXQQQ 0700 2. 0T - (3.4)
vX Ql#

je: OX*A4~B it X*4q »QQX# 0B

Proof. First we show that @ and ¥ are inverses of each other. It is a well know
property of the adjunction (Q, 0, v, &) that ¥ .®()=i, &-¥(j)=j. By the same
argument we get Y. @(¥)=i*, &-¥(js)=j.. We prove that ¥.d(o)=0 and
b-Y(r)=1. ' . .

¥.P(0) = Y’(sTQ-QaQ-QXv) =‘ QTs-Q(sTQ-QaQ-QXv)Q-vXQ =

= QTe-0eTQQ- 00000 - 0QXvQ - vXQ.
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Consider the diagram (3.5) whose triangular parts are commutative according
to the triangular identities of the adjunction (Q, @, v, &). The other two parts of
(3.5) commute since they are naturality squares for v and o, respectively. Thus
. we have ¥.®(0)=0. ' : ’

_ The following diagram also commutes by the adjunction identity Q- Ov=1,,
and the naturality of v, v and e. '

ox = TQ
10X

ovx "'TEQX Q0r . QQTI TsTQ .
QX ————> 000X —=—» 0010 ——2»00T0  (3:6) -

ox| - Jesoxs lQQTQ/
~ X0 o 0t00 OT:
%20 2722, hoovpe 28RL, Y - 0ar0

Hence, o
D-P(1) = Q(QT&fQTQ'VXQ) =eTQ-0(QTe-Q:Q-vX0)Q-0QXv =
= eTQ-Q0TsQ- 00100 QvX0Q-QXv =t 1pX = 1+ 1gg = .

Let us prove that the passages @ and ¥ preserve satisfyability of the appro-
priate diagrams., Assume that a triple (i, o, i ¥) satisfies (3.2), Then,

®(i*)-QnA = eB-Qi* -Qnd =£B-Q(i* -nd) = £B- Qi = 9 (i).
Thus the triangular part of (3.1) holds. . " A
O(i*) - Qo = £B+Qi* - QuyA = 6B-Q(i* - uyA) = ¢B-Q(0d - 0B - Xi*) =
- = ¢B-QQ0d-QoB-0Xi*.
One of the adjunction identities says 1;=0c-vQ and hence loxgs=0X1;B=

=QX(Qe-vQ)B=0XQcB-QXvQB, which yields &(i*)-Qu,A=eB-Q0d-QoB-
-(QXQeB-QXvQB)-QXi*. Application of commutations for the natural trans-



Functor state machines . 159

formations ¢, ¢T- Qo, ®(c) and ®(6)=e7Q-QaQ-QXv produces
&(i*)-QuoA =d-eTB-QoB-0XQeB-QXvQB- QXt* =
=d-TeB-eTQQB-QsQ0B-QXvQB-0Xi*=d. TeB-(eTQ-Q6Q-QXv)QB-QXi* =
' =d-TeB-&(0)0B-QXi* = d-TeB-TQi* - ®(a) X*A4 =
=d-T(eB-Qi*) - P(0)X* A = d-To(i*)- P(o) X * 4.

" Thus, the triple (J, 7, j4)=(@(i), (o), ®(i*)) satisfies (3.1).
Conversely, let us suppose that the left side (J, 1, J#) of (3.4) makes (3.1)
commutatrve Then, for the right side of (3.4), we have N

Y(s)- ’1A Qjs- VX#A 'IA OQjs-00nA-vA =
= Qs -OnA)-vA = Qj-vA = ¥(j). ’

This means that the triangular part of (3.2) is satisfied. Let us see the other
part of (3.2). By the definition (3.4) of ¥ and the naturahty of v we have

Y(ju) oA =Qju - vX*A- oA = Qjy - Q0poA- vXX*A—
-—Q(]# Qu,A) - VXX A = 0 Tjy -1 X¥A) - vXX*A4 =
=Qd-QTj, -QtX*¥4-vXXx* A
From the adjunction identity 1,=¢Q-Qv follows 1qux’h QTl X*¥A=
=0T (EQ-ONX*¥A=0TeQX* 4. QTQvX#A thus we get
y/(]#)-qu—Qd'QT]#'QTtIQX#A QTQvX*A-QrX*"A-vXX*A
Using the naturality of QT and’ Qr -vX we conclude

F()- -1oA =Qd+QTeB - QTQD j - OTOVX * 4" QTX#A VXX¥A4 =
= 0d-QTeB-QTQ(Qjy -vX* A)-(Qr-vX)X* 4 =
= Qd-QTsB-QTQY (j4)-(Qt-vX)X* 4 = Qd-QTeB-(Qr-vX)0B- X¥(jy) =
= 0d-(QTz-0rQ-vXQ)B-X¥(j4) = Qd - ¥ (1) B- X¥ (j)-

Thus the triple (i, o, i¥)=(¥(j); ¥ (x), ¥ (js)) satisfies (3.2). The existential state-
ment of the Theorem can be obtained as follows. For given morphism j: 04—~ B
and natural transformation z: QX =+TQ consider i:=¢( D, a:=d>(r) and take
the unique i * satisfying (3.2). This i * exists because (X* A4, u,A) is a free X-algebra.
Then, as we have shown, (¥ (i), ¥(0), Y(i*)) satisfies (3 1). But ¥(@)=j and
" ¥(6)=t, hence (j, 1, Y *)) satisfies (3.1). The umqueness of j, in (3.1) follows

from the facts that ¥'is bijective and z* is unique in (3. 2) ThlS completes the proof
of Theorem 3.1. 1 - . SIS

The following statement was proved in another way in Alagi¢ [2] (see Theorem
3.10 pp. 297) replaced (Y *,7, 1) by an arbitrary monad. _
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STATEMENT 3.2. Let X, Y be varietors in 4" and let Q: "= be a functor having
right adjoint. Then for every natural transformation t: QX-=-Y¥Q there is a
unique 14: QX* .Y #¥Q defined by

- #
70 Y*QJ—Q—Y*Y*QLEY*QX%
. for 0D
Q Q” QX#w QPO QXX#

"Proof. Let A be an object of . As (Y*, 7, i) is a monad it is evident that
(Y* 04, iQA4) is an Y*-monad algebra. Take j:=7QA4: Q4A—~Y* (04 and apply
Theorem 3.1 for this j and 't above. We have that there exists a unique j,:
OX*A-Y*QA denoted by t4 4 which renders (3.8) commutative.

Y*QA.&Y*Y#QAQY_EL Y*ox*4

% fa o fara 09

0121, o x* 4= QXX* 4

Thus we need only to show that 74 A4 in (3.8) is natural in 4. The proof is
straightforward. O

DEfINITION 3.3. Let A4, B be Ob_jCCtS of o and let X, Y be varietors in 4. An

inverse-state machine
=(Q, % 1,)): (4, X)—»(B Y)
in A" consists of the following data:

Q: A —~A" a functor, the state functor, having right adjoint,

o: I-+~Q a natural transformation, the initial state transformation,
7: QX=Y*Q a natural transformation, the transition,

Jj: QA—Y* B a morphism, the final state-output morphism.

DerFinNITION 3.4. Let M=(Q, o, 17, j): (4, X)—(B, Y) be an inverse-state ma-
chine in . The morphism f,; computed by M or the response of M is defined by

fu: It y+p (3.9)

where j, is the (inverse-state) run map defined to be the unique morphism

- # .
‘ y*B_.”_B.;Y#Y*Bl_j_*Y*QX*A
J 4 # Oy A , fTX#A (.10
0A- 21, 0x* g ZHT OXX* 4 '

according to Thebrem 3.1
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By Statement 3.2 we define the extended transition of the inverse-state machine
- M by the diagram (3.11).

3Y Y*1
Y QLY Yt 0Tt yrox
70 @311
4}7' f:f Oty fT;Y# )
Q — QX * e oxXX

We shall show that the response of an inverse-state machine can be expressed
in terms of the extended transition.

LEMMA 3.5. Let M=(Q, «, 1, j): (4, X)—(B, Y) be an inverse-state machine
in &, The response of M is

fM=ﬁB-Y*j-r#A-‘aX 4, : (3.12)
- where 14 is the extended transition of M. '

Proof. Because of the fact that the run map j. of M is unique in (3.10) it is
sufficient to prove that substituting the morphism pEB-Y ¥ j.-t. A4 for ju, (3.10)
remaines commutative. Consider the diagram

. iB
YEB 12 _ y*y*p

(vi)TﬁB (:i) TY*ﬁB

Y#Y#B*_"—Y—_B Y#Y#Y#B (V)

%; 1Y*j l(i;') TY#Y#J'Y#T-A ‘

Y* B (m) Y* QA YFy* Q4 ——Ey*Ox* 4
QnA

QA ————Q0X* fam

Y*(AB-Y*j-14 A)

(3.13)

(i) and (ii) are commutative by the diagram (3.11) of the extended transition 7.
(iii) and (iv) are naturality squares for 7 and fi, respectively, hence they commute.
The commutativity of (vi) and (vii) follows directly from the monad identities of
(Y'*, 7, D). (V) just expresses the value of the functor ¥ * on a composite morphism.
Thus the whole diagram is commutative which ends the proof of the Lemma. O

THEOREM 3.6. Given inverse-state machine M-=(Q,.oz, 7, j): (4, X)~>(B,Y)
there is a machine M: (4, X)—(B, Y) computing the response of M.

Proof. Let Q be a right adjoint of Q, and denote the corresponding adjunctlon
by (@, 0, v, ¢). Define a machine M=(Q,i,0,p) by

i: 424004 2. Qr* B,
o: X0 2 0ox0 Z2. gy+ g 2= gy+, - G.14)
p: 02001 |
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We are-going to prove that f,=fy. By the notations above
Su=Jjs aX*A, fg=pY*B.i¥, o B.15)

where j, and i¥ are the run maps of M and .M, respectively. Thus the triple
(j, 7, j&) satisfies (3.10) and hence, by Theorem 3.1 the triple (i, o, Qjg -vX* A)
satisfies the. commutativity of the diagram which defines the run map i¥* of M.
The umqueness of the homomorphlc extension implies

=0js vX* A, (3.16)
Thus we have

=€ oaQ)Y*B-Qjs - vX*A=eY*B.aQY*B-Qj, -vX* A. 3.17) -
Consider the diagram below. . '

aQY*B  _ eY*B
—

oY*B QQr*B ——-—-ﬁ B

Qj# T TQQJ# 0x * 4 1 Je _
00x*4 QQQX#A — > 0X*4 (3.18)

X#AI 1‘ vX*A
A axra ¢ 1oX*4

X*¥4 ———> Ox*4

The triangular part of (3.18) is commutative by reason of the adjunction identity -
eQ-Qv=1,, and the other two parts of (3.18) commute being naturality squares
for « and e, respectively. Putting together (3.17) and (3.18) we have -

fm=js-l X*A aX*A=ju-aX*A=f,. O
Now we state the dual of Theorem 3.6.

TuaeorREM 3.7. Let M 0,i,0,B): (4, X )—»(B Y) be a machme in X such
that its state functor Q has a left adjoint. Then the response of M can be computed
by an inverse-state machine.

Proof. Let (Q, 0,v,¢) be an adjunction. Define an _inverse-state machine
M=(Q, a1, j): (4, X)~(B,Y) by

I+-gg 2
T QX Xy QXQQ Qa0 QQY#Q eY#Q Y#Q, (319)
j: 04 2. 0Dy * B TE T¥5 yup

In consequence of Theorem 3.6 it is sufficient to prove that applying the con-
struction (3.14) for the data in (3.19) we get back the specification of the machine
M, ie.

=0j-vd, oc=¢Y*Q-0rQ-vXQ, B =¢-a0. (3.20)
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The first two equalities of (3.19) have already been proized 1.n Theorem 3.1 in con-
text that @ and ¥ are inverses of each other. The remaining f=¢-af is obvious
from the adjunction identity

l1g=0evQ; ¢-a0 =¢-(BQ-v)Q =¢-pQ0-vQ = p-Qe-vQ =f-1g=p. O

THEOREM 3.8. Let M,: (4, X)—~(B,Y) and M,: (B, Y)—(C, Z) be inverse-
state machines in 2. Then the composite morphism fu,«fy,: X¥A~Z*C can
be again computed by an inverse state machine.

Proof. Assume that M, has a_state functor Q, and M, has a state functor Q,.
Denote a right adjoint of O, and Q, by @, and @,, respectively. By Theorem 3.6
the responses fy, and fy, can be computed by machines whose state functors are
0, and Q,, respectlvely Now apply Theorem 2.8 which says that the composite
morphism fyy, * f, is the response of-a machine with state functor @;0,. According
to Theorem-3.7 if the composite functor Q, 0, has left adjomt then the morphism
Ju, *fu, can be computed by an inverse-state machine. But, it is a well known result
in category theory that the composite functors yield an adjunction, i.e. Q,0Q, is
left adjoint to 0,0, (see [7], Theorem 8.1, pp. 101). O

4. Generalized sequential machines in categories

The concept of generalized sequential machines in categories having binary
products is developed in this section. A generalized sequential machine is a ma-
chine whose state functor is a product-functor and its final state transformation
is a projection.

We also investigate sequentlal machines, i.e. machines working sequentially,
moreover, elementary input produces an elementary output. Morphisms ‘com-
puted by generalized sequential as well as sequentlal machines in a category are
characterized.

Throughout this section we assume that a category X with binary products
is given. 4

DEeriNITION 4.1. Fix a choice of a product diagram 4= AXB-%-B fOr every
given pair (4, B) of objects of £, and given morphisms f: A’—~ A4, g: B'~B define
the morphlsm SXg: AXB'~AXB by

q
A -01— AXB-~——>»B
A ke, e @
At XL ’

It is well known that in this case each object S of X induces a functor
SX—: A ->H by

(SX—)A:=SXA, (SX —)f:= Isxf. | 4.2)

These functors.are called product functors. It is obvious from (4.1) that the family
of projections m4: SXA—~A constitute a natural transformation n:(SX —)=+1,
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called projection transformation. For orbitrary morphisms h,: C—~A4, h,: C—~B
we use the notation (/,, &) for the unique morphism satisfying (4.3) below.

Aet—uaxp—1 .8

| S ®
h, sy
. C

According to (4.1) and (4.3) we have the following identities:

(fXg) +(hy, hy)) = (f-hy, g+ hy) 4.9
(FXg)-(hXgd =(ff)x(g-g) - 4.5)
(hy, ho) -1 = (hy-h, hy-h) (4.6)

DEerFINITION 4.2. A generalized sequential machine in # is a machine
M=(Q,i,o0,p): (4, X)~(B, Y) whose state functor @ is a product-functor induced
by an object S of Jf, and the final state transformation is the projection SX ~-=+1.
Thus, a generalized sequential machine can be specified by

M=(S,i,0): (4, X)—»(B, Y), where S is an object of X, the state object,
i: A=~SXY¥* B is a #-morphism, the initial state-output morphism,
g: X(S§X —)=+(SX—)Y*¥ is a natural transformation, the transition.

The response of a generalized sequential machine M=(S, i, 0): (4, X)~(B, Y)
is defined to be the response of the machine M’ =(SX —, i, 0,7): (4, X)—~(B, Y),
where 7 is the projection SX ——=-1.

Now we give a definition of sequential machines in a category. A sequential
machine is a simple machine whose state functor is a product functor and whose
final state transformation is the projection.

DerNITION 4.3. Let A, B be objects of ¢ and let X, Y be varietors in . A
sequential machine
M = (S: iO) 0'0)1 (A’ X) - (B’ Y)

in X consists of the following data: '

an object S of 7, the state object,

a A-morphism i,: A—~SXB, the initial state- output

a natural transformation ¢4: X(SX —)—=~(SX —)Y, the transition.
The response of a sequential machine M=(S, iy, 0,) is the composite morphism
fu=nY*B.i¥, where n: SX~=-1 is the projection and i§ is the run map of
M defined by .

_ : lox @i #p
SXBLS_X_"B_;.5><Y#B<S—X&’£ SXYY*B,‘?.P_Y_BX(S)(Y#B)
?io | I i A T xid @.7
: nA BoA

Xx*4

A > XFA -
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DEFINITION 4.4. Let 4, B be objects of " and let X, ¥ be varietors in- . A
morphism f: X* A~Y* B is called initial-segment preserving if there is a natural
transformation

A X(X¥FAX—)=-YH*, (4.8)
such that
X#A f e Y#f B
Uo A . TﬁB “4.9)
" X(lx# A? ﬂ . )Y# ’ .
xXx*4 X(X*AxY*B) 2L B sy yep

THEOREM 4.5. A morphism f: X¥ A—~Y* B can be computed by a generalnzed
sequential machine in X" if and only 1f f is initial-segment preservmg

~Proof. Assume that a morphlsm f: X*A~Y*B is computed by a generaliZed
sequential machine M=(S, i, 0): (4, X)—~(B, Y). Thus, f=fy=nY*B-i¥, where
7 is the projection transformation SX—-+I and i* is the run map of M defined
by (4.10) below.

Sx1* B FB SXY*Y*B ﬂX(SxY*B)
/ T"# : in# (4.10)
A xv 4 < #od Xx* 4
Denote by p the projection S«— SXY*B, and let
r: X* 42 sxy*BL.§. (4.11)

It can be seen by the identity (4.5) that the morphism r:- X * A~ S induces a natural
transformation (rX —): X*AX —=-8§X — by :

(rx=)C: rXle: X¥AXC - SXC .41
for each object C of . Consider thé natural transformation A
2t X(X*AX =) XD, x(§¢ ) 2 (Sx - )Y+ X y#, (4.13)

We shall prove that this 2 satisfies (4.9) with the response morphism f. First, we

show that i*=(r, ). Because S-ZSxY*¥BZ . nt¥B Y*B is a product diagram
(p, 1Y * B)=lsxy#5. Thus we have
T = Lgyaptit = (0 7Y ¥ B)- =it Y BN = (nf). (414)

By (4.4) we obtain from (4.14) 4
#=(r.1X#Aa IY#B'f):(rXIY#B)'(lx#As f)- (4.15)

4 Acta Cybernetica
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Taking into account (4.10) and (4.15) we have
SopoA =nYEB i¥ .y 4 = nY*B.(IgXjiB)-oY* B- Xi* =
=jiB-n1Y*Y*B-oY*B.Xi* = iB-(a¥*.0)Y* B- Xi* =
=AB-(nY*-0)Y¥B-X((rX1,4,)-(,4,, ) =
= fiB-(xY* -0)Y* B- X(rX —)Y*B-X(lyay f) =
=[AB-(nY¥* -0 - X(rX =))Y¥B-X(l,4,, /).
Applying the definition (4.13) of the natural transformation A we conclude that
oA = FB-JY*B-X(lys ., /),

whiich proves the commutativity of (4.9). .

Conversely, assume that a morphism f: X*¥4—~Y* B is initial-segment pre-
serving, i.e. there is a natural transformation A: X(X* AX—)=-Y¥* rendering
the diagram (4.9) commutative. For each object C of £ let us denote by oC the pro-
jeetion X* 4 X¥* 4XC. We show that the composite morphism

6C: X(X* AX —)C = X(X* AXC)LAXECID) yo 4y y+C —

. 4.
= X*¥4AX-)Y*C (4.16)
is natural in C, thus we get a natural transformation
' Lol X(XFAX =)~ (X¥AXS)Y*, 4.17)

‘Let h: C—D be an arbitrary morphism. We have to prove that

X(X*4 xC)—-gg—*X*AxY*C
Xt ax ) - laraxort @.18)
X(X"AX D=2 X * A Y* D
By (4.4) and the definition of the product-functor X* AX — we have
oD X(X* AX —)h = (uoA-XoD, AD) - X (14 , X h) = .
= (oA - X(eD - (1,4 ,Xh)), AD - X (1 ;4 , X h)).

From (4.1) follows oD :(1x#,Xh)=1x%,-0C=0C, hence using the naturality
of . we obtain

oD - X(X¥AX —)h = (oA -XC,Y*h.:2C) =
= (Iya, XY *h)- (oA - XoC, AC) = (X* AX =)Y * o C.

Thus the diagram (4.18) is commutative.
Let us define the generalized sequential machine

M=(X*4,i,6): (4,X) ~(B,Y)
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by ¢ in (4.16) and put .
: Aty g x4 e yep (4.19)
We show that f is the response of M, i.e.

‘ | f=nY*B.i¥, ’ (4.20)
v?hére 7 is the projection transformation X * 4X ——=-7 and i ¥ is the run map of M:

_ _ lys,XB . or*sm
X*AXY* BTl x*AxY*Y* B " X(X*AXY*B) ‘

T

A—-—)XA* XX*4

In order to prove (4.20) it is enough to vérify that i¥*=(ly+,, f). We do this by
observing from the following that (1y#,, /) is an X-homomorphic extension by
the same specification as i¥, which means (4.21).

a) (1,44, f)-nA=i, by definition (4.19) of i.
b) (lx#Aaf)'l‘oA = (IX#A,ﬁB)'O'Y*B'X(Ix#A,f)-
Applying (4.6), (4.9) and (4.4) in this order we have
(g0 ) oA = (o A, [+ poA) = (oA, iB-2Y*¥B-X(1,4 ., /) =
= (Lyw XEB)- (oA, Y * B-X(1u . /).
By (4.3) oY*B-(1x#%,, f)=1x%, holds, thus
Ly g 1) Hod = (Lyw X 7iB) - (KA X L 4, MY * B+ X(Lpa o, ) =
- = (Iya XAB) (oA - X(@Y* B-(Lys 4, /), AY*B-X(lys . 1)) =
= (Iya, XAB)- (oA - XoY* B, AY*B)- X (1,4 ,, f).
Taking the definition (4.16) of the natural transformation o we conclude that
(o ar ) oA = (lys X 7B)-0Y * B- XLy, f)
which completes the proof of the theorem.

CoOROLLARY 4.6. Let 4 be an object of # and let X be a varietor in . The
object X* A is universal in the sense that for every generalized sequential machine
M: (A, X)—~(B, Y) there is a generalized sequential machine M’: (4, X)—~(B, Y)
whose state object is X*4, and M’ computes the response of M.

Now we give a characterlzatlon of morphisms computed by sequentlal ma-
chines in #. =

4*
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THEOREM 4.7. Let X, Y be varietors in X" and let 4, B be objects of . A morph-
ism f: X¥ A~Y* B can be computed by a sequential machine in  iff the following
two conditions are satisfied: ’

1) there is a morphism f,: A—~B such that

S
X*4 —"Y*B
nAT 1’73
A58

(4.22)

i) there is a natural transformation 2,: X(X* AX —)<- X making (4.23) com-
mutative.

, S .
X*4 7 - » Y* B

ol N v* TﬁoB @)
X(lye o JY*B
Xx*4 Uxe s X(X*4xY*B) LY 5 vy

Proof. Assume that a sequential machine M=(S, iy, oy): (4, X)~(B, Y) com-
putes f: X¥A4-~Y*B. Let us take the generalized sequential machine M’'=
=(S, 1, 06): (4, X)—~(B, Y), where ‘

= Al SxBLXE g y* B

4.24
0= X(SX —) 2 (SX ~)Y - EXD_(SX —)Y*. @29

Remember that #,=f,-Y7. Then, by Lemma 2.6, the machine M’ computes
the response of M, i.e. the morphism f. Therefore f=nY * B.i*, where n: SX—=~I
is the projection and i ¥ is the run map of M’. Thus we have from (2.2)

fnA=nY¥*B-i* . nA=nY*B-i=nY*B.-(IgXiB)-iy=%B-nB-i,.

Hence, taking f; to be nB-i, the condition i) of Theorem 4.7 will be satisfied. Accord- .
ing to. Theorem 4.5 there is a natural transformation 1: X(X*¥ AX =)—Y* such
that for this 1 and f the diagram (4.9) is commutative. Moreover, by (4. 13) 2 has
the form

)= X(XF AxX =) XX, (s —) 2 (Sx —)YF 2 y# (4.25)
Now let us define the natural transformation 2, by '
Jo = X(X* AX —) XX x(§x —) 2. (Sx —)Y 2Ly, (4.26)
Since (4.9) holds for A in (4.25) it is enough to prove
HAY* = [y 2,7 ¥
By (4.24), (4.25), (4.26) and the naturality of = we have
B2Y* =a(nY* 0. X(rX =))Y* =j-(a¥ * - (SX —)ﬁl-aon(rX—))Y* =
= (Y 0 XX )Y F = (i A) Y F = G Y F QYR
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But we have already proved in Lemma 2.6 that -7, Y ¥=f,, thus we obtain
B AYF=j,- 2,7 *.

Conversely, assume that the conditions i) and ii) are satisfied for a morphism
fi X*A-Y*B. If we take Ai=f4, we have [-AY¥=j-(f,-4)Y¥ =
=g Y* -4 Y¥=j,- A, Y*. Thus (4.23) implies that the 1 above and f satis-
fies (4.9), and hence by Theorem 4.5 there is generalized sequential machine
M=(X*A4,i, 6) computing the morphism f. In the sense of Lemma 2.6 it is
sufficient to prove that the initial state-output morphism i/ and the transition o
of M are simple. Since the initial state-output i of M is defined in Theorem 4.5 by

2 x* 4 ("#‘ XFA T X* AXY *B,

thﬁs, if we take i, to be (n4, f;) for the f; in condition i), then
(X*AX)B-ig= (Iys ,X0B) - (Iys . fo) = (M4, 71B-f) =
=4, f-nd) = (ys,» ) nd =i
This means that i is-simple.in the sense of Definition 2.5. The transition o of M

has the form (a, 1) for some « by Theorem 4.5. From A=ij,+4, we conclude
that o is simple. This completes the proof of the theorem. O

THEOREM 4.8. The family of the generalized sequential machine morphisms in
A is closed under composition.

Proof. Let M;=(S,,i,0.): (4, X)~(B,Y) and M,=(S,,i,,06,): (B, Y)~
—~(C, Z) be generalized sequential machines in # computing the morphisms f;:
X*A~Y*B, f,: Y¥B-~Z¥%C, respectively. By Theorem 2.8 the composite
morphism f5-f;: X*A—~Z*C can be computed by a machine

=(Q,1,0, ﬂ) (AaX) g (C> Z)
where @ =(8;X —)(S;X ),

. S o
i=AlSl><Y*BM

B = (SiX =)(Syx —) EX, (5, x —) o .

Here m,: S{X—=»1,7,: S3X—-—+I are the projection transformations. The object
map of the composite functor (S;X—)(S;X—) is (SyX-)(S;X—-)D=
=(S; X =)(Sy X D)= 8, X (S, X D) for any object D of 2. Since the category ¢
has binary products we may recall the well known result (see Mac Lane [7], PP
73. Proposition 1) which asserts that there is an isomorphism

Us,,500 S1X(S2XD) = (S:X Sp) XD

N S, X —)Z#C = S, X(S, XZ*
(S1X—)(S: X —) X(5:XZ C)(427)

natural in S, S; and D, moreover, ts, s, p cOmmutes with the projections to
S,, S;and D, respectlvely Thus there is a natural transformation -

. (SIX -)(Sz )-—*(SIXSZ) X_
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with inverse i (i.e., both ¢ -y and ¥ -¢ are the identity natural transformations
on the corresponding functors),

Y (S XS X —=+(Sp X —)(Se X —)

such that n-¢=mn,:(S;X —)n,, where 7: (S, X SI)X— —1 is the projection. Con-
sider the generalized sequential machine

M’ =(($;XS)X —, ¥, 0’,7): (4, X) ~(C, Z)
where i” and ¢’ are defined by / and ¢ in (4.27) as follows

i = A (S;X —)(SaX —)Z*C2ZEE ((5,X ) —)Z*C, (4.28)
o = YARY 2D (/8

By Theorem 2.10 it is sufficient to prove that ¢ -is a simulation ¢: M—~M’'. We
have to show the equalities

i"=@Z*C-|, a’-X(p=(pZ*'-0', - =4 (4.29) .

The first equality of (4.29) holds by (4.28). As f=mr,-(S;X —)n,, thus n-p=4.
Using the definition (4.28) of ¢’ and the equality Y -@ =1« _ys,x-) we have

o Xo=0Z*¥ 06- XY - Xo=0Z¥ .6-X(Y-9) = 9Z* - 6- X1(5,5_y5,x—) = 9Z* -0
This proves that ¢ is a simulation and completes the proof of the theorem. 3

Finally, we show that the computational capacity of the generalized sequential -
machines in a category and that of the process transformations of Arbib and
Manes are equal. :

DerFiniTION 4.9 (Arbib and Manes [4]). Let 4, B be objects of /" and let X, Y
be varietors in . A process transformation -T:(4,X)—-(B,Y) in X is
T=(S, d, t, k, B), where

(S, d) is an X-algebra, the state algebra

t: A—S is the initial state,

k: A—~Y* B is the initial throughput,

B: X(S§X —)=-Y ¥ is a natural transformation, the output.

The response of T is the morphism g: X*A-Y¥*B defined by
iB Y* B
Y*B <= y*y*p <LX(S X Y* B)
k 4.30
g X(r g) (4.30)
' xx*4
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where r: X¥ A—S is the reachability map of (¢, d), i.e. the homomorphic extensioﬁ

S <—d—XS

/ 1r ) tXr . (431
A
A % g LD xy¥ 4
THEOREM 4.10. A morphism g: X¥A4—~Y*B is the response of a process
transformation iff g can be computed by a generalized sequential machine in .

Proof. Assume that a morphism g: X*4—~Y*B is the response of a process
transformation T=(S, d, 1, k, B): (4, X)~(B,Y). For each object C of A" let

L sxc.c (4.32)

be the product diagram, and déﬁne the ‘morphism o¢C: X(SXC)~(S§X -)Y*C
by the composite
6C: X(SxC) LIS, gy +C, (4.33)

One can check by an easy coputation that ¢C in (4.32) is natural in C, i.e. we get
a natural transformation _
g: X(SX =)=+ (SX —)Y*.

Consider the generalized sequential machine M=(S, i, ¢): (4, X)—~(B,Y), where
i=(t, k) and o is defined in (4.32). We prove that this machine computes the morph-
ism g, i.e. fyy=g. The response of M is fy,=nY*B-i*, where i* is the run map
of M, i.e. the unique morphism satisfying both (4.34) and (4.35) below

fopd =i (4.34)
i* . uyA = (g X iB) - Y * B Xi*. ‘ (4.35)

Since nY*’B-(r, g)=g, it is enough to prove that i*=(r,g). We do this by
observing that the' morphism (r, g) satisfies (4.34) and (4.35) in place of i¥, i.e.
(4.36) and (4.37) hold

(rg)-nd =1, ' (4.36)
(r, 8) - oA = (Is X iB) - 6Y * B- X(r, 8- 437
By the triangular part of (4.30) and (4.31) we have '
(r,8)-nd =(r-nd,g-nd) = (1, k),
thus (4.36) holds. Again by (4.30) and (4.31) | '
(8 oA = (reod, g pgd) = (d- Xr, EB-BY*B-X(r, g)).  (439)

From the definition (4.33) of & it follows that nY*Y*B.ocY*B=BY*B, and
hence, using the naturality of = we obtain

(r, 8)-1od = (d- X7, iB-nY*Y*B-0Y* B-X(r, g)) =

4.39
= (d-Xr,nY*B-(1sXiB)-cY*B- X(r, g)). *3
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Because (4.32) is a product diagram we have
d-Xr=d-X(eY*B-(r, g)) = oY *B-(d- XY ¥ BX(r, g), iB-BY*B . X(r, g)) =
=oY*B-(d-XoY*B,iB-BY*B)-X(r, g) =
= oY*B-(lgX@iB)-(d-XoY*B, BY*B) - X(r, g).
And by the definition (4.33) of ¢ '
d-Xr = ¥*B-(15XiB) 0¥ * B-X(r, g). (4.40)

Putting toghether (4.39), (4.40) and the equality 1g.y,#5=(Y*B,nY*B) we
conclude '

(r,8)-nod = (Y* B, nY * B)-(1sXpZ) oY * B- X(r, g) = (15X iB) - oY * B- X(r, 8).

Thus (4.37) holds, which ends the proof of the “only if”’ part.

Conversely, assume that a morphism f: X¥A—Y*B can be computed by
a generalized sequential machine in 2. Then, by Theorem 4.5, the morphism f
is initial-segment preserving, i.e. there is a natural transformation

A X(X¥AX—) > Y#,

such that the diagram (4.9) is commutative. Now consider the process transforma-
tion T=(X*A4, uoA, f-nd,n4,): (4, X)~(B, Y). It is obvious that 1%, is the
reacability map of (54, us4). Hence, taking into account the defining diagram
(4.30) of a process transformation we obtain that (4.9) defines the response of T,
which is f.
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