
Functor state machines 

B y G . HORVÁTH 

In the present paper we introduce a notion of a machine in an arbitrary category. 
A machine in a category is a computational device computing a morphism from 
a free algebra to another one. The computation is defined by means of homomorphic 
extension. We are dealing with two types of machines each of them having a functor 
as its state. These two families of machines are related to bottom-up and top-down 
tree transformations, respectively. The state functor of a machine working in top-
down way is required to have a right adjoint. We show that every top-down com-
putation can be carried out in bottom-up way. 

A special type of machines, namely the generalized sequential machines in 
categories having binary products are investigated. A generalized sequential machine 
is a machine whose state funtor is a product functor and whose final state trans-
formation is the corresponding projection. Morphisms can be computed by general-
ized sequential machines in a category are characterized. We show that the process 
transformations of Arbib and Manes, and the generalized sequential machines in 
a category have the same processing capacity. Results of the present paper have 
been announced in [6]. 

1. Preliminaries 

We assume the reader to be familiar with the elements of category theory such 
as the notion of category, functor and natural transformation. Now we will list 
some basic notions, definitions and results to be used in the sequel. 

/ 

DEFINITION 1 . 1 . Let J F be any category and let X: be an endofunctor. 
An X-algebra is a pair (A, d) where A is an object and d: XA-*A is a morphism 
in X. Given two A'-algebras (A, d), (A', d'), a morphism h: A~*A' is an X-homo-
morphism if the diagram 

A' XA' 

* F , T » ( U ) 

is commutative. 
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DEFINITION 1.2 (Arbib—Manes [3]). Let A be an object in J f A free X-algebra 
over A is an X-algebra (X* A, p0A) coupled with a morphism rjA: A—X* A with 
the universal property that for every other X-algebra (B, d) and morphism / : A -+B 
there exists a unique X-homomorphism / * : (X* A, p0A)-*(B, d) such that 
f* 't]A=f That is, given d and / there is a unique / * such that (1.2) commutes. 

B XB 

/ V \xf* (1.2) 

The morphism / * in (1.2) iscalled the X-homomorphic extension of / from the 
free X-algebra (X* A, p0A) into the X-algebra (B, d). 

Following Adamek and Trnkova (see [1]) we say that a functor X: Jf— J f 
is a varietor if there exists a free X^algebra over each object in tf. Arbib and Manes 
use the terms input process or recursion process [3, 4] depending on context. Let 
X: J f - X be a varietor. If we fix a choice of tjA: A-*X*A, p0A: XX*A-~X*A 
in (1.2) for each object A in tf, and for every morphism / : A-"B the morphism 
X*f: X*A—X*B is defined to be the X-homomorphic extension of. r\B'f, i.e. 

B Jl+X*B 

•f 

J^-XX*B 
i / 

X*f 
tjA 

XX*f (1.3) 

-XX* A 

then we get a functor X # : Moreover, we obtain a pair of.natural trans-
formations 

Ijr-^-X*, u0:XX*~X*, 

the insertion of generators and the free operation of X, respectively. We omit the 
subscript in the identity functor l x \ whenever X is understood. Note that 
each varietor X yields a family of morphisms pA: X*X*A-~X*A defined by 
the diagram 

X*A r\X*A 

X*A<-

pA 

+X*X*A-z 

•XX* A 
i > 

/4. X*A 

XpA 

XX* X^A 

(1.4) 

where X*A—X*A is the identity morphism. One can show by an easy 
computation that pA is natural in A, i.e. we have a natural transformation 



Functor state machines 149 

ju: X*X* —~X*, the extended free operation of X, rendering the diagram (1.5) 
commutative. 

H I Xn (1.5) 

XX* 

\Xn 
# V" •XX X # V# 

The basic algebraic structure in string processing is X0*, the free monoid over 
a set X0 of generators. Monads, rather than monoids are fundamental in our de-
velopment. Now we recall the definition of a monad. 

DEFINITION 1 . 3 . A monad (T, t], n) in a category JF" consists of a functor T: 
Jf— Jf and two natural transformations 

tj: I-~T, p: TT--T 

which make the following diagrams commute. 

t]T Trj 
T ——TT ——' T TTT ' 

TT 

nT * TT 
(1.6) 

T 

The diagrams in (1.6) are called unitary and associativity axioms, respectively. 
We state, without proof, the following well-known fact: for every varietor X the 
triple (X*,t],n) is a monad in where tj is the insertion of the generators.and 
H is the extended free operation of X. 

DEFINITION 1.4. Let (T, t], n) be a monad in Jf. A T-monad algebra is a pair 
(A, d) consisting of an object A o f J f and a jf-morphism d: TA-+A such that 

A 

tjsi 
'lA 

M 

TA 

P " 
TTA 

(1.7) 

It is easy to prove that the pair ( X * A , ¡xA) is an X #-monad algebra for every varietor 
X and object A. 

CONVENTION 1 . 5 . In the remaining of this paper if a varietor is referred to by 
the letter X, then the insertion of the generators, the free operation and the ex-
tended free operation of X are denoted by tj, p0 and p, respectively 

ij: I ^ X * , /*„: p: X*X*^X*. 

3 Acta Cybernetica 
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If we use the letter Y to denote another varietor then the items above are denoted 
by the same letters but with bar, i.e. tj, fi0 and p.. 

PROPOSITION 1 . 6 . Let X: be a varietor. Given functors F, G: J F — J T 
and natural transformations 5: XG -^G,<p: F-^ G there is a unique natural trans-
formation <p*: X* F-^ G such that the following diagram is commutative. 

G ^ XG 

r,F 
<P * \Xcp* (1-8) 

HQF . F X F F 

Proof is immediate. 

DEFINITION 1.7. An adjunction (F, U, v, e): consists of a pair of functors 
F: U: and natural transformations v: IX-^UF, e: FU-^I^ (called 
unit and counit, respectively) subject to the so called "triangular identities": 

U-^UFU . FUF*^~F 

> "i X
 (L9) 

U F' 

F is said to be a left adjoint to U and U a right adjoint to F. We say that a functor 
F has right adjoint, if there is a functor U right adjoint to F. 

2. Machines 

In this section we introduce a notion of a machine in an arbitrary category. 
This is based on the notion of the free algebra. A machine is a computational device 
which computes a morphism of a free algebra into another one. The basic idea of 
our development — due to Alagic [2] — is to take a functor to be the state of a 
machine. Alagic offered in his paper [2] the general concept of a direct state trans-
formation which took the form XQ—~QY*, where X and Y are varietors and 
Q now is a functor. Arbib and Manes remarked in [4] that the Alagic approach 
has one flaw: because Q is a functor rather than an object, thus running the direct 
state transformation yields a natural transformation X*Q—-QY* instead of a 
morphism X*A — Y*B between free algebras. But, in spite of this note there is 
a general way in which we can extract from X*Q-^QY* a "state-free" input-
output response of the form X*A — Y*B. Thus, the benifits of the Alagic ap-
proach can be obtained in any category, not only those having binary products. 
Appart from the fact that we actually do not use the notion of the direct state trans-
formation of Alagid in the definition of a machine and its response, there is a close 
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relationship between them. We will show this relationship. There are several ad-
ventages of taking a functor to be the state of a machine. First of all this provides 
a uniform treatment of top-down and bottom-up computations which are well-
known in the theory of tree transformations (see Engelfriet [5]). 

DEFINITION 2 .1 . Let A, B be objects of a category .yf, and let X, Y be varietors 
in tf. A machine M: (A, X)~(B, Y) in Jf is M=(Q, i, a, []), where 

Q : J T — J T is a functor, the state functor, 
i: A^-QY*B is a morphism, the initial state-output morphism, 
o: XQ-.-QY* is a natural transformation, the transition, 
ft: Q—~I is a natural transformation, the final state transformation. 

DEFINITION, 2.2. Let M=(Q, i, <7, /?): (A, X)^(B, Y) be a machine in X . The 
response of M is the morphism fM: X*A-~Y*B defined by the composite 

fM: X*A^QY*B-^^Y*B> (2.1) 

where i* is the run map of M, i.e. the Z-homomorphic extension 

QY*B£>^QY*Y*B£-1XQY*B 

t < # , k 
A — XX*A 

(2.2) 

of the initial state-output i. 
By Proposition 1.6 the transition a\ XQ--+QY* has a unique extension 

a*: X*Q-L~QY* defined by 

( 2 . 3 ) 
I a I Xa ^ 

Q-^X*Q<- ^ x x * q 

a* is called the extended transition of the machine M. Natural transformations like 
a * in (2.3) were studied by Alagic in [2] under the name "direct state transfor-
mation". 

We show that the response of a machine M'can be expressed in terms of the 
extended transition of M. 

STATEMENT 2 . 3 . Let M={Q, i, a, /?): (A, X)-*(B, Y) be a machine in JF. Then 
the response of M is 

fM = PY*B-Q(iB-<r*Y*B-X*i.. (2.4) 
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Proof. Consider the following diagram. 

QPB QY*Y*B oY* B XQY*B 

c) \QjlB d) 

QftY*B 
QY*f,B e) 

o*Y*B 

QY B >• X* QY B-

QY*Y*Y*B*? 

0 

HoQY*B 

oY Y B 
XQUB 

• XQY Y B 

Xa*Y*B 

XX* QY* B 

(2.5) 

a) 
t]A 

X*i 

-+ X*A -<-

g) 

Ho 4 

Jxx*/ 
-XX* A 

The parts a), e) and g) are naturality squares for t], a, and ¡i0, respectively. Commuta-
tivity of b) and f ) directly follow from the definition of a * (2.3). The monad iden-
tities (1.6) for the monad (Y*, ij, ft) imply c) and d), thus, (2.5) is completely com-
mutative. Since the homomorphic extension is unique, putting thogether (2.2) and 
(2.5) we have i* = QJiB-o* Y*B- X* i. Hence by (2.1) fM = fiY* B • i* =fiY* B • 
• QjlB •o*Y*B- X*i. • 

Now we introduce a definition of a machine working in such a way that ele-
mentary input produces an elementary output. 

DEFINITION 2 . 4 . Let X and Y be varietors in <?F and let A, B be objects of J F . 
A simple machine in J f is a system M=(Q, i0, o0, (i): (A, X)—(B, Y), where 

Q: JT—X is a functor, the state functor, 
/„: A-<-QB is a Jf-morphism, the initial state-output, 
<r0: XQ—~QY is a natural transformation, the transition, 
/?: Q--I is a natural transformation, the final state transformation. 

The response of a simple machine M=(Q, i0, er0, fi) is the composite morphism 

fM: x*A QY*B 1L Y* B, 

where /¿f is the run map of M defined by the homomorphic extension 

(2.6) 

QB^QY*B S M QYY*B J ^ X Q Y * B 

» o f f t f 

A X*A ^ Ho A 
Xi* 

•XX* A 

(2.7) 
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DEFINITION 2 . 5 . Let M=(Q, i, a, /?): (A, X)-(B, Y) be a machine in J F . We 
say that the initial state-output morphism i is simple if it can be factored thorough 
QfjB: QB-+QY*B, i.e. there is a morphism i0: A-+QB such that 

A—L+QY*B 

f QfjB 
(2.8) 

QB 

Similarly, the transition a is called simple if there exists a natural transformation 
<70: XQ—*QY such that 

XQ- QY* 

QY 

(2.9) 

is commutative, where t]t is the embedding of 7 into Y*, i.e. r\t\ Y—^ YY*-^-*- Y*. 

LEMMA 2.6. Let M—{Q, i, a, [}): (A, X)-*(B, 7 ) be a machine in X , and let 
i and a be simple. Then the simple machine M'=(Q, /'„, a 0 , /?): (A, X)-*(B, Y). 
where i0 and a0 are as in (2.8) and (2.9), respectively, has the same response as M, 

Proof. Since the final state transformation of M and that of M' is fi, it is enough 
to prove that the corresponding run maps i* and /0

# coincide. 
Consider the following diagram. 

<*oY*B 

QnB 
QB— » (2.10) 

XX* A 

By the defining diagram (1.5) of an extended free operation, the equalities 
fi-jl(,Y*=ti0-Yfi and jl-fjY* = lY# hold, thus we have 

fi-KY* = ¡i-Qk-mY* = P-ikY* - YfjY* = ik-Yji-YrjY = 

= ^o'Y(Ji-r\Y*) = fi-Yly* = ¡¡o-

Hence Qfi' QfjiY* = Qfi0. Now, from the factorizations (2.8), (2.9) and the de-
finition (2.2) of the run map i*, we obtain that the diagram (2.10) is completely 
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commutative. This means that /'* satisfies the commutativity of diagram (2.7) 
which defines/'* uniquely. Thus / * = / * . ' • 

The diagram (2.3) defines for every natural transformation a: XQ-^QY*, 
i.e. without a being a transition of any machine, the extension a*: X*Q-^QY*. 
Alagic studied this extension in his paper [2] and proved the following theorem 
replaced the monad (Y*,fj, p.) by an arbitrary one. 

THEOREM 2.7 (Alagic [2], Theorem 2.30, p. 287). Let X, Y: X - O F be varietors, 
and Q:Jf—X be a functor. Then for every natural transformation a: XQ—~QY* 
the extension a*: X*Q-L~QY* defined by (2.3) satisfies the commutativity of 
the following diagram: 

/r* v * 

Q. >1Q->X*Q 

(2.11) 

THEOREM 2.8. Let f : X* A-~Y*B,f2: Y*B-~Z*C be responses of machines 
Mx: (A, X) — (B, Y) and M2: (B, Y)—(C, Z), respectively. Then the composite 
morphism f2 f : X*A—Z*C is again the response of a machine M: (A, X)—(C, Z). 

Proof. Assume that machines Mx and M2 are specified by Mx=(Q1, ix, ox, ft), 
M2=(Q2, i2, <r2, ft)- Consider the machine M—(Q, i, a, P)\ (A, X)—(C, Z), where 

Q = QiQz, o = Q1o*-a1Q2, 
<, •* (2-12) 

i = A±Q1Y*B^Q1Q2Z*C, P = Q1Q2^Q2^I. 

Let us denote by rj and Ji the insertion of generators and the extended free operation 
of Z, respectively. By the definition of the responses of Mx and M2, f2'fx=P2Z*C • 
•i* • PXY*B-if. Using the naturality of ft we have 

/2-A = PiZ*C'P1Q2Z*C-Qlif -n* = (PfihQ^C-Qo* • if = pz*C-Q1i* • i f . 

The response of M is fM=pZ*C • /* , where i* is the run map of M.Thus, in order 
to prove that the machine M computes the composite / 2 • fx we need only to show 
that (2.13) holds 

Q . i t - i f = i * . _ (2.13) 

Taking into account that the run map i* is the unique morphism satisfying (2.14), 
it is enough to prove that the left side of (2.13) also satisfies (2.14). 

QiQzZ*C ,QlQ^C Q x Q ^ Z ^ + ^ X Q ^ C 

I 

^ X * A - "°A' X A ' ^ 

f x / * (2.14) 
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Consider the diagram (2.15) below. 

<rZ*C 

QIQ^C ? QI<T£ Z*C ( v i ) axQ,Z*C 
QIQ2Z*C+—Q1Q2Z*Z*C*—QXY*Q2Z*C-—™ " * 

(iv) 

QifiB 

•XQlQ2Z*C 

* . * (iii) QiY '2 

* * <TiY B 
QiY Y B 

XQii* (2-15) 

+X*A> 

(ii) 

Ho A 

XQIY* B 

XX* A 

The subdiagrams (i) and (ii) commute by the definition of the run map / * . (iii) 
is a naturality square for the natural transformation a 1 . (v) and (vi) are commutative 
by (2.12). Thus the commutativity of (iv) is remained to prove. By Proposition 2.3 
the run map i* can be expressed by the extended transition a* of M2 as follows 

IT = Q2JLC-A*Z*C-Y*I (2.16) 
The diagrams (i) and (iv) in (2.17) commute, being naturality squares for p, and a*, 
respectively, (ii) is commutative by Theorem 2.7, finally, the commutativity of 
(iii) in (2.17) follows from the associativity axiom of the monad ( Z # , rj, ¡5). Hence, 
(2.17) is completely commutative. 

Q2Z*C«Q2JLC Q2Z*Z*C. 
at Z*C 

Qzfic 
(iii) 

| Ö 2 Z * £ C 
(iv) 

Q2Z*Z*cJtiLZ '-**-*+• 

a?Z*C\ (ii) 

Y*Q2Z*C 
ßQ2Z C 

a* Z* Z*C 

• Y*QtZ*C 

\Y*Qjc t> 

4 (i) 
Y*B 

fiB 

Y*Q2Z*Z*C 

I Y*ATZ*c 
Y*Y*QOZ*C 

\ 

(2.17) 

Y*Y*I2 

Y*Y*B 

Putting together (2.16) and (2.17) we have 

ßi'f -QißB = Qidt-ßB) = Q1(Q2ßC-a*Z*C-Y*i2-ßB) = 

= Q1(Q2HC-a*Z*C'Y*Q2^C-Y*^Z*C-Y*Y*i2) = 

= Q1Q2pC-Q1<x*Z*C-Q1Y'*(Q2ßC'<r*Z*C'Y*i2) = 

= Q1Q^C-Q1a*Z*C.QlY*i*. 
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Hence the diagram (iii) in (2.15) is commutative which completes the proof 
of the theorem. • 

DEFINITION 2.9. Let M=(Q, i, o, P): (A, X)-*(B, Y) and Mx=(Q±, il3 alt ft): 
(A, X)-"(B, Y) be machines in J f . A simulation Q: M is a natural transforma-
tion Q: Qi-^-Q rendering the diagrams (2.18) commutative. 

QY*B 0Y* 
QIY*B *~QY*B QIY*— + QY* Qi 

I , } \ . / ' XQ, 
p (2.18) 

a) b) c) 

THEOREM 2.10. Let M: (A, X)^(B, 7 ) and Mx\ (A, X)^(B, Y) be machines 
in JT. Whenever a simulation g: M^M exists then fM =fMl. 

Proof. Assume that the machines M and Mx are given by M=(Q, i, a, ft), 
M1=(Q1, ilt CT1; ft). Then the response of M is fM—PY*B'i* and the response 
of Mx is fM=pxY* B-if • Consider the diagram (2 .19) . 

QY*B-
QUB 

•QY *Y*B** oY*B 

\QY*B ( iv) 

QiUB, 

XQY B 

QY*Y*B (ül) 

<rlY*B Q1Y*Y*B^-^XQ1Y*B (2 .19) 

Ho A 
(ü) \x,T 

XX* A 

The diagrams (i) and (ii) in (2.19) are commutative just they define the run map 
if of Mi- Since Q: QI~-Q is a simulation (iii) and (v) commute by (2.18b) and 
(2.18a), respectively, (iv) is a naturality square for Q thus (2.19) is completely com-
mutative. Hence, we have that the morpisms / * and QY*B-if both are defined 
by homomorphic extensions on the same specification. The uniquenes of the homo-
morphic extension implies / * = QY* B • i f . Finally, we have 

fM = pY*B.i* =flY*B.QY*B.i* =(P-Q)Y*B.i* =p1Y*B.i* =fMi. • 

3. Inverse-state machines 

In this section we shall develop a categorial model of Thatcher's generalized2 

sequential machine maps (see [8]), and Engelfriet's top-down tree transformations 
(see [5]). The term "inverse-state machine" is used here because these machines 
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are very closely related to the inverse state transformations of Alagic [2]. We shall 
show that every top-down, i.e. inverse-state computation can be carried out by 
a machine with sutable state functor. 

First, we need a theorem whose analogous one was proved in [2] and what 
we state as a consequence of our theorem. 

THEOREM 3.1. Let (T , tj', n') be a monad and let (B, d) be a T-monad algebra 
in Jf". Furthermore, let X: J f — J f be varietor and Q: JT—JT be a functor with 
right adjoint. Then for every morphism j: QA-+B and natural transformation 
T: QX-+TQ there exists a unique morphism QX* A-*B satisfying (3.1). 

d TJ* ± B .«-¡7- TB< TQX*A 

t>* n A V' <31) 

Q A ^ Q X l A * Bf,° QXX*A 

Moreover, there is a bijective correspondence between_triples ( j, r , y # ) satisfying 
(3.1)_and triples (/: A-+QB, a: XQ--QT, i*: X*A-QB) satisfying (3.2), where 
(Q, Q,v, «) is an adjunction due to Q. 

_ Qd _ oB _ 
QB QTB~*-—XQB 

fvi* (3-2) 
I , \Xi 

A -2d*. X*A - ^ XX*A 

Mutually inverse passages are given by (3.3) and (3.4) below. 

i-.A^QB j: QA^QQB^B 

<t:XQ-~QT ~ t : QX-^.QXQQ-^QQTQ-^TQ (3.3) 

i*: X*A — QB QX*A-~QQB-^B 

j:QA~B i: A QQA ~ QB 

T: QX^TQ ~ a: XQ^~ QQXQ^S-QTQQ^QT (3.4) 

U: QX* A -*B /*: X* A—-QQX* A-^QB 

Proof. First we show that $ and f are inverses of each other. It is a well know 
property of the adjunction (Q, Q, v, e) that if - <P(i) = i, <P- By the same 
argument we get *F • <P(i *)=/'*, <P • ¥U*)=j# • We prove that W •<!> (a) = a and 

f • = Y(eTQ • QoQ • QXv) = QTE • Q(sTQ • QoQ • QXv) Q-vXQ = 

= QTe • QsTQQ • QQoQQ • QQXvQ • vXQ. 
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Consider the diagram (3.5) whose triangular parts are commutative according 
to the triangular identities of the adjunction (Q, Q, v, e). The other two parts of 
(3.5) commute since they are naturality squares for v and a, respectively. Thus 
we have ?P • <& (CT)=tr. 

- f o _ 
-> QT 

_ f Q T z 

+ QTQQ l * T Q Q * QTQQ (3.5) 

j vQTQQ X 

QQXQ ^%QQXQQQ S&M. QQQTQQ X ^ 

The following diagram also commutes by the adjunction identity EQ-QV — 1Q , 
and the naturality of v, T and e. 

TQ 

I eTQ t-
QQQX -v QQTQ ^QQTQ (3-6) 

\QQQXV_ _ [QQTQV S 

n Inn QvXQQ„ ^ w ^ QQrQQ^J _ /QQTeQ 
QXQQ • QQQXQQ »• QQTQQQ ' 

Hence, 

<*>. T(T) = 4>(QTE • QTQ • vXQ) = ETQ • Q(QTS • QrQ • vXQ)Q- QXv = 

= ETQ• QQTeQ • QQrQQ • QvXQQ • QXv = r • 1 aX = t • 1QX = t. 

Let us prove that the passages <P and W preserve satisfyability of the appro-
priate diagrams, Assume that a triple (/', a, i*) satisfies (3.2), Then, 

<P(i*)-QrjA = eB-Qi*-Qt]A = eB-Q(i*-t]A) = sB-Qi = <P(f). 

Thus the triangular part of (3.1) holds. 

: 4>(i*)-Qn0A = eB-Qi*-Qn0A = sB-Q(i* • pi0A) = EB-Q(Qd-oB• Xi*) = 

= e B-QQd-QoB-QXi*. 

One of_the _adjunction identities says 1Q=QE-VQ and hence 1QXQB = QX1QB= 
= QX(QE • vQ) B= QXQEB • QXvQB, which yields <*>(/*)• QH0A=EB- QQd- QoB • 
•(QXQEB- QXVQB) • QXI*. Application of commuta t ions for the na tura l trans-
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formations e, sT- Qa, <P(a) and <P(O)=ETQ • QoQ • QXv produces 

<*K'#) *Qfi0A=d• eTB • QoB • QXQeB • QXvQB -QXi* = 

= d • TsB • eTQQB • QoQQB- QXvQB -QXi*=d- TsB • (eTQ • QoQ • QXv)QB •QXi* = 

= d • TeB• <P(o)QB • QXi* = d • TeB • TQi* • 4>(o)X*A = 

= d-T(eB-Qi*)-0(o)X*A = d • T®(i*) • &(o)X*A. 

Thus, the triple ( j , x, y#)=(<*>(i), 3>(<r), <P(/*>) satisfies (3.1). 
Conversely, let us suppose that the left side ( j , x, j#) of (3.4) makes (3.1) 

commutative. Then, for the right side of (3.4), we have 

V{j+)-tiA = Qj+-vX*A.riA = Qj*.QQriA-vA = 

= QU*-QriA)'vA = Qj.vA = >F(j). 

This means that the triangular part of (3.2) is satisfied. Let us see the other 
part of (3.2). By the definition (3.4) of W and the naturality of v we have 

V(j*) • M = Qj* • vX*A • AV4 = Qj* ' QQHoA • vXX*A = 

= QU*'QHoA)-vXX*A = Q(d-Tj#-xX*A).vXX*A = 

= Qd • QTj* • QxX* A • vXX* A. 

From the adjunction identity 1Q = SQ-QV follows 1 Q T Q X * A = QFIQX* A = 
= QT(eQ • Qv)X* A = QTeQX* A • QTQvX* A, thus we get 

yU*)-VoA = Qd-QTj#-QTEQX*A-QTQvX*A-QTX*A-vXX*A. 

Using the naturality of QTz and' Qx -vX we conclude 

V(.j)-HoA = Qd-QT£B-QTQQj#-QTQvX* A-QxX* A-vXX* A = 

= Qd-QTeB.QTQ(QU.vX*A)-(Qx-vX)X*A = 

= Qd-QTeB.QTQVU#)-(Q,TvX)X*A = Qd-QTeB-(Qx-vX)QB-X<F(j*) = 

= Qd • (QTz. QxQ • vXQ)B • XV(j%) = Qd • W(x)B - XV(j*)-

Thus the triple (/, o, i*)=(V(j), lF(x), •?(./#))-satisfies (3.2). The existential state-
ment of the Theorem can be obtained as follows. For given morphism j: QA-+B 
and natural transformation x: QX-*TQ consider i:=4>(j), a:=<P(x) and take 
the unique /* satisfying (3.2). This i* exists because ( X * A, fi0A) is a free Z-algebra. 
Then, as we have shown,. {¥(})> ^0 '*)) satisfies (3.1). But W( i )= j and 
W ( f f ) = x, hence ( j , t , •?(/*)) satisfies (3.1). The uniqueness, of y'# in (3.1) follows 
from the facts that W is bijective and i* is unique in (3.2). This completes the proof 
of Theorem 3.1. • 

The following statement was proved in another way in Alagic [2] (see Theorem 
3.10 pp. 297) replaced (Y*,rj,ji) by an arbitrary monad. 
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STATEMENT 3 . 2 . Let X, Y be varietors in J F and let Q: X — J F be a functor having 
right adjoint. Then for every natural transformation r : QX—~Y*Q there is a 
unique r # : Q X * - L ~ Y * Q defined by 

Y*Y*Q 1Y* QX 

QN QXX* 

Proof. Let A be an object of X . As (Y*, rj, p.) is a monad it is evident that 
(Y* QA, pQA) is an Y*-monad algebra. Take j:=fjQA: QA-+Y* QA and apply 
Theorem 3.1 for this j and r above. We have that there exists a unique 
QX* A — Y* QA denoted by t + A which renders (3.8) commutative. 

mA.Y*Y*QA+Y*'*AY*QX*A 

| r X * A (3-8) 

QA ~'~~*QX*A- ^ ^ — QXX*A 
QnA ' , Quo A 

Thus we need only to show that x#A in (3.8) is natural in A. The proof is 
straightforward. • 

DEFINITION 3 . 3 . Let A, B be objects of X and let X, Y be varietors in J f . An 
inverse-state machine 

M = (Q, a, r,j): (A, X) — (B, y ) 

in JT consists of the following data: 

Q : Jf—JT a functor, the state functor, having right adjoint, 
a: I—~Q a natural transformation, the initial state transformation, 
T: QX-^Y* Q a natural transformation, the transition, 
j: QA — Y* B a morphism, the final state-output morphism. 

DEFINITION 3 . 4 . Let M=(Q,ot,t, j): (A, X)-*(B, Y) be an inverse-state ma-
chine in X . The morphism fM computed by M or the response of M is defined by 

fM: X*A--QX*Ai±~Y*B, (3.9) 

where is the (inverse-state) run map defined to be the unique morphism 

,Y*B + Y*Y*B J*J*Y* QX*A 

\ h f t X*A (3-10) 

QA-9ZLQi*A* ^ QXX*A 

according to Theorem 3.1. 
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By Statement 3.2 we define the extended transition of the inverse-state machine 
M by the diagram (3.11). 

We shall show that the response of an inverse-state machine can be expressed 
in terms of the extended transition. 

LEMMA 3.5. Let M=(Q, a, r, j): (A, X)-*(B, Y) be an inverse-state machine 
in J f . The response of M is 

where т # is the extended transition of M. 

Proof. Because of the fact that the run map y # of M is unique in (3.10) it is 
sufficient to prove that substituting the morphism ЦВ-Y*j-r#A for y # , (3.10) 
remaines commutative. Consider the diagram 

(i) and (ii) are commutative by the diagram (3.11) of the extended transition r # . 
(iii) and (iv) are naturality squares for fj and /7, respectively, hence they commute. 
The commutativity of (vi) and (vii) follows directly from the monad identities of 
(F* , f j , p)..(y) just expresses the value of the functor Y * on a composite morphism. 
Thus the whole diagram is commutative which ends the proof of the Lemma. • 

THEOREM 3.6. Given inverse-state machine M=(Q, a, r, j): (A, X)-*(B, Y) 
there is a machine M: (A, X)-»(B, Y) computing the response of M. 

Proof. Let Q be a right adjoint of Q, and denote the corresponding adjunction 
by (g , 6 , v, e). Define a machine M=(Q,i,o,p) by 

i: A-^QQA^QY* B, 

( 3 . 1 1 ) 

fM=ßB.Y*j-T*A-'<xX*A, ( 3 . 1 2 ) 

Y*B - ИВ— Y*Y*B 

( 3 . 1 3 ) 

a : XQ^QQXQ&2~QY*QQ^QY QY*, ( 3 . 1 4 ) 

ß•• Q QQ i-n nn Л. 
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We are going to prove that / м = / # - By the notations above 

fM=U;aX*A, /Я = РУ*В.1*, (3.15) 

where and i* are the run maps of M and M , respectively. Thus the triple 
(j> T> j#) satisfies (3.10) and hence, by Theorem 3.1 the triple (i, a, • vX* A) 
satisfies the. commutativity of the diagram which defines the run map i* of M. 
The uniqueness of the homomorphic extension implies 

i*=QJ*-vX*A- (3.16) 

Thus we have 

fm = («•'«Q)Y*B.Qj#.vx*A = eY*В• aQY*В• Qj# -vX*A. (3.17) 

Consider the diagram below. • 

Q Y * B « M ^ Q Q Y * B > y * B 

® A Ie6j%ex*A \ U 

QQX*A QQQX*A >~QX*A (3.18) 

vX*A\ # ]QvX*A 
I a X A 

X*A »- QX*A 

The triangular part of (3.18) is commutative by reason of the adjunction identity 
e Q ' Q y = \ Q , and the other two parts of (3.18) commute being naturality squares 
for a and e, respectively. Putting together (3.17) and (3.18) we have 

fM=j*-lQX*A-«X*A=j*-<xX*A=fM. • 

Now we state the dual of Theorem 3.6. 

THEOREM 3.7. Let M=(Q, i, a, /?): (A, X)^(B, Y) be a machine in Ж such 
that its state functor Q has a left adjoint. Then the response of M can be computed 
by an inverse-state machine. 

Proof. Let (Q, Q, v, e) be an adjunction. Define an inverse-state machine 
M=(Q,cc,r, J): (A, X)^(B,Y) by 

a: QQ —-Q, 

t : QX^QXQQ ^QQY*.Q Y*Q, (3.19) 

j: QA^QQY*B-^~Y*B. 

In consequence of Theorem 3.6 it is sufficient to prove that applying the con-
struction (3.14) for the data in (3.19) we get back the specification of the machine 
M, i.e. 

i = Qj-vA, о = eY*Q'QtQ-vXQ, ft = e-aQ. (3.20) 
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The first two equalities of (3.19) have already been proved in Theorem 3.1 in con-
text that <P and ¥ are inverses of each other. The remaining fi = s • aQ is obvious 
from the adjunction identity 

1Q = Qs-vQ; e-«Q = e-№-v)Q = £-PQQ-vQ = P-Qe-vQ = /Ma = 0. • 
THEOREM 3.8. Let (A, X)-*{B, Y) and M2: (B,Y)-~(C,Z) be inverse-

state machines in X. Then the composite morphism fM2'fMl- X* A—Z* C can 
be again computed by an inverse state machine. 

Proof. Assume that Mx has a. state functor Qj and M2 has a state functor Q2. 
Denote a right adjoint of Qx and Q2 by 2 i and Q2, respectively. By Theorem 3.6 
the responses fMl and fM, can be computed by machines whose state functors are 
Qj and Q2> respectively. Now apply Theorem 2.8 which says that the composite 
morphism /Ma is the response of a machine with state functor QXQ2. According 
to Theorem 3.7 if the composite functor Qx Q2 has left adjoint then the morphism 
fMl • fMl can be computed by an inverse-state machine. But, it is a well known result 
in category theory that the composite functors yield an adjunction,, i.e. Q2QX is 
left adjoint to QXQ2 (see [7], Theorem 8.1, pp. 101). • 

4. Generalized sequential machines in categories 

The concept of generalized sequential machines in categories having binary 
products is developed in this section. A generalized sequential machine is a ma-
chine whose state functor is a product-functor and its final state transformation 
is a projection. 

We also investigate sequential machines, i.e. machines working sequentially, 
moreover, elementary input produces an elementary output. Morphisms com-
puted by generalized sequential as well as sequential machines in a category are 
characterized. 

Throughout this section we assume that a category X with binary products 
is given. 

DEFINITION 4.1. Fix a choice of a product diagram A-^- AXB-^-B for every 
given pair (A, B) of objects of X , and given morphisms / : A'-*A, g: B'-^B define 
the morphism fXg' A'XB'—AXB by 

P q 
A AXB *~B A y H f* (4I) 

It is well known that in this case each object S of X induces a functor 
S X - : X ^ X by 

(SX-)A:=SXA, ( S X - ) / : = l s X / (4.2) 

These functors are called product functors. It is obvious from (4.1) that the family 
of projections nA: SXA—A constitute a natural transformation n: (SX 



164 - G. Horváth 

called projection transformation. For orbitrary morphisms hl: C—A, h2: C—B 
we use the notation (hi, h2) for the unique morphism satisfying (4.3) below. 

(4.3) 

According to (4.1) and (4.3) we have the following identities: 

(fXg)-(h1,h2) = (f.h1,g'h2) (4.4) 

( / X g ) - ( / i X g 1 ) = ( / - / L )X(g-g 1 ) (4.5) 

(h1,h2)-h=(h1-h,h2-h) (4.6) 

DEFINITION 4.2. A generalized sequential machine in Ж is a machine 
M=(Q, i, a, f$): (A, X)-*(B, Y) whose state functor Q is a product-functor induced 
by an object S of Ж, and the final state transformation is the projection SX——*I. 
Thus, a generalized sequential machine can be specified by 

M~(S,i,a): (A, X)-*(B, Y), where S is an object of Ж, the state object, 
i: A-+SXY*В is а Ж-morphism, the initial state-output morphism, 

a: X(SX —)—~(SX—)Y* is a natural transformation, the transition. 

The response of a generalized sequential machine M=(S, i, a): (A, X)-*(B, Y) 
is defined to be the response of the machine M'=(SX —, i, a, n): (A, X)—(B, Y), 
where n is the projection SX — / . 

Now we give a definition of sequential machines in a category. A sequential 
machine is a simple machine whose state functor is a product functor and whose 
final state transformation is the projection. 

DEFINITION 4 . 3 . Let А, В be objects of Ж and let X, Y be varietors in Ж. A 
sequential machine 

M = (S, J"0, <70): (A, X) — (B, Y) 

in Ж consists of the following data: 
an object S of Ж, the state object, 
a X-morphism i0: A-+SXB, the initial state-output, 
a natural transformation a0: X(SX-)—~(SX— )Y, the transition. 

The response of a sequential machine M=(S, z'0, a0) is the composite morphism 
fM=nY*В• i^, where я : SX——~I is the projection and if is the run map of 
M defined by 

SXB h X i i B > S X Y * B * s X h B SxY-Y*B J l H l X ( S x Y * B ) 

f / o U \xi* (4-7> 

A — A ^ ^ XX* A 
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DEFINITION 4 . 4 . Let A, B be objects of X and let X, Y be varietors in X. A 
morphism / : X* A-+Y*B is called initial-segment preserving if there is a natural 
transformation 

A: X(X*AX-)^~ Y*, (4.8) 
such that 

X*A L ^Y*B 

W yn n r (4'9) 

X X * A ^ L J *~X(XAXY B) ?'Y >'Y*Y*B 

THEOREM 4 . 5 . A morphism / : X* A — Y*B can be computed by a generalized 
sequential machine in X if and only if / is initial-segment preserving. 

Proof. Assume that a morphism f:X*A — Y*B is computed by a generalized 
sequential machine M=(S,i,o)\ (A, X)-*(B, Y). Thus, f=fM = nY*B-i*, where 
n is the projection transformation Sx—-*/ and i* is the run map of M defined 
by ( 4 . 1 0 ) below. 

„ „ hXpB oY*B 
SxY B«* SXY*Y*B < X(SxY*B) 

f > „ f * / * 
t]A ^J t Ho A \. 

(4.10) 

A —!—>X*A XX*A 

Denote by p the projection S~- SX Y* B, and let 

r: X*A^~'SXY*B-Z~S. (4.11) 

It can be seen by the identity (4.5) that the morphism r : -X* A—S induces a natural 
transformation ( rX - ) : , X* A X —-*<SX - by 

( r X - ) C : r x l c : - X*AxC-SxC (4.12) 

for each object C of X. Consider the natural transformation 

X ( X * A x - ) ^ ^ - X ( S ' X - ) - ^ ( S X - ) Y * - ! ^ Y * . (4.13) 

We shall prove that this X satisfies (4.9) with the response morphism / . First, we 
show that i*=(r,f). Because S~?-SXY*B nY*B- Y*B is a product diagram 
(p, nY*B) = ISXY*B- Thus we have 

= 1SXY*B • = (P. * « ) ' = ( P ' »'*• B • »'*) = (R>F)- (4-14) 

By (4.4) we obtain from (4.14) 

i*=(r.lx*A, \Y*B-f) = ( ' • X l K # ; B ) - ( l x # y t , / ) . (4.15) 

4 Acta Cybernetica 

o 
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Taking into account ( 4 . 1 0 ) and ( 4 . 1 5 ) we have 

yf-toA = TiY*B-i*-»0A = nY*B-(lsXjiB)-aY*B-Xi* = 

= JiB• nY*Y*B• oY*B• Xi* = pB• (nY* -a)Y*B-Xi* = 

= HB. (Try* .a)Y*B' X({rX 1 Y*B) • (1 / ) ) = 

= fiB-(nY*-ff)Y*B-X(rX-)Y±B-X(lx#.Aj.f) = 

= jiB-{nY*.o.X(rX-))Y*B.X(\x*A, / ) . 

Applying the definition ( 4 . 1 3 ) of the natural transformation A we conclude that 

f.li0A = nB.XY*B.X{\x*A,f), 

which proves the commutativity of ( 4 .9 ) . 

Conversely, assume that a morphism / : X* A — Y* B is initial-segment pre-
serving, i.e. there is a natural transformation A: X(X* AX—)—~ Y* rendering 
the diagram (4.9) commutative. For each object C of J f let us denote by QC the pro-
jection X*A — X*AXC. We show that the composite morphism 

aC: X(X*AX-)C = X(X* AxC)(UaA'XeC,xc} X*AxY*C = 

= (X*AX-)Y*C 

is natural in C, thus we get a natural transformation 

. A: X ( X * A X - ) ^ ( X * A X - ) Y * . ( 4 . 1 7 ) 

Let h: C—D be an arbitrary morphism. We have to prove that 

( 4 . 1 6 ) 

X(X*A X C ) — * X*A X Y*C 

X(X*A X - . 

X(X*A X D)^- »X*A XY*D. 

: - ) A | | ( Z * ^ X - ) y # / z <4.18) 

By (4.4) and the definition of the product-functor X*AX— we have 

AD-X(X*AX-)h = (n0A-XQD, W)-X(lx#AXh) = 

= (n0A • X(qD • (1 x#AXh)), ID • X(lx#AXh)). 

From (4.1) follows QD-(\x*AXh) — \x*A-QC=QC, hence using the naturality 
of A we obtain 

oD-X(X*AX-)h =(p0A-XgC,Y*h-AC) = 

= Ox#AXY*h)-(p0A'XgC,AC) = (X*AX-)Y*h-(rC. 

Thus the diagram ( 4 . 1 8 ) is commutative. 
Let us define the generalized sequential machine 

M = (X*A,I,A): (A,X)-+(B,Y) 
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by a in (4.16) and put 

i: —X*AXY*B. (4.19) 

We show that / is the response of M, i.e. 

f = nY* B • i*, (4.20) 

where n is the projection transformation X* AX—'-*/ and i* is the run map of M: 

X*A X'Y* B < [**A X ** X*A X Y* Y* B ^ - ^ X ( X * A X Y*B) 
(4-21) 

/1 > X*A : XX*A 

In order to prove (4.20) it is enough to verify that i*=(lx*A, / ) • We do this by 
observing from the following that (1X*A, f ) is an Z-homomorphic extension by 
the same specification as i*, which means (4.21). 

a) ( 1 X # A , / ) • rjA — i, by definition (4.19) of /. 

b) (1 X*A> X*A' 

JiB).<;Y*B.X(\x*A,f). 

Applying (4.6), (4.9) and (4.4) in this order we have 

(lx*A,f)-H0A = (HoA,f-n0A) = (ii0A,fiB.XY*B.X(lx#A,f)) = 

= C1
 x*AXfiB).(n0A,XY*B-X(lx#A,f)). 

By (4.3) ey*B-(lx*A,f) = holds, thus •: 

VX*A,F)-HOA=VX*AXLIB)-((IOA-XLX#A,XY*B.X(LX*A,F)) = 

= (1 x*AXjiB)-(VoA • X(gY*B• (lx#A,/)), AY*B• X(lx#A,/)) = 

= (\x*AXJiB).(noA-XQY*B,AY*B).X(\x%A,f). 

Taking the definition (4.16) of the natural transformation a we conclude that 

Ox*A,f)-HoA =(lx*AXflB). aY*B.X(\x*A,f) 

which completes the proof of the theorem. 
COROLLARY 4.6. Let A be an object of JT and let I be a varietor in JF. The 

object X* A is universal in the sense that for every generalized sequential machine 
M\ (A, X)-*(B, y ) there is a generalized sequential machine M'\ (A, X)—(B, Y) 
whose state object is X* A, and M' computes the response of M. 

Now we give a characterization of morphisms computed by sequential ma-
chines in JT. 4* 
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THEOREM 4 . 7 . Let X, Y be varietors in J F and let A, B be objects of J F . A morph-
ism / : X* A-~ Y* B can be computed by a sequential machine in X Iff the following 
two conditions are satisfied: 

i) there is a morphism f0: A—B such that 

X*A Y*B *.} , <422> 
A a A >- B 

ii) there is a natural transformation X0: X(X* AX —) —~X making (4.23) com-
mutative. 

# . f 
X*A ' ^ — Y B 

» A k * ( 4 - 2 3 ) 

< X(\x*A,f) X0Y*B ' 
XX*A — ^ X(X*AXY*B) -2 *-YY B 

Proof. Assume that a sequential machine M=(S, i0, o0): (A, X)—(B, Y) com-
putes / : X* A — Y* B. Let us take the generalized sequential machine M' = 
= (S, / , o r ) : (A, X)-(B, Y), where 

A^ S X B ^ ^ SXY*B, 
(4.24) 

Remember that rj1 = p0-Yfj. Then, by Lemma 2.6, the machine M' computes 
the response of M, i.e. the morphism / . Therefore f=nY*B • i*, where n: SX—'•—!• 
is the projection and i* is the run map of M'. Thus we have from (2.2) 

/• t]A = nY* B- i* -t]A — itY*B • i = i:Y*B • (1 s X f j B ) • i0 = fjB-nB • i0. 

Hence, taking /„ to be nB • /'„ the condition i) of Theorem 4.7 will be satisfied. Accord-
ing to.Theorem 4.5 there is a natural transformation X: X(X*AX-) — Y* such 
that for this X and / the diagram (4.9) is commutative. Moreover, by (4.13), X has 
the form 

X = X(X*AX-)J^-)~X(Sx-)~ ( S X - ) Y + — • ~ Y * . (4.25) 

Now let us define the natural transformation XQ by 

X0 = X(X* A X - ) X(SX~)-^'(SX-)Y^~ Y. (4.26) 

Since (4.9) holds for X in (4.25) it is enough to prove 

' Ji-XY* =fi0-X0Y*. 

By (4.24), (4.25), (4.26) and the naturality of n we have 

fi-XY* =Jx{nY*-o.X(rX-))Y* =P'(nY*-(SX-)rj1-(x0-X(rX-))Y* = 

= fi • (rn • nY . <70. X(rX -))Y"* = p • fa • X0)Y* = ¡1. fj.Y* • X0Y*. 
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But we have already proved in Lemma 2.6 that n - t ] iY* =fi0 , thus we obtain 
p -XY*=p0-X0Y*. 

Conversely, assume that the conditions i) and ii) are satisfied for a morphism 
/: X*A^Y*B. If we take X=fjiX0 we have p-XY*=p.(fj1-X0)Y* = 
=p-fj1Y* -X0Y*=p0'X0Y*. Thus (4.23) implies that the X above and / satis-
fies (4.9), and hence by Theorem 4.5 there is generalized sequential machine 
M=(X* A, i, tT) computing the morphism / . In the sense of Lemma 2.6 it is 
sufficient to prove that the initial state-output morphism i and the transition a 
of M are simple. Since the initial state-output i of M is defined in Theorem 4.5 by 

thus, if we take /0 to be (t]A, f0) for the f0 in condition i), then 

(X*AX-)rjB-i0 = (lx#AXfjB)-Ox*A,fo) = (tl4,riB-f0) = 

= (f}A,/'tjA) = (1 x*A,/)-lA = i. 

This means that i is simple in the sense of Definition 2.5. The transition a of M 
has the form (a, A) for some a by Theorem 4.5. From X=ij1- x0 we conclude 
that a is simple. This completes the proof of the theorem. • 

THEOREM 4.8. The family of the generalized sequential machine morphisms in 
J f is closed under composition. 

Proof. Let M^S^iltoJ: (A, Y) and M2 = (S2, i2, o2): (B, Y) + 
-*(C, Z ) be generalized sequential machines in Jf computing the morphisms f : 
X*A-*Y*B, f2: Y*B-+Z*C, respectively. By Theorem 2.8 the composite 
morphism f - f : X*A->~Z*C can be computed by a machine 

M = (Q,i,a,P): (A,X)^(C,Z) 

where Q=(SiX - ) ( S 2 X -), 

i=A±S1xY*B-!?l^-~(S1X-)(S2X-)Z*C = S1X(S2XZ*'C), 
(4.27) 

p = ( S l x - ) ( s 2 x - ) 

Here 71 j: S^X— -~I ,n 2 \ S2X—-»/ are the projection transformations. The object 
map of the composite functor ( ^ X -)(S2X - ) is (S1X~)(S2X~)D = 
=(SiX —)(5*2XD)=S1X(S2XD) for any object D of X . Since the category X" 
has binary products we may recall the well known result (see Mac Lane [7], pp. 
73. Proposition 1) which asserts that there is an isomorphism 

«s1>s,: S1X(S2XD)^(S1XS2)XD 

natural in SV, S2 and D, moreover, aSliSa D commutes with the projections to 
Si, S2 and D, respectively. Thus there is a natural transformation • 
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with inverse ^ (i.e., both (p • and </> • <p are the identity natural transformations 
on the corresponding functors), 

such that n-(p=n1-(S1X—)n2, where n: ( S 2 X S i ) X — • / is the projection. Con-
sider the generalized sequential machine 

By Theorem 2.10 it is sufficient to prove that cp is a simulation <p: M—M'. We 
have to show the equalities 

The first equality of (4.29) holds by (4.28). As P = nL'(SxX-)n2, thus = 
Using the definition (4.28) of <x' and the equality ^•<p = l (s 1 x-)(s 2 x-) we have 

a' -X<p = <pZ* • a • X\jj • X(p = (pZ* • a • X(ij/ • <p) = (pZ* • a • Zl(SiX _xs2x -) = <pZ* • <*. 

This proves that (p is a simulation and completes the proof of the theorem. • 

Finally, we show that the computational capacity of the generalized sequential 
machines in a category and that of the process transformations of Arbib and 
Manes are equal. 

DEFINITION 4 . 9 (Arbib and Manes [4]). Let A, B be objects of J F and let X, Y 
be varietors in J f . A process transformation T: (A, X)-*(B, Y) in Jf is 
T=(S, d, t, k, /?), where 

(5, d) is an X-algebra, the state algebra, 
t: A —S is the initial state, 
k: A — Y* B is the initial throughput, 
fi: X(SX —)—~7# is a natural transformation, the output. 

The response of T is the morphism g: X* A — Y*B defined by 

ift: (S1XS2)X — 1 *(5 1 X —)(S2X —) 

M' = ( № X S 2 ) X »', * ) : (A, X ) - (C, Z ) 

where i' and a are defined by / and a in (4.27) as follows 

/' = ^ - i - ( 5 1 X - ) ( S 2 X - ) Z # C - ^ - ( ( 5 1 X S 2 ) - ) Z * C , (4.28) 

a' = cpZ* • a • X\¡/. 

V = <pZ* C • i, a' • Xcp = (pZ* -a, n • (p = ft. (4.29) 

„ * „ A« * * PY*B Y B — 7*7*5-*^-
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where r: X* A — S is the reachability map of (t, d), i.e. the homomorphic extension 

5 ¿ L x s 

V ^ f r \xr (4-31) 
A ^ x * A J^±XX*A 

THEOREM 4.10. A morphism g: X* A — Y* B is the response of a process 
transformation iff g can be computed by a generalized sequential machine in 

Proof. Assume that a morphism g: X* A-*Y*B is the response of a process 
transformation T=(S,d,t,k, j8): (A, X)^(B, Y). For each object C of X let 

S f — S X C ^ C (4.32) 

be the product diagram, and define the morphism oC: X(SXC)-+(SX—)Y*C 
by the composite 

aC: X(SXC) <d x°c'l,clSxY*C. (4.33) 

One can check by an easy coputation that oC in (4.32) is natural in C, i.e. we get 
a natural transformation 

Consider the generalized sequential machine M=(S, i, <x): (A, X)--(B, 7 ) , where 
i'=(/, k) and a is defined in (4.32). We prove that this machine computes the morph-
ism g, i.e. ftd—g• The response of M is fM = nY* B• i*, where / * is the run map 
of M, i.e. the unique morphism satisfying both (4.34) and (4.35) below 

i* 't]A = i',' (4.34) 

i*-H0A =(lsXfiB)-oY*B-Xi*. (4.35) 

Since TCY*B-(r, g)=g, it is enough to prove that i*=(r, g). We do this by 
observing that the1 morphism (r, g) satisfies (4.34) and (4.35) in place of /* , i.e. 
(4.36) and (4.37) hold 

(r,g)-tiA=i,- (4.36) 

(r, g) - no A = ( l s X p B ) •uY*B • X(r, g). (4.37) 

By the triangular part of (4.30) and (4.31) we have 

(r, g).rjA = (r-rjA, g-t]A) = (t, k), 

thus (4.36) holds. Again by (4.30) and (4.31) 

(r, g) • H0A = (r • fi0A, g • p0A) = (d-Xr,flB'PY*B• X(r, g)). (4.38) 

From the definition (4.33) of o it follows that nY*Y*B-oY*B=PY*B, and 
hence, using the naturality of n we obtain 

(r, g)-p0A=(d-Xr,pB-nY*Y*B-aY*B.X(r, g)) = 
(4 39) 

= (d-Xr, nY*B-(lsXjiB)'oy*B'X(r, g)). 
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Because (4.32) is a product diagram we have 

d-Xr = d• X(QY*B • ( r , g)) - 0Y*B-(d.XGY*BX(r, g), PB • FLY*B • X(r, g)) = 

= QY * B • (d • XQY* B,pB •FIY*B)• X(r, G) = 

= QY*B• (1 sxpB) • (d - XQY*B, f}Y*B) • X(r, g). 

And by the definition (4.33) of a 

d • Xr =QY * B • ( l s X pB) • aY* B • X(R, g). (4.40) 

Putting toghether (4.39), (4.40) and the equality \SxY#b=(QY*B, nY*B) we 
conclude 

(r, g) • HO A = (QY* B, 7:Y*B). (1SXPD) •aY* B• X(r, g) = (lsxpB)-aY*B-X(r, g). 

Thus (4.37) holds, which ends the proof of the "only i f " part. 
Conversely, assume that a morphism / : X* A — Y* B can be computed by 

a generalized sequential machine in X . Then, by Theorem 4.5, the morphism / 
is initial-segment preserving, i.e. there is a natural transformation 

A: X ( X * A X - ) - Y * , 

such that the diagram (4.9) is commutative. Now consider the process transforma-
tion T=(X*A, n0A, f-rjA, t]A, X): (A, X)-(B, Y). It is obvious that 1X*A is the 
reacability map of (qA, HQA). Hence, taking into account the defining diagram 
(4.30) of a process transformation we obtain that (4.9) defines the response of T, 
which is / . 
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