
Priority schedules of a steady job-flow pair* 
B y J . T A N K Ô 

The priority schedules are discussed for a steady job-flow pair defined in [5] 
as a non-finite deterministic model of servicing invariably renewing demand series. 
Though these schedules are not dominating with respect to the utilization of the 
servicing processor, they are very important in practice. A method is defined for 
reducing the problem of evaluation of the schedules to the evaluation of simpler 
ones. The method is based on the reduction of the configuration constituted by 
the demands of job-flows. The reduction is a generalization of the Euclidean algo-
rithm of the regular continued fraction expansion. For some configurations the 
reduction procedure does not prove to be finite or the evaluation procedure of 
the schedule of the reduced configuration is not known to be finite. For some of 
these configurations direct evaluation methods are given. 

1. Introduction 

In an earlier work [5] the problem of scheduling steady job-flow pairs was 
defined as scheduling the processor triple 3P = {PA, PB1, PB2) to service two series 
g 0 ) = {Cij, j—1, 2, ...}, i '= l , 2, of task pairs C , 7 =(^ , 7 ) Bu) demanding service 
of time t]i=0 and from the processor PA and PBl, respectively. The series 
Q(i> is a steady job-flow with parameters r]h as renewing demands for processors 
PA and PBi. The steady job-flow pair is characterized by the values of the four 
parameters Q=(r]1; rj2; 32) called configuration. The space H of configurations 
is the non-negative sixteenth of the four-dimensional Cartesian space. 

We use below the following notations: 

t ^ i / , + 3 , , ¿ = 1 , 2 , i7 = i h + i f t , 9 = = i ~ 1 , 2 . 

A schedule is a unique determination for t=sO of which tasks are serviced 
at the moment t by which processors. The demands for the processor PA can be 
conflicting. The schedule can be considered a decision process by which the .con-
flicting situations are resolved and the normal continuation of service can be broken. 

An important class of schedules is the set of non-preemptive schedules in which 

* This article reports on some results of a study of the author supported by the Computer and 
Automation Institute of the Hungarian Academy of Sciences. 
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the service of any task cannot be preempted after starting until it finishes automat-
ically. These schedules were discussed in the article [5]. A relatively simple algo-
rithm was given to determine the optimal schedule. 

The efficiency measure of schedules is the utilization of the processor PA. 
Formally, the efficiency of a schedule R is defined by the limit 

y(R)=\\m^p- (1) 
I —CO I 

where / , (0=^(0 , 0 is the -usage in the interval (0, t). The algorithm for choosing 
an optimal non-preemptive schedule is based on the method of reducing the con-
figuration which is a generalization of the well-known Euclidean algorithm of the 
regular continued fraction expansion. The determination of the optimal schedule 
takes place by the full evaluation of the elements of the dominant set of the con-
sistent natural schedules with maximum number six. Only one reduction has to 
be executed. The amount of the necessary computation is well bounded and es-
timated. 

For the preemptive scheduling in which preempt-resume is permitted, another 
set, the consistent economical schedules, is a dominant set but it is not so nicely 
bounded as the set of consistent natural schedules [6]. The criteria of finiteness and 
bounds for the cardinal of the set are not known. Neither optimal strategy nor 
a smaller dominant set of schedules is known. It is shown [6] that the priority sched-
ules are not optimal either. Since the only general method for determining an op-
timal schedule is the full evaluation of this dominant set the optimization pro-
cedure is uncontrolled. 

Though the priority schedules are neither dominant, nor actually of better 
efficiency than the non-preemptive schedules in general, they are of great practical 
importance because of their simple scheduling rule. In a priority schedule one of 
the job-flows has priority versus other(s) which means that it is serviced in the 
moment it needs the processor. If the processor is busy by servicing another job-
flow, the service will be preempted during the service of the priority job-flow-task 
and resumed after that. For job-flow pairs there are only two priority schedules 
according to job-flows Q w and Q(2) as priority ones. In [6] the priority schedules 
were denoted by Rh2 and R21, accordingly. In the schedule ( /=1, 2) the 
job-flow ö ( , ) is scheduled without preemption and delay as when the job-flow 
g<3-o w e r e not present at all. The service of on PA takes place only in the 
intervals the PA is free from servicing QUK The priority schedules R12 and J?2,i 
of the configuration g = ( l ; 3; 5; 7.5) are illustrated by Gantt-charts in Fig. I . 

The priority scheduling of the stochastic version of job-flow pairs was studied 
by A R A T Ó [1] with diffusion approximation and by T O M K Ó [7]. 

For the schedules JR]2 and i?2,i a r e symmetric in the role of the job-flows 
Q{1)_ and ő ( 2 ) , every fact concerning i? 1 2 (ő) becomes a fact concerning /?21(Q) 
if Q is the conjugate configuration of Q defined as 

8 = Oh; Si ; n*, $>) = 0?2; 3 2 ; h i SO-

This is why we need not word definitions and theorems depending on the order 
of the job-flows for both orders, only for the order Q a > , g ( 2 ) . 
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The Gantt-charts of the priority schedules 

In section 2 below we define first a method for reducing configurations Q^2L 
into simpler, reduced configurations Q*(L£l. The reduction takes place by the itera-
tion of an operator A to the configurations Q„ = A"Q until a fixpoint Q* = ArQ 
called reduction of Q is reached. We show the relationships between the parameters 
of Q„ and Qm, n, m = 0, 1, 2, . . . , n These remind one of the relationships 
known in the theory of continued fractions [4]. 

In paragraph 3 we show the connections between the characteristics of the 
schedules R12(On) and R1>2(Qm), n^m. This provides means to determine the 
characteristics of Rlt2(Q) f rom the characteristics of / ^ ( C D -

Section 4 surveys the configuration space 2,, the reduced configurations in-
cluded, and give answer to the Question whether R\i2(Q) is periodic and what are 
its characteristics in dilferent domains of SL. The domain 0 < T i < r 2 remains un-
answered in this section. 

Section 5 is dealing with the above domain. The periodicity of R1I2(Q*) is 
not cleared for the whole domain only for some parts of it. An algorithm is given 
for evaluating i?i j 2(6*) if it is periodic. 

In section 6 we shall briefly deal with the connection between the /(¡-reductions 
defined in section 2 and ^¡-reductions given in the article [5]. Also some reference 
is made to the analogy between the ¿-reduction and the continued fraction ex-
pansion algorithm. 

Section 7 reviews the configuration space 2. from the point of view whether 
the "Question" of periodicity and evaluation is answered or not, and by which 
theorem, if it is. 

2. The method of A -reduction 

The transformation of configurations defined below as ¿-reduction enables 
us to reduce the investigation of priority scheduling of some configurations to 
one of other configurations. This method is analogous to the reduction method 
applied for non-preemptive schedules by means of an operator [5]. 

The operator A defined below is the Ax from the two operators Ah ¿=1 ,2 , 
in the application of which the roles of Q(1) and Q(2) are symmetrical. We shall 
see later that the operator At is connected to the priority schedule Ri<3-i, i=1, 2. 
The index 1 of Aj is omitted in the notation A. 
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Let the operator A be defined for any configuration Qdl by the relationships 
between its parameters and the parameters of the configuration Q—AQ = 
=(rjl; 5X; rj2; 92)£J2. The parameters of Q are defined by the relations 

(a) fjy = 

(b) = /jTa+Sj where 
0 is an integer and 0 S < T2 if r2 > 0, 

/j = 0, = if t2 = 0, 

(c) rj2 — k2 Sj ~h fj2 where (2) 
k2 S 0 is an integer and 0 < r\2 ̂  if rj2 =»• 0, 
k2 = 0, r}2 = t]2 if f/aSi = 0, 

(d) 92 = l2 Ti + S2 where 
/2 = 0 is an integer and 0 S S2 -== f j if f j > 0, 
l 2 - o , £>2 = S2 if f x = 0 . 

This definition shows that the operation J g determines also an integer triple 
(l1, k2, /2) out of the configuration Q. This triple is characteristic of the configuration 
Q from the point of view of the effect of the operator A on Q. 

If l1 + k2 + l2=0 then the operator A is ineffective for Q and AQ = Q. We 
say Q that is reduced in this case. If l1+k2+l2^0 then A is effective for Q, AQ^Q 
and at least one of the parameters of Q is less than that of Q. Therefore the operator 
A is called a reduction operator. The triple (/, , k2, l2)Js the quotient generated by A 
applied to Q. A is defined for all points Q of 2., and Therefore A is applicable 
repeatedly to the transformed configurations and the series of configurations 

Qo = Q, Qn = AQn-1, « = 1 , 2 , . . . , 

can be defined for any point Q of Si. Using the powers A", n=0,1, 2, . . . , of the 
operator A, we can write 

Qn = A"Q, n = 0 , 1 , 2 , . . . . (3) 

Let the series of triples generated by the series A, A2, ..., A", ... be 

(Z,): (¡1,01 ^2,0> h,o)> 01,1' ^2,1) '2,1)1 •••) 0l,n-li h,n-1)> ••• and let 
(A): ( / l l 0 > ^ . O + ^ . o ) » C l . l , ¿ 2 , l + ? 2 , l ) , ••• > Ul,n-1> ^ 2 , n - l + ' 2 , n - l ) > 

These are the series of quotients. Let us define the length of (L) and (A) the index 
v of the first triple for which 

if such an index exists and v=oo otherwise. Let us use the notation |(L)| = 
— |(yl)|=v. If v<°° , the Q, is the first member in the sequence Q0, ... which 
is reduced, v is called the degree of compositeness (dc) of Q. If v< °° then Q is 
reducible, otherwise, it is non-reducible. If the dc of Q is 0 < v < o o then 

(a) h.t + Kt + k.t^O, i = 0, 1, . . . , v - l , 
( b ) / 1 ) v + / c 2 , v + / 2 . v = 0 ( ) 
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and the series (L) and (A) contain exactly v non-zero members. The configuration 
Q* = QV is a reduced configuration and it is the reduction of Q. 

From the definition (2) of A we can deduce the conditions of Q* to be reduced. 
By (2), (4b) will hold if 

(a) 0 Si 9Î < t2* 

(b) 0 ^ r , * 2 s 9 t 

(c) 

or x% = 0 and 

or rj%9i =0 and (5) 

T î or x î = 0 . 

Conditions (5a)—(5c) are not independent of but include each other. The set 
M*aM of the reduced configurations is illustrated by planes ( r / t , ^ ) fixed in Fig. 
2a—d. 
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Fig. 2 
Illustration of the set â * of reduced configurations 

On the graphs we show the disjunct domains of configurations by the follow-
ing lemma. 

Lemma 1. The operator A defined by (2) is ineffective for Q* i.e. Q* is reduced, 
i f f one of the following conditions holds 

* m 

(a) zht = 0 

OS) TÎT* > 0, 9* = 0 , 0 ^ 9t 

(y) 9 * 4 > 0, t,* = 0, 0 < 5 Î < 9t 

(.5) « > 0 , r,* s 9* < rl 0^9: 

(6) 

Proof. In either domain of (6a) —(65) every of the conditions (5a)—(5c) holds. 
Conditions (6a)—(65) are, therefore, sufficient for Q* to be reduced. To see the 
necessity it is easy to verify that one of (6a)—(65) holds if (5a)—(5c) are true [4]. • 

Let the number series (A) defined as ^21+1=^2,»+^,¡> '=0 .1» — 
The following lemma shows that no zero value in the series (A) between /1>0 and 
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^'2,v-i + /2,v-i exists. This means that the parameters of both job-flows are reduced 
in the transformation Qi+1, /=1 , 2 , . . . , v—2. They are the transformations 
QO^QI a n < i Q,-I~*QV o^ly 111 which it is possible that only one of the job-flows 
be reduced: Q(2) in Q0-^Qi and Q w in Q r-1-~QV . This fact is expressed by the 
relations concerning (A) 

0, /c2 > i+/2 > 1 > 0 , O s i < » - l , / i , i > 0 , 1 = s / s v - l , A « . . - i + / s . , - i ^ 0. (7) 

In any circumstances, the following relations hold for /=0 , 1, ...: 

( a ) + l = 'l,iT2,i> Tl;i' — Tl,i + 1 = h,ir2,i 

(b) l2,i~ l2,i + l = + T2,i — T2,i + 1 — (k2,i + h,i)<}l,i + l + h,itll (8) 

(C) ^2, i — + 1 = i2 , iT l , i + l-

Lemma 2. Let 
^2,1 + 12,1=0, 7 = 0 , or Zx , = 0, 7 & 1 , 

be the first zero value after /10 in the series (A) if such one exists. Then all members 
in (A) following it are zeros and the degree of compositeness of Q is as follows: 

incase k2t0 + l20 = 0: v = 0 if l10 ~ 0 

v = 1 if C^O, 
in cases I >- 0: v = I if t = 0 

v = 7 + 1 if k2J + l2J = 0, / ^ > 0 . 

Proof. If llt0 = k2 0+l2 0=:0 (7=0) then Q0 is reduced by definition and v=0 . 
If / ^ > 0 but k2I + l2I=0, 7 ^ 0 , then v > 7 and £ 1 > / + 1 < t 2 > / , r2 , /+i = T2;f f rom (2), 
and, therefore, 9 1 > / + 1 < T 2 7 + 1 and so li,r+1—0 and r l i i + 2 = T L J / + 1 . If, however, 
i i , /+i=0, 7 ^ 1 , then T 1 ) / + 2 = T l j f + 1 . But in this case V2,i+2 = rl2,i+i a n < i 5 2 > / + 2 = 
= + i from (2) and so QI+2 = QI+i- This means v ^ 7 + l . • 

The following lemma shows the part of 2. in which non-reducibility is possible. 

Lemma 3. To any £)££ there exists a finite integer v ' § 0 for which the con-
figuration 

is either reduced or defective with 
= 0 . 

Proof. If //1=0, there is nothing to prove. Let tj^0. If /2 i > 0 then from 
(2d) we get 

^2 , i~$2, i + l = i2,iTl,i + l — T l , i + 1 — 'h > 0 

and, therefore, the value of 92>i decreases at least by rjy. This means that only a 
finite number of positive l2 i members in the series l2t$, i > ... can exist and there 
exists an i 0 =0 so that 

h,i = 0, 92ii = 3 V o if i a ;0. 

If 3 2 j i o =0 then v '=i 0• Let 3 2 i l o>0. If / l i f > 0 then from (2b) we get 
—Sl l + 1 = — T2,i — $2,i0 > 0 
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and, therefore, the value of 9 h i decreases at least by 92f io . This means that only 
a finite number of positive l l t i member can exist in (A). If /j^. is the last positive 
/1>f member then v'=i' +1 and Qv. is reduced. • 

By Lemma 3 only the cases 
r\ A = 0 (9) 

remain questionable in regard to reducibility. The following lemma concerns these 
cases. 

Lemma 4. Any with (9) is either reducible or 

fi,-(Jh;0;0;0) as n -
In the latter case 

\ „ t 2 , „ > 0 (10) 

after any finite step n. This case comes true if 

T1T2 > 0 , t]292 = 0, 91 and .9, are rationally independent. (11) 

Proof. Q is reduced if T2=0. Let now T2>0. 
If 92=0,q2>0, the reduction procedure will be equivalent to the regular 

continued fraction expansion of the number 

- ' É = ^ (12) 

with the restriction that the number n +1 of the partial quotients [b0,b..., 6„] 
must be chosen odd in finite cases because cannot be zero by definition (2). This 
choice is always possible [3]. The number of the partial quotients and the steps 
of reduction will be finite exactly when ^ is a rational number [3]. The reduction 
results in Q*=(ti1; 0; rj2-, 0). If (11) holds, neither 91<t nor rj2i becomes zero in 
finite steps and (10) is true. 

Let now 9 a > 0 . Then rj1=0 from (9). If 9 i = 0 then Q is reduced. Let, there-
fore, S x > 0 as well. 

If r j2=0, the reduction procedure becomes equivalent to the continued frac-
tion expansion of £ and it is finite .exactly when £ is a rational number. The reduc-
tion results in g * = ( 0 ; 9Ï ; 0; 0) or Q*=(0; 0; 0; £>£)• If ^ and t2 are rationally 
independent, the expansion procedure is infinite and neither of 9li and 92i will 
be zero for finite i and (10) holds. 

Let f / 2 >0 as well. Suppose Q is not-reducible, i.e., the degree of compositeness 
v= co. By Lemma 2 all members of (A) are positive after / 1 0 . From (8) we can write 
for any / > 0 : 

^l.i + l = h,iT2,i — h,i[{k2,i+f2,i)<)l,i + l + Z2,i + l] — 

— m a X ( 9 i , i + l,>72, , + l , 3 2 i + 1). 

If either of the parameters 9r, rj2, 92 remained bounded from below by a pos-
itive number a > 0 , then 9 t would be decreased by at least a in every step of re-
duction. After 9Ja. steps 9lit would surely become negative which is a contradic-
tion. Thus none of 9t ¡,t]2 92 { could be bounded by an a > 0 , and Q,— 
-»(0; 0; 0; 0) if This proves (10). 

7 Acta Cybernetica 
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In cases (11) we have shown that v = and (10) holds. But from (2) we get 

— m a x ($l,i + ls '?2,i + l» $2,i + l) 

also in these cases and the parameters cannot remain bounded from below and 
so Qi~(ih\ 0; 0; 0) as • 

From Lemma 3 and Lemma 4 we can assert that v = °° can hold only for 
defective configurations for which >7i=0 and for configurations for which 92;v-.=0 
for some v ' ^0 . We cannot exactly show the domains or points of SL in which Q 
is non-reducible. We know such subsets of 3 but not all such points. 

The relationships below are true independently of the finiteness of v and the 
relation of v and n. These relationships concern the parameters of Q and Q„ and 
Qn and Q„+1. 

As the definition (2) of Qi+1 = dQi, we get 

>7l, / — Vl, l + l ' *]2,i = ^2, i^l, i + l + + l „ , ,,„. 
i = 0 , l , . . . (13) 

= 'l,iT2,i + $l,i + l ' $2,i = ' 2 , iT l , i+l + $2,i + l-

From the same definition we can obtain the relationship between the parameters 
of Q„ and <2„+i in the following form: 

V l,N — ^l.N + l 
= 'l,n'2,n'/l,n + l + ['l,n('C2,n+'2,n)+ + l + ll,nl2,n + l + ¡l,n^2,n + l 

'72, n = ¡i2,N^l,N + l+V2,N + l 
$2,n — '2,n^l,11 + 1 + ^2,n$l,n + l + $2,n + l 

Tl,n = t̂ J, n « + ' 2 ,n)+ 1 ] Tl, n + l + 'l,nT2, n + l — h,n^2,nrll 

h,n + l=1l,n 

$l,n + l = $1,11— U,ntli,a~ h,n®2,n 
'?2,n + l — — ^2,n$l,n + ('l,n^2,n"t" 1) '?2, n + 'l,n^2,n$2, n 
$2,n + l = —^.n^l.n - '2 ,n$l ,n+'l ,n'2,n' i2,n + (' l ,n'2,n+ l)$2,n Tl,n + 1 = Tl,n~ h,nZ2,n 
T2, n +1 = - {k 2, „ + k, „)Ti, „ + ['i, „ (k2, n + >2, n)+11H n + k2;n >ll • 

(14) 

(15) 

(14') 

(15') 

As the parameter r\x is not concerned during reduction, >71,n='7i, « = 0 , I, . . . , 
and it can be separated from the other parameters. 

From the relationships (14) the connection between the parameters of any 
two Q„ and Q„. n^n', especially between the parameters of Q = Q0 and Q„ can 
be obtained. To make the further relationships more compact we have to introduce 
some series of integers, vectors and matrices as follow. 

Let (A1) be the formal notation of the infinite sequence: 

(.V): X0, Xx, X2, ..., Xn, ... 
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and let |(JC)| be the index of the first member of (X) from which all members are 
the same, if such a member exists. This is called the length of (X). 

We have already defined the two series (L) and {A). The members of (Q) are 
the configurations Q„ = (>ti; 9h„; tj2t„; S2 n). The lengths of (L), (A), (Q) are the 
same v, the dc of the configuration Q 0 = Q . Let (0) be the series of the identically 
zero members with the length 0. We have referred to the series (A) the members 
of which are 

(A): A2i- = /1; i, A2i+1 = f +/ 2 , , , ' = 0, 1, ... . 
Define also the series 

(k): kn = k2,n, n= 0 , 1 , . . . 

and 

( 0 : l„ = k „ , n = 0 , 1 , . . . . 

We define now a set of new series necessary to writing down the relationships . 
among the parameters of (Q). The definitions are recursive for / , « = 0 , 1 , . . . . 

(A): An =AnA„_1 + A„_2 with ^ _ 2 = 0, A^ = 1 

(B): B„ =XnB„_1+B„_2 with B.t = 1, / ? _ 1 = 0 

(C): C2i = A2i, C2 i + 1 = k^Cu + Cu-! with C_x = 0 

(.D): D2i = B2i, D2i+1 = k2riD2i+D2i_1 with D_1 = 0 

(B')\ B2i = À2iB'2i_1 + B2i_2, B'2i+1 = l2ii_1B'2i + B'2i_1 + k2ii with 
B'_2 = 0, B'_x = 0 

(B")\ B2i = l2iB2l_x + B2i_2, B2i+1 = A2i + 1B2i+B2i-1 — k2ti with 
B'L2=UB'L1 = Q 

{D'Y D'2i = B'2i, D'2i+1 = k^iD'x+Dii^ + k^; with D'^ = 0 

CD"Y Ki = fla'i, D2i + 1 = / i o . ^ + ^ - i - f c , . , - with D'U = 0 
Define the following sequences of vectors and matrices for « = 0, 1, . . . as well. 

»72, n 
,N 

(0: Q. = 

®= MM 
with 

>72, n =-rl2,»+£>L-ih 
^2,n — — 9 2 n + (-S2„_1—Z>2„_i)>7I 

,n = Tl,n + -®2n-2'7l 

2̂,11 ~ — T2, n+-®2n-l>7l 

(16) 
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An.n + i 

m a = ( f - 2 A / " - 2 ) 

(£•• i n -

f 1 )-2n 1 

'̂2/1 +1 /• 2n ̂ "¿n +1 + V U , „ + h,n 
1 'l.n h.n 

ki,„ h.nk2,„ + l ' l .n^ .n 
h,„ h,nh,n h.nh.n+l 

Bln-1 
C2n-l 

... _ ^2n-2 

We remark at once that 
T 

6o = 
1,0 

>72,0 

$2,0 
= 2 , !o = ( T l ' ° ) = i (17) 

and that the D-matrices can be obtained from the corresponding zl-matrices by 
summing up the two last rows and omitting one of the last two equal columns. 

The foregoing entities simplify the relationships between the parameters of 
the members of (Q). The proof of the relationships will be automatic by means 
of the relationships of the following lemma. The relationships are interesting on 
their own right as well. To simplify writing we use the following determinant no-
tation: 

Un{x, y) = = x„y„-1-xn_1 y„, n = 1, 2, ..., 
x„ y„ 
Xn-1 -Vn-1 

for any two series (x) and (y). From this definition the relation 

Hn(y,x)=-Hn(x,y) 

(18) 

(19) 

is trivial. (18)—(19) can be interpreted for « = — 1,0 as well if the values x_2,y_2, 
x_ 1 ; are also given. 

Lemma 5. Among the entities defined beforehand, the following relationships hold. 
For i, n= — 1, 0, 1, ... 

Hn(A,B)=:(-1)-1 (20) 

(.An, Bn), (An, An_J, {Bn, B„_J, (An_ Bn_J (21) 

are relatively prime integer pairs* 
£-1 i - l 

•^21+1 = 2 + 12j)A2J+ 1, • B2i+1 = ^ (.k2yj + l2j)B2; 
o ;=o 

i - l i - l 
^21+1 = 2 k2jA2j, D2i+1 = ^ k2jB2j j=o j=o 

(22) 

* 0 and 1 are considered relatively prime integers.. 
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(with the definition £ Xj = 0) 
7 = 0 

For i, n=0, 1, 
B'n+B: = B„, D'„+D:=D„. 

H2i{B,A) = H2i-1(A, B) =1 
H2i(B',A) = H2i-x(A, B') =\ -C2i_! 
H2i(B", A) = H ^ A , B") = 1 + C2i^ 
H2i(B',B) = //2i_i(5, B') = 1 
H2i(B",B) =H2i^(B,B") =D2i^ 
H2i(B", B') = H ^ B ' , B") = D2i_i; 

A2iD2i—B2iC2i = 0, yi2;_1Z)2i_1 — B2i_x C2i-! = B2i-1 

A2i+iD2l—B2i+1C2i = A2l_1£)2j — B2;_1C2i = 1 
A2iD2l+1 — B2i C2i+1 = A2iD2i_1-B2tC2i-1 = B2i; 

if (k) = (0) then 

C2i+1=D2i+1 = 0, (B') = (0), (B") = (B) 

CD') = (0), /)£ = 2»M, D'2i+1 = 0; 
, / ( / ) = (0) then 

B2i = B2i— 1, B2;+1 = B2i+1, B2i = 1, B2 i+1 = 0 
= Bii-i* -D2;+1 = B2l+1, D2i = 1, D2i+1 = 0; 

with D0 = I, Aq = [, D„ An+1 — An,n+iAn 

"¿2„ï = (ll,n(k2,n + h,n)+l 
1 ) I Hk2,n + h,n) 1 ) 

(^2n^2n + l + 1 
" 2̂n +1 

+ " / I . - ~h,N 

•^2/1-1 
~B2N-X 
~~ 2/1-1 

_ / 1 2 n - 2 

•»2 . -8+1 
Bzn-2— 1 

-»27.-2 
-»2/1-2 

^ • " + 1 ~ { k J + l 2 i n l ) ( o V ) 

£n""+1 = (o M t -
1 

<k2tn + l2J 1) 

(23) 

(24) 

(25) 

(26) 

(26') 

(27) 

1 0 (28) 

" ' m 0 1 / 

•̂ 2/1-1 
—

 -̂ 2/1-2 1 
~B2n-l B2n-2) 

(29) 
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' l 0 0' ' 1 0 o' 
/ 

1 kn U 

An,n + 1 = 0 1 0 1 0 0 1 0 

kn 0 1 . 0 0 1. ,0 0 1 
/ 

l -•h.n C 1 0 . 0 1 0 0 

i = 0 1 0 ,n 1 0 0 1 0 
0 0 1 0 0 1 / -h „ 0 1 

The determinant det ( X ) for every matrix encounters above is 

det (X) = 1. (30) 

Proof Taking into account definition (18), we easily see (20) and (24) for n— — 1 
and i,n=0. The other relations (21)—(26') can be checked for the least index 
by the definitions of the entities. Using the recursive definitions of the series, we 
can verify (20), (22)—(26') by induction. (21) follows from (20) because every com-
mon divisor of the pairs must divide (— l ) " - 1 and is, therefore, ±1 . (27) can be 
verified by executing the multiplications. The inverse matrices (28) can be verified 
most simply by multiplying them with the corresponding original matrices and 
using (20)—(25). The factorizations (29) can simply be checked by executing the 
assigned multiplications. (30) is trivial for every matrix encountering. • 

After Lemma 5 we can now easily prove 

Theorem 1. For any configuration the following relationships between the 
parameters of (Q) hold: 

Ûn+1 = An,n+iQn, Qn = 4n,1n+iQn+i, Qn = AnQ, Q = 

ÏlJ + l - 12n,n + lïn> Li — i?n,n + lîn + l> t = D T x — Z)_1r •in ±1n ±> i — —n ±n • 
(31) 

Proof The relationships in the second and fourth columns follow from those 
of the first and third columns. The relationships in the third column follow from 
the ones of the first column because of (17) and the recursions (27). The rela-
tionships of the first column are to be verified. This can be done by (14')—(15') 
and definitions (16) and (D+), ( J + ) . By (16) 

^l.n + l — Tl,n + l+-®2n'/l 

+ l ~ — T2,n + l+-®2n + l'7l-

From (140—(15') and (B'), CD'), (16) 

= 5 i , n +/ 1 > n ^ 2 > n +Zi > B 5 2 > 1 ) , 
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'?2,n +1 — ^2,n$l,n Cl, n n + 1)^2,« 'l,n^2,n$2,n + ['C2,«^2n+^2n-l + 'C2,ii]'7l ~ 

= 'C2,n$l,n + ('l,n'C2,n+ D'72,n + 'l,n'C2, n ^ . n ! 

$2,n + l = + h,Ji,ntl2,n~ C l ,n '2 ,n+ l )$2 , n + ['2,n^2n + ^2ri-l—^£)2n-l]'7l = 

- *2, „ ill + Kn~kn Cl«.» + $2, „) + (/l. n K - 1 + B L _ 2) 1/J -
— $2,n+(-»2/l-l—^>2n-l)'7l = 

These are exactly the relationship Q„+i=Aj, n + 1 Q n . Taken into account that 
f l n = 5 l n and f2>n=»72,n+$2,n and summing up the last two equations, we get 
the relationship T b + 1=^„ i„+ 1T„. • 

This theorem is applicable to relate the parameters of a configuration Q and 
its reduction Q* if the latter does exist. 

3. The priority schedule and the reduction 

In our previous article [6] we discussed the so-called consistent economical 
schedules (CESs) which represent a dominant set. There also the priority schedules 
were defined and shown as specific CESs. This means that the priority schedules 
R12 and R2yl possess all the characteristics every CES possesses. There we illustrated 
the CESs by graphs which showed the basic characteristics of the CESs such as 
periodicity, the succession of the so-called typical and critical situations etc. The 
specific characteristics of R i t 3 - i (7=1, 2) is that no task type A{ can be preempted 
and, therefore, the job-flow is always delayed whenever a cycle C 3 _ u of 
it finishes in such a moment when a task type At is under service or is ready for 
service. These are the critical situations type cr3-itl and <r0, respectively, defined 

, in [6]. The delay can be 0 a n d after finishing the service of At the situa-
tion will be the same as the situation after finishing the first task An. Since R l i 3 - i 
is consistent, the continuation of the servicing process after the two task-finishing 
points passes off similarly. This means that Ri i3~i is periodic with a period represented 
by the schedule section between the two task-finishing points. If $ ¡ > 0 then the 
task A3_iyl begins immediately after the finishing point /,'=>/,- of the task Aa 
in R i ) 3 - i . This situation is called fi¡-situation [5, 6]. This situation returns next to 
the first delay of Q<3~1> after t{. The &-situation returns, however, whenever a 
cycle C 3 _ t j finishes during the service of a task type At if If 3 ; = 0 then the 
initial situation c0 returns at the point t[ immediately and, because of the-consist-
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ency, the scheduling of the job-flow Q M is repeated. The period consists then of 
a cycle C, of Q( i) and the job-flow <2(3-,) fails to be scheduled. The efficiency of 
-K/,3-; will be y = l , the possible maximum, if ^¡>0. But this schedule is by no 
means acceptable in practice. /?3_ f i i has efficiency y = l as well if //¡>0, 9 , = 0 
unless T3_,=0. If T ,=0 and 9 3 _ ,>0 , the schedules Rh2 and R21 are degenerated 
with a finite length and some modification of the scheduling strategy is needed to 

_ produce practically acceptable schedules. This problem and generally the scheduling 
specialities of degenerate job-flow pairs (for which T1T2=0) were discussed in [4]. 
In spite of this fact we cannot keep degenerate and defective configurations (with 
zero value parameters) away from further discussion because the reduction of a 
nondefective configuration Q can lead to defective reduced configuration Q*. 

Confining ourselves to the priority schedules Rlt2(Q), which always 
start with the service of the task An, we know that Rlt2(Q) ' s periodic if 91 = 0 
or the /^-situation returns. A period is the section of the schedule between the point 
/]'=>)! and the first recurrence point T* > t{ of p i if S ^ O . R12 is not periodic 
if .9i>0 and the recurrence point of Pi does not exist. In this case <2(2) cannot be 
delayed out of the starting delay of value and the preemptions. This means that 
the finishing times /(/ ' ) of the cycles C 2 | i , / = 1,2, . . . , of Q(2) can be written as 

f(i) = r]1 + iT2 + z(i)>1i (32) 

where /(/') is an integer depending on /', the number of preemptions of the first i 
C2-cycles. (32) is valid only until the first recurrence of the px-situation. Suppose 
the Pi -situation recurs first after the /i2th cycle-finishing point. The length of period 
p is then the distance between t[, the start-point of C2; j , and T*, the start-point 
of C2 j ( I a + 1 , which consists of ¡x2 demand cycles of g ( 2 ) , x 2 = y ( P i ) services of pre-
empting /li-tasks and the last delay d2 of Q'2), if any, i.e. 

P = T f - t i = PzTz+Xiiii+Wi (33) 

where / / 2>0, are integers and 

0 S £ 2 s l . (34) 

In both points ti and J f a task type Ax finishes and, as a result of priority, 
the service of the job-flow Q w goes on continually without break and delay and 
an integer number of Q-cycles are serviced in the period between t[ and 7\*. Let 
this number be denoted by ^ . Thus 

P = Hi?i, (33') 

where / / i>0 . Let us call and /(2 the cycle numbers, x2 the preemption number 
and e2 the relative delay. These are the characteristics of R12 and they are denoted 
by the quaternary 

= ; Hii * 2 ; £2)- (35) 

If 9 1 = 0 then R h 2 will be periodic with p = r 1 = rjl which accords with (33) and 
(33') if we define the characteristics as 

J71i2 = ( 1 ; 0 ; 0 ; 1). ' (35') 

Another degenerate case must be discussed yet. This is when S ^ O and r 2 = 0 . 



Priority schedules of a steady job-flow pair 221 

Scheduling this configuration with the priority of Qw the cycles C2j with length 
0 will be scheduled infinite times after the first, Au, task and the further section 
of the schedule RLT2(Q) is undefined. Without modification of the strategy the 
obtained section of R1I2(Q) can be considered as periodic with length p=0 and 
the period consists of a C2-cycle. In this exceptional case let the characteristics 
of RI 2(Q) be defined as 

771 i 2 = (0; 1 ; 0 ; 0 ) . (35") 

From definition (1) of the efficiency y(R) of a schedule R the efficiency of a periodic 
schedule can be obtained as 

(£=4 (i'> 
where pR=0 is the length of the period of R and aR = 0 is the PA-usage time in 
a period of R and the quotient is defined as zero if both of aR and pR are zeros. 

By the characteristics (35) of a priority schedule R1>2(Q) the PA-usage is com-
posed exactly from the service times of A^-tasks of number and from the service 
times of A2-tasks of number fi2 and, therefore, 

«1,2 = /*l>7l+/<2>?2- (36) 
We have proved 

Theorem 2. If for any configuration Qe<H the priority schedule R=Rly2(Q) is 
periodic then the length of the period p and the PA -usage a can be written in the forms 

P = = Wz + fa + ^rh, (37) 

2, (38) 

where integers Hi = 0, x2 = 0 and real 0 S e 2 S l are the characteristics 

N = (PÙ /<2; x 2 ; e2) 
of R with the specialities 

Q Hi H2 k2 e2 

> 0, x2 = 0 0 1 0 0 ( 3 9 ) 

S i = 0 1 0 0 1 

9 i T 2 > 0 > 0 > 0 S O € [ 0 , 1 ] 

Proof After the preliminary discussion there is nothing to prove. • 

Let us inspect now the influence of the reduction step defined by (2) on the 
periodicity and the characteristics of a priority schedule R1I2(Q). Denote by 

( * ) : Rn = Ri .»{QÙ, n = 0 , 1 , 2 

the sequence of priority schedules of the sequence of configurations (Q). 
Fig. 3 illustrates the influence of the reduction step Q„—Q„+i on the corre-

sponding priority schedules. The transformation Rn-+ R„+1 defined implicitly is 
shown in three substeps Ra—R'n, R'„—R'^, R%-~Rn+1 corresponding to the sub-
steps (2b)—(2d) as transformations Qn-Q'n, Q'n-Q'û, QZ~*Qn+i- T h i s decom-
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position of the transformation Q„+1 corresponds to the factorization (29) 
of the matrix Aji,n-ri of the transformation. The series of configurations in 
Fig. 3 is £„ = (!;' 15.5; 5; 7.5), Q=( 1; 3; 5; 7.5), 0„ = ( 1; 3; 2; 7.5), Qn+1 = 
= (1; 3; 2; 3.5). 

Rn 
rnrnm. 

Wtâzmmmi 

mmm». 

iliiill!!!!lll//L WÊÊÊÊBÊMM 7///////////M 
m 
i 

It - - -71 1r 71 
E L 

PH V///////A [F] M 2 
PN \V NN W//M MM w/M PN 2\J 

m ixM 1 Wt 1 | yA 1 KG >4 1 1 1 T 

WW////////M//M 2 VM WA 2 | 

K 
2 w \ w / A m 2 ^ w r n / i ï w m 

kC. J* V- -X 

~RM 

m z ) 

R, n+1 
1 2 WA 2 1 W/M 1 i 
Và 1 1 a 1 1 
YA ̂ 2 M % 2 m 

Fig. 3 

The influence of the substeps of the reduction Q„ + i—AQ„ on the priority schedule Rltl 

The sequence of R„, R'n, , Rn+1 shows that these schedules are periodic 
at once and the transformation Qn-*Qn+i does not influence the existence of 
periodicity of priority schedules. This means that the members of the sequence 
(R) are simultaneously periodic or not periodic at all. 

Let us introduce the following symbolics. Denote the characteristics of R„ by 

(/7): n„ = (/'!,„; /<2.„; ,«', e2.„), n = o, l, 2,... 
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and let the vectors /i„ and n„ be defined as 

(2): ft. = ( ' H - ' ~ V*2. n' 

(t{): ZL. = 

n' 

Hl.n 
H2,n n =0, 1, 

and let the matrices M„ and M„„+ 1 be defined as 

( M ) : M« 
-®2n-2 ^2n-2 -®2n-2 
Bin-l B2n-1 

0 0 1. 

« = 0 , 1, . . . 

( M + ) : M , „ „ + i = 
1 kn 0 

0 0 1 

n = 0, 1, . . . 

Lemma 6. For the matrices (M) a«<i (A/+) the following relationships hold for 
u = 0, 1, . . . _ 

= with (40) 

M„-
^2n- l A2n-2 C2n-1 

~&2n-l B2„-2 —D2 „_J 
0 0 ' 1 

~~ (^2, 71 + ll) 1 
0 0 

v 2 , n 

(41) 

Mn,n + 1 

Mn,l +1 

i o o 
I«.» 1 0 

o o 1 

1 0 0 

•2,n 1 ^2,1 
0 0 1 

1 

1 kn 0 
0 1 0 
0 0 1 

1 -kn o' 
/ 

0 1 0 
,0 0 1, 

1 
-k, 

0 

0 0 

2, n 1 — ^2, n 

' 1 0 0' 

-kn 1 0 

o 0 1 0 1 

The determinant det (X) for every matrix encountered above is 

d e t Q Q = 1. 

(42) 

(43) 

Proof (40) can be verified by executing the matrix production and using the 
definitions of (A), (B), (B'). The verification of (41) is easy by multiplying the 
matrices with their inverses and using (20)—(25). The factorizations (42) are ob-
vious by executing the multiplications. (43) is trivial. • 

Now we prove our main result. 
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Theorem 3. For any configuration the whole sequence (R) of priority 
schedules of the sequence of configurations (Q) is periodic at once and the following 
relationships hold among the members of the sequence (77) of characteristics: 

e2 ,n = £2 (44) 
and 

Ajn + l = £¿2+1 ffn, ffn = 0.n+lftn + l, Hn = 

ZLi+i = M f J + i l L , , En = Mi<i+iZL.+i» ZE» -

for n = 0, 1,2, ..., where X~T denotes the transpose of the inverse of matrix X^ 

Proof The second and fourth columns of (45) follow from the first and third. 
The first line follows from the second because the D-matrices are the 2 x 2 sub-
matrices of the M-matrices as their definitions show. The relationships of the third 
column follow from the ones of the first in consequence of (27) and (40). The first 
relationship of the first line of (45) remains to be proved with (44). To go on with 
the proof we need the following triads. 

Define 

9 { i ) = R r ) a n d e ( - i ) = f W - ( p ( i > Z i > i = l , 2 , . . . (46) 

as moduli and residua of the cycle-finishing times / ( / ) of Q(2). 

g(i)=f(i) (mod Tj) and 0 S g ( i ) < T 1 . (47) 

For the cycle-finishing times the decomposition (32) is. true until the first recurrence 
of the /^-situation. Substituting this into g(i) in (46) we get 

6 (0 = h + i r 2 + x (i) m ~ <P (0 • (48) 
The triads 

H{i) = (<?>('), X(0), i = 1 ,2 , . . . 

for Q are determined by the priority schedule R=R12(Q). We saw earlier that 
the periodicity of R is true if for a finite i there exists a triad H(i) for which 

0 — 6(0 — >7i> 

because the -situation recurs exactly in this case. The length p of the period is 
determined by the first such i and H(i) because the first recurrence point 7\* of 
the Pi -situation is the ^-task-finishing point next / ( / ) which is by time t]1 — g(i) 
later than / ( / ) , that is 

H = / ( 0 + t f i - < ? (0-
From this 

P = Tt-t[ =f(i)~e(i) = rh + i?2 + x(i)h-Q(Q-
On the other hand 

P = <P( 0*i = 'T2 + (x(0 + e2)'7i 
from which 

8(0 = 0 ~£2)>7i and e2 = l - Q ( i ) / h -

fi = { £ f i n 

n = MTn„ 
(45) 
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We have got that R is periodic if and only if there exists a triad H(i) for which 

0 ^ e 2 t ] 1 = ( p ( i ) T 1 - h 2 ~ x ( O h ^ 1 i - (49) 

Since the member of triads determined by R are monotonic with each other, there 
exists a unique minimum i satisfying (49). Let 

Hi = <P(0, Hi - h = / ( 0 . £
2 = 1 -e(i)hi (49') 

with this i. Then the so defined 27„ are the characteristics of R„. /<2, „ is the minimum 
value of i for which (49) holds for Rn, i.e. • 

Hi,n^i,«-Hi,nH«-x».» rli = e2,„ri1.^ri1. (50) 

Let us see the first substep Q„^Q'„- Substitute from (2b) T 1 „ = / 1 „ T 2 I „ - } - T 1 _ „ + 1 

into (50) and we get 

0 S Hi,n*i,n + i-(Hi,n-h,nHi,n)T:2,n-X2,n1i = ^2,nh = h - (50') 
This means that 

Hn = (Hl.ni H2, n~~h, nHl.ni ^2,11) 

is a triad for R'n=Rli2(Q'n) for which (49) holds. Because the correspondence 
between parameters of Qn and Q'„ is unique, H'„ must also be the minimum triad 
for which (49) holds. This means that the characteristics of R'„ are 

Hl,n = Hl,ni H2,n — H2,n~~h,nHl,m *2,(l = ^2,ni E2 ,n = £2,n-

The matrix of this transformation is the transpose of the first factor of M^i+ i >n (42). 
Substitute now the expression >j2, —k2, »$1, n+i+12, n+i from (2c) into (50) 

correspondingly to the transformation Q'n-»QZ- We obtain unambiguously the 
inequality 

0 ^ (H[,n-KnHin)?i ,n±i-Hin(n2,n + i + \n ) - (x2 ,n -h ,„H2,n)n i = e2,„i/x r^. (50") 

This means that 
H„ = (Hi, n~ „fl2.ni H2,ni >C2,n~k2,nH2,rd 

is the unique minimum triad for Ql for which (49) holds and, therefore 

Hl,n = Hl.n k2!„P2,ni H2, n — H2.n1 n — ^2,(1 ~~ ^2, nH2,n > e2, n = e2,(l-

The matrix of this transformation is the transpose of the second factor of 
1 in (42). 

At last we substitute the expression 32j „=/2 i „ r^ „ + 1 + 32i „ + L from (2d) into 
(50") correspondingly to the transformation QZ—Qn+i- We obtain the inequality 

0 — (Hl,n~~ h,nH2,n)rl, n + l ~ H2,nX2, n + l — ^2,nil = B2,n1l — 1l-

In consequence of the uniqueness of the transformation QZ~*Q„+1 and the mini-
mum triads for their R12-schedules we get 

Hl,n + 1 = Hi, n l2,nH2,n> H2, n +1 = Hi.m ^2,n +1 — ^2 ,n> e2, n + 1 ~ S2,n 

as the characteristics of Rn+1. The matrix of this transformation is the transpose 
of the third factor of M^.l+i ' n (42). This proves the theorem. • 
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Fig. 3 illustrates the course of the proof. 
Theorem 3 makes it possible to determine the characteristics 77 of ~ 

from the characteristics II* of R*~Rli 2(0*) if Q is reducible, R* is periodic and 
n* is known. The question of reducibility was discussed in the previous section. 
The characteristics of reduced configurations will be inspected in the next two 
sections. 

4. Priority schedules of specific configurations 

We saw in the proof of Theorem 3 that the periodicity of a priority schedule 
R—R12(Q) depends on the fact whether there exists a triad H(i) satisfying (49). 
This is not equivalent to the existence of an integer solution of the inequality 

0 S A*2T2 — X2Vl — >h (51) 

because not every triple (/iX) fi2, y-,) satisfying this inequality is a triad defined by 
(32), (46)—(49) on a schedule Rlt2(Q)• Unfortunately, we do not know analytic 
conditions for the triads instead of the fact that its elements represent the number 
of Cx -cycles, C2-cycles and preemptions, respectively, until the C2-cycle finishing 
points of Rlr2(Q). The triads and (51) cannot be used, therefore, to decide the 
periodicity and determine the characteristics of a priority schedule Rlt2(Q). This 
circumstance raises the significance of results on characteristics for some specific 
configurations Q€M including reduced ones. 

The characteristics of Rlt2(Q) were made clear for configurations for which 
SLR2=0 in Theorem 2. We suppose that 

V 2 > 0. (52) 
We can make clear the special cases in which (9), the condition J7i92=0 for 

Q is true. Let first J/I=0. Since Qw do not delay the service of Q{2) in this case, 
we can determine the condition of periodicity of Rli2(Q) as 9L and T, are rationally 
dependent. This is illustrated in Fig. 4a. 

Independently of the value of rj t, we can easily determine the condition of 
^1,2(6) t o be periodic for Q£2 with 9 2 = 0 (but 9 1 t 2 > 0 ! ) . This condition is that 

r . J 1 • i I I I 1 1 n 1 
WBMMY/MMBKi •W//M7 2 W////Ä '/A 2 W. y///M 2 2} 

1 I 1 1 1 1 1 I 1 1 Tj 
W///M 2 Y///M 2 W M l 2 • 2 W/////A 2 I a 

2 2 2 2 2 
Fig. 4 

R l i t (Q) schedules for specific configurations with S|T2>0, >/,,9.-0 
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and r\2 are rationally dependent, which is the same condition as in case rj 1 = 0 . 
The values of the characteristics of the periodic schedule Rli2(Q) are, obviously, 
determined by the relation of and r2 according to 

Theorem 4. For the configurations with 

V 2 > 0 , >/iS2 = 0 (53) 

the priority schedule 7? = /?J 2(2) is periodic i f f and x2 are rationally dependent. If 

^ = 4 (54) r2 B 

with relatively prime integers A, B > 0, then the characteristics of R are 

77 = B - A - f ^ f y l ) , (55) 

where / < ( x ) is the greatest integer less than x . . 

Proof. Fig. 4 shows that Px — B, /¿2 = A if (54) holds because (B, A) is the least 
integer solution of the equation x9x— yx2=0. Since q(A) = 0, therefore, - e 2 = l 
from the relationship (49') if t jx>0 and e2 = l can be considered as a convention 
if t]x—0. If 9 2 = 0 then every ^ - t a s k but the first in the period is a preempting 

one and, therefore, x2=B—1 = c a s e ' ? i=0 the AltJ task is pre-

empting if ¿to<j&x < i r 2 + ri2 for some integer /=s0 (see Fig. 4a). This means that 
' < y 9 i / T 2 < ' + f2/'r2 a n d using (54) we get i< jAIB<i+t ] 2 lx 2 , i.e. 

where {x} denotes the fractional part of x. It is well known [4] that the numbers 
{jA/B}, j=0,1, ..., B-l, go through the points Ic/B, k=0,1, ..., B-l, of the 
interval [0,1) in some order. This means that for / = 1 , 2 , . . . , B, the inequality 
takes place as many times as many of the points kfB are in the interval (0, //2/r2). 
This number is [072/t2)/(1/-8)] if (>/2/t2)/(1/5) is not an integer and is (rjJx^Kl/B) — 1 
if this is an integer. This number is exactly f<((r]2/x2)B). • 

Lemma 3 establishes that every configuration Q becomes reduced or defective 
with (53) after a finite number v ' s O of application of the operator A to it. Theorem 
4 means that after finite v ' s O times application of A we can reduce Q or decide 
whether its schedule i?i>2(C) is periodic. We show that Q with (53) is reducible 
when i ? 1 2 ( g ) is periodic, i.e. 9x and r2 are rationally dependent. 

Lemma 7. The configurations Q^Q with (53) are reducible i f f (54) is true except 
eventually the case ?/1 = 0 in which Q can be reducible with rationally independent 
.9j and t2 as well. 

Proof. If 92—0 then the reduction procedure is equivalent to the regular 
continued fraction expansion of the number ^ = and is finite exactly when 
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C is rational and so (54) holds (see also the proof of the Lemma 4). Let now 3 2 > 0 
and t]i—0. If Q is not reducible then neither „ nor r]2§n+92,n of Q„=A"Q, 
n^O, is zero by Lemma 4. If ^2i„92i„ = 0 for some finite nSO then the reducibility 
is equivalent to the validity of (54) by the same lemma. 

Let, therefore, Si.nfa.n^./i^Oj 0 , 1 , . . . . Suppose Q is not reducible. This 
means that the series (¿) has infinite length and has no zero element after A n = / 1 0 . 
This means that / ) i n > 0 , « S l . From (2b) we conclude then that 0 < 9 1 > n + 1 < 
<T2 n < 3 l n , « = 1, 2, . . . , which means that 

^ = if ¿ > 0 , c 2 ; + 1 = - ^ i - > l if i s 0, 
T2,i ^l. i + l 

and (2) is equivalent to the definition of series 

L = K + > n = 0 , 1, . . . , 
Cn + 1 

where 0 < l / c „ + 1 < l and, consequently, /.„ = [£„]. This is, however, exactly the 
definition of the Euclidean algorithm of the regular continued fraction expansion 
of the number £ o = \ o / t 2 , o = |9i/t2- This algorithm is infinite exactly when is 
an irrational number, i.e. (54) does not hold [3]. If (54) is true, Q must be reducible. 
If (54) does not hold but ^ = 0 then Q can be reducible as for instance 
Q = (0; 1; 7t/2; it/2) shows for which <?„ is irrational but v = l and Q* = 
= (0; 1; w / 2 - 1 ; n / 2 - 1 ) . • 

From Lemma 7 we can conclude that the question of periodicity of Rli2(Q) 
remained unanswered in cases in which Q is reducible and for its reduction Q* 

0, ^ > 0 . (56) 

In all other cases reducibility and periodicity are equivalent except the case >h=0> 
Si and r2 are rationally independent, in which case the periodicity is not true-

We now show that in case (56) the schedule j 2 ( 0 is periodic if t ^ S t ^ . 

Theorem 5. If the configuration is reducible and for its reduction Q* = Q, 
the relations 

r i s (57) 

hold then the priority schedule i ? 1 > 2 ( 0 °f Q ' s periodic with characteristics 

n = (58) 
\ i] x j 

with 
I11 — ^2v-2 + ^2v- l 

H2 = A2V_2 + A2V-1 (59) 

= - ® 2 v - 2 + ^ 2 v - l 
I 

where v is the degree of compositeness of Q. ¡.^ and p2 are relatively prime integers. 
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Proof. First of all f /L>0 follows from (57) because the reducedness of Q* 
implies if ^ > 0 by (5c). From and (5b) it follows that O s i ^ S * 
and, therefore, the characteristics of 7?*=/?I ;2(2*) cannot be else than 

77* = ( l ; l ; 0 ; ^ - ^ - ) (58') 

which is the special case of (58) with v = 0 in (59). This fact can be verified most 
simply on the Gantt-chart of R* as in Fig. 5. (59) follows then from Theorem 3 

R* 

p •*-

1 2 Ï-W-. 1 2 
1 1 

2 
Fig. 5 

The schedule for a reduced configuration with i t ï ; r î - - d t =-0 

applied for n = v and entities x * = x v . By the last relationship of (45), n=MJn* 
and in detailed form 

Hi 

Hi = A2v 

Bo„ 

T 
1 

. 0 

which is (59). e2 = e2 follows from (44). 
Applying ¡.i* = D~T)j. obtained from (45) for n = v, we get from (28) the 

relationships l=A2v_1p1 — B2v_1n2 and 1 = -A2v_2fi1+B2v_2i]2 and from (21) that 
Hi and fi2 cannot have common divisors other than ± 1 . • 

After this theorem the only questionable case remained is the set of configura-
tions reducible to Q* with 

0 < h < To (60) 

The domain (60) of 2 is the part of the domain (5) in Fig. 2d and is illustrated in 
Fig. 6. We will further investigate this case in the next section. 

Fig. 6 
The domain of reduced configurations with O ^ i h c t i - s z l 

8 Acta Cybernetica 
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Supposing that R* is periodic, some relations among its characteristics can 
be stated. These follow from the following more general Lemma 8. We need some 
simple definitions. Let s(X) and f ( X ) denote the start and finishing point of the 
service of a task or cycle X, respectively. We say that task A starts during task B 
if s(B)^s(A)s/(B) and task A runs during task B if s(B)^s(A) and f { A ) ^ f ( B ) . 
Let u denote the number of task type Ax in a period of Rx,i(Q) which do not preempt 
task type A2. 

Lemma 8. For the characteristics 17 and u of a periodic priority schedule 
R= R12(Q) the following assertions are true: 

Hl = u+x2; (61) 

" = № > , = + (62) 

i f f exactly one Ax-task starts during every B2-task; 

(a) w==/i2> Hx^fi2 + x2 if #2-=*!, 
(b) u ^ f i 2 , fi1^n2+x2 if (63) 
(c) u = n 2 , px = fio + y-2 if = $2 < ; 

(a) Hx^p2+\ if tx^r2, 
(b) ix2^x2+l if r , 9 x > 0 , (64) 
(c). > / i 2 > x2 S 0 if i i ^ i ^ i ^ T i , $ i > 0 ; 

x2s=l if < Tj < r 2 , > 0; (65) 

Hx ^ 3, n2 ^ 2 , x2 ^ 1 if ri2 ^ > 0 , 32 < < t 2 . (66) 

Proof. (61) follows from the definition of u and x2. u=p2 in (62) is clearly 
true if exactly one ^ - t a s k starts during every 52-task because these ^ - t a s k s are 
those which do not cause preemption. The number of B2 -tasks in a period is fx2. 
Suppose u=fi2 and there exists a l?2-task during which more than one Ax -tasks 
start. This is possible only if and so 9x^9 2 . But at least one y^-task 
must start during every J52-task if 9xS92 and, therefore, we get + which 
proves (63b) but contradicts u=pi2. If we suppose that no x-task starts during 
some i?2-task in the period of R, it follows that S a ^ A must hold. But if 9 2 < t 1 
then no fi2-task during which more than one Ax -tasks start exists and, therefore, 
u^p2 — l , proving (63a) but contradicting u=fi.2.. This proves (62), and (63a) 
and (63b) involve (63c). 

To prove (64a) we use Theorem 2. From (37) —¡i2) t j = ¡ i 2 ( t 2 —r^+(x 2 +s 2 ) t j 1 
and /i!>/i2 follow if t 2 > t 1 and n 2 >0 . But / / 2 >0 follows from 9 X > 0 by (39). 
If 3 1 = 0 then / / 1 = l > f i 2 = 0 by (39). If r j 2 ^ 9 1 then no ^¡,-task can exist which 
is preempted more than once and, therefore, x2—/V If then the first A21 
task is serviced without preemption as soon as t]2=Qi- Therefore, x 2 ^ f i 2 —l, 
as (64b) asserts. (64a) and (64b) imply (64c). 

To prove (65) we consider the last l?2-task in the first period of R which pre-
cedes the recurrence point T* of the ft-situation. This task finishes in the interval 
[T*-t]x, I f ] as Fig. 7 shows. The period ends with the service of an ^ - t a s k . The 
last _B2-task cannot start before the preceding A- ta sk because 92—Ti would follow 
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Fig. 7 
Illicit intervals for the last i?2-task starting point s(B2) if 32-=r1<r2 , S ^ O 

in this case. This fl2-task cannot start, however, later than the preceding ^ - t a s k 
finishing because 9 2 ^ x i — t]2 and r2^Xx would follow. This means that 32

 Ti T2 
implies that the last B2-task starts after the preceding x-task but the previous 
y42-task cannot be serviced without preemption and so x 2 s l . (66) follows from 
(64c) and (65). • ' 

Before we turn to the case (60), we prove two theorems which give the charac-
teristics of R1>2(Q) for configurations not necessarily reduced but representing (58') 
as their special case. 

Theorem 6. If for the configuration QÇ.2L 

Sj > 0 and 92 < f/j (67) 

hold then T ? 1 2 ( 0 is periodic. Its characteristics are 

II = (A;£;A-1; 1 - ^ - ) (68) 

where co = (B, A) is the least solution of the coincidence problem 

and 

is its error, where 

The cycle numbers and /i2 are relatively prime integers. 

Proof. An ^i-task causing no preemption starts during a 52-task. Since 
this ¿fi-task must finish later than the Z?2-task and cause a recurrence of the f}x-
situation. Only one such j-task can exist in every period. Therefore, 
if J ? l j 2 ( 0 is periodic. The condition of the periodicity is the recurrence of the 
situation and the existence of and p 2 > 0 fulfilling the inequality 

0 =£ m+Wi+iVi-Vh-Wi = 

The cycle numbers represent the least solution of this inequality which is equivalent 
to the inequality 0 ^ 2 t 2 — h 1 9 1 ^ 9 2 and this to (69) with fi2=B, fix=A and (71). 
The coincidence problem (69) always has a unique least solution (B, A) because 
a>-0 and this solution represents a pair of relatively prime integers [4]. • 

0 SBÇ-A â a , co = (1,0) 

A = BÇ—A 

92 a = 

(69) 

(70) 

(71) 

8* 



232 J. Tankó : Priority schedules of a steady job-flow pair 

In the special case 0<rç2 = $ Î < T 2 of (67) £>-a but O^Ç — I s a and, there-
fore, the solution of (69) ¡is <o=(l, 1) with A = 1 = ^ / 9 ^ - 1 and 

n = 11; 1; 0; l i ^ l from (68), correspondingly to (58'). 
V RJX ) 

Theorem 7. If for the configuration Q^â 

A > 0 , ^ = 0 (72) 

/lofafr then Rh2(Q) is periodic. Its characteristics are 

n = [ B - A ; 0 ; ^ ) (73) 
v rjx / 

where a> = (B, A) is thè least solution of the coincidence problem (69) with error 
(70) where now 

a = f - (74) 
>>2 

The cycle numbers and ¡i2 are relatively prime integers. 

Proof. Because of t]2 = 0, preemption cannot exist in /? ]>2(ô) and Rly2(Q) 
is periodic if and only if i?2-tasks finishing during Ax-tasks exist. This is the con-
dition of the recurrence of the ft -situation. Such" a 52-task exists iff integers B > 0, 
A > 0 exist such that 

Bz1 ^ t]x + A92 â fi^ + min (vi, 92) 

holds. The least co = (B, A) supplies and /<2, respectively. This inequality is 
equivalent to 

j / i - min (>h, 92) S Bxx — A92 ^ tjx. 

The left side is positive if r/1^92. In this case the least a)=(B, A) satisfying the 
inequality is cu=(l , fs(9J92)) where / £ ( x ) is the least integer not less than x. 
Namely, from x ^ / s ( x ) < x + 1 the inequality —92 <= t2 —f^(91j92)9À ^ 
¿ r 1 —9 1 =t ] 1 follows. This (o is the least solution of (69) with (74) as well. (69) 
always has a solution because of a >0, and the least solution is a relatively prime 
integer pair [4]. The values of plt n2 and x2 in (73) are proved. Obviously, £ 2 fh= 
= A92 from which the value of e 2 in (73) follows. • 

If (57) holds, i.e. 0 < 9 Ï < 9 2 ST? is true then the least solution of (69) with 
(74) is c » = ( l , l ) and A92 = ^ — 9^=TÎ-T£. (73) gives (58') as a special case. 

* 5. The case 0<Ti 

We did not find conditions for a reduced configuration Q* with (60) to have 
a periodic schedule R*=Rlt 2{Q*). This case requires further investigation. By 
(60) and condition (5) we can write 

0 < i / î - = T Î < r î , r,t^9t 92 < t j . (75) 
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This is equivalent to the two series of inequalities 

0 < ?/2 9 t < tJ < < rit + rt 

0 < ^ < 3* < r? < r2* s + .9J <= ,9i + i i . ( ? 6 ) 

These relations do not determine the relations between t]* and 9*, /jf and or 
and if t l t > r l i (Fig- 6b). These latter relations are, however, not independent 

of each other. E.g. the following series of implications is right: 

9t s 4 => r,t 9t < 9*2 => 9* s 9t (77) 

From Lemma 8 we can obtain relations among the characteristics of R* if it 
is periodic. From (63a) we get 

• t i ^ t i + x t (78) 

but from (63c) we get +>4 if any member of the. series of implications (77) 
is true. From (64c) and (65) 

fit S ^ + l + (79) 

Before we further investigate some special cases of (75) we introduce an algo 
rithm to generate some entities and the characteristics 77* of R* if R* is periodic. 

In the schedule R* the sequence C21, C22, ... of C2-cycles can be grouped into 
subsequences in which all cycles are either preempted or not preempted. Denote 
by Mt, / = 1 , 2 , ..., the sequence of the subsequences of the preempted and Nit 
/ = 1 ,2 , . . . , the sequence of the subsequences of the non-preempted C2-cycles. 
The first subsequence will be the with at least one C2-cycle since A21 is a non-
preempted task because of = 9 W e call an M-section or an N-section of R* 
the section from the last cycle-finishing point of the previous subsequence until 
the last cycle-finishing point of the current subsequence M, or Nh respectively. 
This definition will be modified slightly below by dividing some M-sections defined 
now into more M-sections and inserting empty iV-sections in between them. 

Define 
AO) = f l i , / ( 0 = >?t + " i + x O K (80) 

as C2-cycle finishing points, 

<p(0) = 0, Q(0) = nt, cp(0 = , e (0 = / (0 - cp (0z* , (81) 

/ = 1 , 2 , ..., as moduli and residua of the cycle-finishing points and 

H(i) = (<p(i), i, x(0), '= 0, 1, ... (82) 

as triads according to (32) and proof of Theorem 3. (80)—(82) are only valid until 
the first recurrence point T* of ;the ft -situation which occurs exactly when the 
residuum g(i) is not greater than t ] f , i.e. 

0 3= e ( i ) ^ if*. (83) 

After e(fy=1i the next such residuum and the corresponding triad determine 
the characteristics of R* which is periodic if such a residuum exists. Otherwise 
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R* is not periodic. The value of the residuum g(i) determines whether the next 
A2-task A2J+1 is preempted or not. If 

«if s e ( 0 s t i - i , i (83') 

then /4 M + 1 will be serviced without preemption and if 

0 < t i * (83") 

then A2-i+1 will be preempted. 
Without preemption / ( / + ! ) = / ( / ' ) + T2 and 

eCi+i) = G ( 0 + x S - T ; <?co (84) 

because from (83') we obtain 

With preemption /(i+l)=/(i)+r2+rj*• I n this case we get 

r , u = i e ( i ) + 4 - s i >c?(0 if and 
^ J l e ( 0 + T I - S i - T I ^ E ( « - ) if T f - m i n ( » / I > T I - S f ) < i ? ( O ^ T f (85) 

where the symbol < denotes a relation sign by 

3 
if 

(85) holds because £ > £ + + ^ i f x f — + i.e. 
and . T f - i j i - = c ( O ^ T i + S i - T i and O ^ t J - S i - m i n ( i / J , r J - S f ) < e ( 0 + T j - S f -
- T i < T j - 9 i < T i if r i - m i n 

Since g(0)=rj*^T*—tj2 by (75), R* starts with a non-preempted ^2- task 
and e(i) is monoton increasing until (83") results and preempted ^2-task follows. 
g(i) can increase further until a decrease because of tf—min (t]2, r2 — < g(i) 
follows. If the g(i+1) obtained by (85) satisfies (83'), a non-preempted C2-cycle 
follows, otherwise the following C2 -cycle is preempted as well. In both cases we 
regard the situation as the end of an M-section and beginning of an TV-section. 
In the second case in which the following C2-cycle is preempted as well, the TV-
section is empty and begins a new M-section simultaneously. 

The schedule R* consists of a sequence (Nx, Mf), (N2, M2), ... of (N, M)-
section pairs in which cannot but Nt, />1 , can be empty, too. Let the numbers 
of C2 -cycles in the sections Nt and Mi be n\ and m\, respectively. These are called 
the lengths of the sections. 

The bounds obtained for e ( / + l ) show that 

0 s e ( i + l ) s i / j (87) 

can only come to pass if e ( i + l ) < e ( 0 i.e. at the end of an M-section. With the 
purpose of finding the first g ( /+ l ) , i s 0 , for which (87) comes true, the residua 
at the end of M-sections are enough to consider. These residua are the local minima 
in the series e(0), g(l), . . . . The next minimum comes after the ¡'th local minimum 
Qi-i, when in the series et-i, ei-i+?i-?l, ei-i+ni(?t-*l), + 
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+«, ' (T£-ri) + T£-i>i ) . . . , e,-_ 1+«i(f i — tJ) (tJ — Si), ... the first j=m'i occurs 
for which 

fc-i + nl(4-Ti) + mi(zt-9t) S rt 
and, therefore, 

6, = fc-i + "K4-rt)+m,
i(tt-9t)-zt 

This condition determines m'i and (?,• by and n[. n\ is determined by gi_1 as 
the first j = n ' i ^ 0 for which 

e,-i+n'i(zi—tT) ^ t J - i j i . 

This means that «•, m\, gt are uniquely determined by as 

m, = / b = [C] + S g n { ( } ( 8 9 ) 

e , = 0,- , + - t i ) + mi(t2* - 9 ? ) - z t (90) 

(88) 

where 

r _ ^ Î - g M - n K - T Î ) 

and f&(x) is the least integer not less than x. 
Let us use the notations 

i • 
nQ = m0 = k0 = 0, «,• = 2 n'j. mi= 2 m'j, ifa = «¡-(-m,., ¿ = 1 ,2 , . . . . (92) 

i j=i 

The integers nit m{ and i/^ give the number of C2-cycles serviced without preemp-
tion, with preemption and totally until the end of the (Nit M,) section pair, re-
spectively. 

Denote by 
Hi = ((Pi,*l>i,Xi), 1 = 1 , 2 , . . . , 

the triads at the ends of the (N, Af)-section pairs. We call i = l , 2, ..., R12-triples. 
Clearly H i = + / w f ) and 

(pi = n,+m,+i, ip, = tii+mt, Xi = i = 1, 2, ... . (93) 

The residuum at the end of the (7V;, Ms) section pair can be written from the re-
cursion (90) and g0=e(0)—t}Z as 

ft = nt + (r2 - t i ) + m, (r2* - 9?) - izt (94) 
or with (93) as 

Qi = (95) 

The end of the first period of R*, if such one exists, is determined by the entities 
at the end of the first (TV, M)-section pair with Q, satisfying (83). If such a section-



236 J. Tankó : Priority schedules of a steady job-flow pair 

pair exists, it can be determined recursively by the formulas (88)—(91). If for 
/ = / > 0 the relation (83) comes to pass first, the characteristics of R* will be 

n* = (<PI\*!>I\7.I\ 1 -Qihl) 
by (49'), i e. 

ut = <Pi = nl + m, +1, -4 = Xi = m, ^ 

f4 = «A/ = nj + mi, et = \-Q,ht- ! 

From (93) we can express nh m-, by the elements of the J?12-triple as 

i = <Pi~^i, = Z,-> mi= Zi . . (97) 

and from (96) we can express 7, «/, m,, gt by the characteristics /7* of R* as 

' = HÎ-HÎ, »/ = HÎ-XÎ, »»»/ = -4, Qi = it ( 1 - 4 ) . (97') 

These quantities are the number of (N , Af)-section pairs, the number of C2-cycles 
serviced without and with preemption and the last residuum, respectively, in a 
period of R*. 

We phrase our main results in 

Theorem 8. The priority schedule R*=Ri,i(Q*) of a reduced configuration Q* 
satisfying ' 

0 < fix < t* < r* (98) 

is periodic exactly when such a residuum g(i), / > 0, does exist which fulfils (83). 
This condition is equivalent to the fact that R* has an M-section MIt / > 0 , the last 
residuum Q, of which fulfils the inequality 

max (0, 9* - &t) <• Qi — it- (99) 

The characteristics are determined then by the Rn-triple HI and the residuum gt as 

n * = (< P l ; i iy I ix , ; i - e i h ï ) . ( i o o ) 

Proof The only assertion to be proved is that (83) is equivalent to (99) with 
regard to g^ This follows, however, from the fact that if g(i) is the last residuum 
of an M-section then e(/') = 0O'—1) + T a ~ T ï and, since r f— t f c<g( i—1) by 
(83") because of the preemption of the last C2-cycle, g(i)>9t—$t and 
<-g(i)^r]t must stand instead of (83) in the case — U s i n g the definition 
(86) of < we obtain the inequality (99) for g(i) and consequently for Qi. • 

We now define the formal algorithm to determine the characteristics 17* of R* 
if R* is periodic. As we do not have finite method to decide whether R* is periodic, 
wejiave to choose an integer L as the tolerable number of (N, M)-section pairs for 
which the critérium (99) is allowed to be tested. If R* is not periodic or the number 
7. of the (N, M)-section pairs in a period is greater than L the algorithm finishes 
without giving the characteristics 77*. Nevertheless, the algoritm gives the values 
of the Jî12-triplé HL and residuum Ql also in this case. The output for 71* is as its 
input (0; 0; 0; .0) in this case. 
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Algori thm Input data: Q* = (t]*', it; L; 
Output data: II* = (pi; 4 ) , HL = (<pL, \j/L, X L ) , 8L\ 
StepO\tt:=nt + K\ 4'-=lt + $t; 

If does not hold then E R R O R and. go to End; 
q := tit; n:= m:= i:= 0; 

Step l:n':= [ » 1 ; n : = n + n'; <?:= e + n K - T i ) ; C-= 
I T2 — Tj J T2 v̂ i 

m ' : = [C] + sgn{C}; m:= m + m'; <?:= ̂  + m ' ( r | - - t^ ; i:= i +1; 
Step 2: If gstf then p\:= n + m + /, p2:=n + m, x2:=m, e2:= l—ellt a n d go t o End; 

If i=L then (pL:=n + m + i, t¡ / L :=n + m, xL'.= m, 6L'=6 a n d go to End; 
G o t o Step 1; 

End. 

We say that the Algorithm R{2 finishes normally if it gives II* and abnormally 
if it does not give II* but gives HL and gL . The algorithm does not put out the data 
of all ( N , M)-section pairs but only those of the last. After minimal modification 
it would furnish these data as well. Independently of the algorithm it is worth to 
analyse the data the algorithm is dealing with because we can obtain further in-
ferences from this analysis. 

First we show bounds on the lengths n[, m\ of the N- and M-sections. Let us 
use the quantities 

• 31-it . - %-it it+it , _ it , , n n n B = * * - L n = — — 5 — h i , . rn = - 5 — q * I, m = + 1 . (101) 
T2 — T j T2 T j T 2 — T 2 if i 

Let / be the number of the (N, A/)-section pairs in a period of R* if R* is periodic 
and 7=o° otherwise. The formulae (88)—(91) define ni,mi,Qi for / ' = 1 , 2 , . . . 
(I, if / is finite). 

L e m m a 9. For the lengths n't, m'u / = 1, 2, . . . ( / ) the following bounds are valid: 

"i = [«]> n < «,' < n, 1 < /' S I, (102) 

m < m\ < m, 1 / < / , m < W j < m , (103) 

where the symbol < is defined by (86). 

9* — n* 

Proof. From (88) with g0 = t]Z we get n{>-f—±—l=n-l and n[^ 

| | - = n and so «i = [n]. Using the inequalities and Qi-i^-t t — T2 — T1 Q*_ Q. 

obtainable from (89) and (90), we get from (88) for / > 1 that n\ > % ^ - 1 > n 

and % 
T2 Tj 

If C would be integer by (91) for / < / then we would get m\ = ^ and (>¡=0 
which contradicts the definition of I. For i—I, Qi=0 is only possible by (99) if 

This means that + 1 if and if i=I and S j f s S i . 
By this fact and. ( T ^ - T ^ S ^ obtainable from (88) we get m [ > 
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> C s 4 Z S = m and m ? < C + 1 < ^ +l=in for / < / and i = 7, 9£i=9i , 
t 2 — T2— 

and we get and m | < ( + l < m for / = / and 9£<9J\ • 

This lemma shows that the series n\, / = 1 , 2 , . . . , and m \ , i = 1 , 2 , . . . , of 
lengths have only small fluctuations, if any. The bandwidth of the variations are 

* 

n—n = 2 and 1 < in — m = 2 j - ^ * " < 2 i f t f > 0. (104) 

These show that both the n\ and m\ values can always vary at most on two adjacent 
integers. 

From the conditions (78), definitions (101) and estimations (102) and (103) 
we easily get 

n i = £ l , 0, l < i ^ 7 , (105) 

ffl,' g 1, 1 S i =2 7. (106) 

Simple regularity conditions can be given for the series of lengths by the para-
meters of Q* which further limit their fluctuations. To simplify writing we use the 
quantities 

*J = 7 = 1 , 2 . (107) 

L e m m a 10. For the lengths n\ and mi of the (N, M)-section pairs the following 
assertions hold. 

(a ) If 

n' < * * < n ' + l 
• Xj 

for some integer n' 0, then 

n[ = n'+1 and n' s n't ^ n'+1 

for 1 < i ^ I. Especially 

n[ = 1 owrf O S n,' 1, 1 < i S / i / 0 < S f - f f J < T * - t i 

= 2 and l^n'tm2, l < i ^ 7 if zj—rf < < 2«-!?) 

(b) If 

X2~ X1 

for some integer n' 0, then 

n i = n ' + l and n\ = n' 

for 1 < i S / . Especially 

n[ = 1, = 0, 1 < i ^ I, if 9i = r,t 

n[ = 2, n,' = 1, i / = r i - t i . -

(108a) 

(109a) 

(109'a) 

(108b) 

(109b) 

(109'b) 
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(c) If 
m' 1 m 

for some integer ra'^1, then 

* ~~ Xs-Xj. + tit < 1 0 8 C

^ 

m'i = m ' , . (109c) 

for all 1 ^ i ^ I. Especially 

m't = 1, l ^ i ^ I , if 
(I09'c) 

mi = 2, l ^ i ^ I , if 

(d) If 
* 

^ = m' (108d) 
Xz-Xi + lt 

for some integer m' > 1then 

m\ = m for 1 ^ j I and m ' - l S m i S m ' . (109d) 
Especially 

m'i = 2 for 1 ^ / < 7 a«i/ 1 =s mi 2, i / t£—r? = af—Si: (109'd) 

COMMENT. (108d) cannot be true for m'=\ because = T I would follow 
which contradicts (75). (108d) is equivalent to ( m ' - l ) ( T £ - S i ) + S £ ~ 9 t = t i * from 
which S i - S £ = ( m ' - l ) ( T £ - S i ) - f / i S T £ - T i > 0 if m ' > 1 and, therefore, 
follows. In case of the condition (108d) is impossible. 

Proof. The method of proof is to relate the bounds (101) to the parameter n 
or m' of the condition (108). (101) is equivalent to n=x1l(x2—x1) — l, 
fi=xj(x2 - x j +1 , m=t]*l(x2—Xi+z/i) —1, m =i/i/(xg - x x+f/J) + 1 . From (108a) we 
get ri — and n ' - f l < « < « ' + 2 and, therefore, the interval (n, n) contains 
the integers n' and n' +1 and (102) is equivalent to (109a). We get (109'a) from 
(109a) for w' = 0 and n'=1. From (108b) we get n=n'~ 1- and n=n' +1 and 
the relations (102) make possible only (109b). (109'b) follows from (109b) for 
n'—0 and n'=1. From (108c) we obtain m' — lon and m ^ m ' + l and, there-
fore, the interval [m, m) contains the only integer m and (109c) follows from (103). 
(109'c) follows from (109c) for m' = 1 and m ' = 2 . From (108d) we get m = m ' ~ 1 
as an integer. The interval [m, m) contains now the integers m'— 1 and m' and 
(109d) follows from (103) and (86) because (108d) is possible only if (see 
Comment) and < = ^ by (86) in this case. (109'd) follows from (109d) for 
m' = 2. • 

The conditions (108) are only sufficient but not necessary for (109) to be valid. 
One of the conditions (108a) and (108b) is always true and (109a) is valid because 
(109b) implies (109a). Lemma 10 is valid also for 1= °° (R* is not periodic) if the 
assertions with i = 7 are neglected. 

From Lemma 10 we can deduce some relationships among the i? la-triples 
which can reduce the problem of existence and determination of the least 
triple satisfying (99) to the problem of solution of a coincidence problem [4]. This 
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problem is generally solved and leads to the regular continued fraction expansion 
of a number depending on the parameters of Q* [4]. The coincidence problems 
encountering have the form of the determination of the least solution A>* = (B*, A*) 
of an inequality pair 

0 ^ B { - A < A , ftj^coo ( 1 1 0 ) 

for the unknown integers CO = (B,A) where reals a s O , sign < and integers 
co0 = (B0, A0) are given, co* exists and is unique if a > 0 or < = S , a = 0 and £ 
is rational, co* does not exist otherwise. B* and A* are relatively prime [4]. 

The following lemma is necessary to prove the periodicity of R* if 
in addition to (75). 

Lemma 11. For the schedule R* = R\,2(Q*) of any configuration ful-
filling (75) the following assertions hold. 

(I) The following three facts are equivalent: 

(a) <¡9, = ^, + */, 1 S i S i , 

(b) m[=\, . \ s i s l , (111) 

(c) R* is periodic and fit = 'A + 4 

(II) If any of (Ilia—c) holds, the characteristics Jl* of R* are determined by 
the least solution co*=(B*,A*) and its error A*~B*Q* — A* of a coincidence 
problem 

O s B ^ - A c a * , . 0 ) ^ ( 1 , 0 ) (112) 

where £*, a*>0 are determined by Q* and < is defined by (86); fit, nt> 4 arepair-
wise relatively prime integers; 

(III) £* and a* in (112) and the characteristics II* have the alternative values 
by the three rows of the following table: 

* * * * ' * 
- C a Hi H2 4 4 

9t * h — r 
T*-TX* T*-'2 - 4 

* * 4 - i t * 1l — r 

4 - 4 4- -4 

st it — r 
4 - i t 4- -it 

0 0 A* + B* A* B* 
2 ~~ T1 T2 — T1 

(b) 4 Z 4 - - 4 ^ A* A* —B* B* 

A*(4~4) 
it 

r D ( 1 1 3 ) 

it 

^ ( 4 - i t ) 
it 

(C) — J — ^ — I
1

 ; B* A* B*-A* 
4 - i t 4~" 

where 
r — max (0, 3% — 

Proof. We begin with the assertions (I). From m\ = 1 we get (/>¡=«¡+2/, 
4>i=«, + ', Xi=i from (93), and (111a) is true. From (111a) and (97) we get 
i=(pi — ij/i=Xi=mi, and (106) and definition (92) prove m'v=1. If R* is periodic, 
exactly one /fj-task starts during every fi2-task by (111c) and (62). This means 
that the number <p;—Xt of Ax-tasks causing no preemption is equal to 0:,-, the number 



Priority schedules of a steady job-flow pair 241 

of C2-cycles. This proves ( i l i a ) . From the assertion (I) only the periodicity of 
R* if (111a) is true, remainded to be proved. This will be done together with (II) 
and (III). 

Consider the Gantt-chart of R* until the first recurrence point T* of the ft-
situation (not supposed finite). Carve out the -tasks from it and denote the re-
sulting chart by R". Since exactly one y^-task starts during every 52-task and the 
ft-situation occurs if the ^ - t a s k does not finish during the i?2-task, it follows 
that exactly one /^-task runs during every fi2-task except the last before the ft-
situation, where the /fj-task can finish after the 52-task as well. Therefore, chart 
R" will agree with the schedule R' = Ri , i (Q) of the configuration Q' = 
=(0; 9 i ; t]t\ X—tit) except eventually the last fi2-task which has the length 
9 2 = 9 J — ril+£% instead of 92 = 92— rjZ. As t][=0, the preempting ^ - t a s k s in 
R' do not cause delays and, therefore, the cycle-finishing points are 

/ ' (C 2 „) = /(r2*-//i), ¿ = 1 , 2 , . . . . 

The periodicity of R* is equivalent to the finiteness of T* and this to the fact that 
the last i?2-task in the first period (if such one exists) of R' would run during a Bx-
task and finish not more than rfi earlier than the By -task (see Fig. 8). This corre-

Qi Pi 
( 2 m M 3 2 1 2 m m 
L l 'M 1 vm 1 WA 
m 2 V////A -mm 2 

f(C»t) 

(2 w m 2 
\ 1 i 1 
v m 2 • m 5- 1 

i i 
( 2 W////A 2 W/////A№ 
1 1 1 1 1 1 
torn 2 w/m m ? w 

nt-ei 
Fig. 8 

The transformation R* -+R" and the schedule R' 

sponds to the first situation in R' in which the inequalities 92 — >/i<i'(T2 — t ] f ) — 
-(j—1)9^9? and — for some positive integers i, j, result: 
The values of i and j correspond to the characteristics II* of R* as ¿=/4 , j=nl-
The two inequalities are equivalent to the inequality 

0 =g fit 9* - £ (r* - nt) < ni ~ max (0, 92* - 3*) 

in which the sign < is defined by (86). This shows that the periodicity of R* is 
equivalent to the existence of positive integers co=(B, A) for which the inequalities 
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(112) with and a* of (113c) hold. The least such pair determines //* and pt by 
(113c). x%=B* — A* follows from (111a) and the expression of et from the rela-
tionships et = ( n t - Q Î ) h t and Q I = n t + n t 4 + 4 l î - t â 4 = l ï + A * 4 + ( B * - A * ) r i X -
— B * 4 = t i l — A*(r%—rii). The existence of a>* is garanteed by oc*>0 and this 
by (75). 

We have to prove that (113a)—(113c) are equivalent. The inequality 
0 s B * 9 t - A * ( r t - » i t ) < r i t - r is equivalent to the inequality O s B ' f â - r j X ) -
-A'(4-4)<nt~r if B*=A' and A*=A'-B'. The least solutions of the two 
inequalities with the condition (B, 4 ) ^ ( 1 , 0 ) correspond to each other by this 
transformation. This proves (113b). By the transformation B*=A'+B', A* = A' 
we can similarly prove the equivalence of (113c) and (113a). If B* and A* are 
relatively prime, such are the transformed values as well. This completes our 
proof. • 

Lemma 10 and 11 enable us to solve the evaluation problem of R* for con-
figurations Q* satisfying (75) and any of the relations (77). 

Theorem 9. If the configuration Q*€J2 is reduced, 

rf<Tt and (114) 

then R* = R, 2 ( 0 ' s periodic and its characteristics II* are obtainable by (113) 
and nX, pt, 4 are pairwise relatively prime integers. 

Proof. In R* we obtain w - = 1 from (109'c) and R* is periodic with p* = 
by (111c). The assertions (II)—(III) of the Lemma 11 corresponds to 

the statement of the theorem. • 

With this theorem the only case not solved is the configuration Q££i which is 
reducible and its reduction Q* satisfies the relations 

t Î < T * , S î > 9 2 * . (115) 

If we know that R*=R12(Q*) is periodic, the Algorithm R*2 can be used to de-
termine the characteristics II*. This method does not answer the question whether 
H*, / 4 and j<2 are relatively prime integers wich fact was shown in all other cases. 
In fact, pi and p* a r e relatively prime in every known periodicity case. Some further 
specific cases of (115) can be solved by using Lemma 10. For example, it can be 
proved that mI=m'—1 if (108d) hold and, under the conditions (115), R* is periodic 
if and only if and T2— T* are rationally dependent. If 

g a r - r ê A 
ç ~ B' 

A,B>- 0 are relatively prime integers then the characteristics of R* are 

II* =((m'+l)B+A;m'B+A;m'B-l;l) 

with relatively prime pX and p% [4]. This assertion will not be proved here. This 
result is interesting because it shows that R* can be non-periodic for non-defective 
Q* as well. By another assertion [4], R* is always periodic and its characteristics 
TI* is determined by a given coincidence problem type (110) if (108c) holds. p\ 
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and /4 are relatively prime again. Similar assertions hold for non-defective con-
figurations QÇ.2. (not necessarily reduced) with [4]. The proofs of these 
assertions are lengthy and, therefore, we do not show them here. 

For any independently of its periodicity, the efficiency y 1 2 of the priority 
schedule Rli2(Q) can be approximated by the -utility yi>2(>/i, t) of its section 
r j ^ s ^ t defined by 

= (116) 
- * VI 

as t grows (see (1)). It can be proved [4] that 

yi . .0h, 0 ~ y ( 1 ) + y ( 2 ) - ^ y y ( 1 ) y ( 2 ) ~ Vi,2 (117) 

if t is big enough, where Hi(t) is the number of the completed and x2(t) the number 
of preempting ^ - t a s k s until t in the schedule Rlt2(Q). If Ri,2(Q) is periodic with 
characteristics TI=(ji1\ s2) then 

y1>8 = y a ) + y w _ f i t i ± ( 1 1 8 ) 
Hi 

(Theorem 5.10 in [4]). The proof of these facts we omit as well. 

6. Some comments on the reduction methods 

Theorem 3 in section 3 establishes relationships between the characteristics 
of the priority schedule of Q and of any transform Qn=A"Q of it. The reduction 
operator A defined in section 2 is actually the Ax from the two operators Ax and 
A2 defined for Q symmetrically in the job-flows Qw and Q(2>. The operator Ax 
is only usable in the investigation of the priority schedules Rlt2(Q) and we know 
nothing about the connections between the characteristics of i?2 , i(ô) a n d -R21(gn), 
for instance. In the investigation of R2t i(Q) we can use the operator A2. The Q=A2Q 
can be defined as the Ax Q by (2) but the role of Qa) and Q(2> (the indices 1 and 2) 
must be_changed. The operation A2Q is, therefore, equivalent to the operation 
A1Q=AQ with the conjugate configuration g of g defined in section 1. 

In a previous article [5] we defined other operators Qix and for Q as reduc-
tions utilized in the investigations of non-preemptive schedulings. In the operation 
S/jQ=Si1Q only the parameters and 32 are reduced versus operation A Q in 
which also t]2 is reduced. The ^-reduction is much simpler than the ¿-reduction 
and is defined by (2b) and (2d) replaced (2c) by the instruction ij2—tj2. Q* is reduced 
by S> if [51 

< or T2 = 0 and < Tï or z* = 0 

which are exactly the conditions (5a) and (5c) as part of conditions Q* to be reduced 
by A. This means Q* reduced by A is always reduced by ^ as well. The opposite 
is not true, of course. The conditions (5a) and (5c) show that a configuration Q* 
is reduced simultaneously by both and Oi2. This is not true in respect to Ax and 
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A 2. Fig. 9 shows the domains of reduced configurations g by the operators £ 
and Ai3 i= 1, 2 (refer also to Fig. 2). We distinguish the following domains: 

(a) TJTJ = 0; g is reduced by all operators 

03) th t ] 2 > 0, = 92 = 0; g is reduced by all operators 

(y) t] > 0, 0 i )/, S 32 < i n 0 s //2 S 9X < r2; g is reduced by all 
operators 

(a) rj2 > 0, 0 ^ //x ^ 92 < rx < g is not reduced by but it is 
reduced by the other operators 

(b) > 0, O S i f i S ^ r ^ i j ; g is not reduced by J 2 but it is 
reduced by the other operators 

(c) t]il2 9 > 0, 0 ^ 9,- < rj3..t, i = 1 , 2 ; g is n o t r educed b y Ar, 
i = 1,2, but it is reduced by , i = 1, 2. 

. u 

/^-reduced 
; A ¡¡-reduced 

k92 

9* 

(k 

*l2 («) 
( a ) 

9L 

tt9o 

>72 
(b) 

»72 

(C) 

. Fig. 9 
Domains of reduced configurations 

. Let us introduce two simple operators and d2 defined by g = <5,g as of para-
meters 

m-i = 
13 

i_/<plf)Si if (119) 
f/3_( otherwise 

where /< (x) is the greatest integer less than x. Let It is clear that /<(f72/$i) = 
=k2 in (2c) if 9x>0. The operator <5; is effective for g if / /3_ i>9 i>-0 and in-
effective for g if 91>73_i=0 or t j ^ iS&i . Since the order of steps (2c) and (2d) 
in the operation AQ is indifferent, the operator A can be represented as the oper-
ators S and S in succession: 

A = 5S. 

As 9 x ^ t 2 implies the operator 5 will be ineffective until g is not reduced 
by S and S is effective on g . This means that the manifestation of A for g is S 
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until 2>Q will not be ^-reduced, i.e. AQ=3Q. If 3>Q is ^-reduced, but not A-
reduced, then AQ=D!2IQ^3)Q. This means that the manifestation of A"Q, « > 0 , 
is the alternate series of operator-powers and the operator <5. 

The manifestation is determined by the series (L) of quotients, or rather, by 
the subseries (K) of (L), defined in section 2. The operator <5 in A =83) is ineffective 
whenever k2t„=0. 

Define. VQ — — 1 and for />0 , v -=r if k2r>0 is the ith positive member 
in the series (k), if such one exists, and v- is undefined if less than i positive members 
in (k) exist. It can easily be seen that 

— 1 S VQ < vi < . . . and v'i = / — 1 

and for any integer. rfeO there exists a greatest v- for which v,' < r. Let this be 
v'h(r), '-e. 

h(r) = max i, r = 0 , 1 , . . . . 

h(r) is the number of positive members in the series k2>0, k2tl, ..., k2 r_1 and v'h{r) 
is the index of the last positive member if such one exists, and v'hir) = —1, otherwise. 
This means that 

v i ( o ) = - l . r s 0. 

By means of the series (v') and function h(r) the manifestation of Ar on Q can be 
written as 

ARQ = ®r~1-*h(r)[ [[ 5S)v'J-V'J-AQ, RSZ 0, (120) 

V=AW > 

and if the degree of compositeness v of Q is finite, 

ARQ = ® v - 1 - , ' / i ( v ) | ¡1 53V'J~V'J-I\ Q, R - v. (120') 
\j = h(v) ) 

1 1 
Here / 7 x j = xh(r)xh(r)-L---x± and J JXj = Q is the identity operator. The factor-j=Wr) j=o 
izations (120) and (120') depend, of course, on Q and, directly, on the series (L). 
If the series (v') is finite and, with ./=|(v')|, the last positive member of 
it is Vj_ t. Let us supplement (v') with the last member v'j = v — I. Define the series 
of integers 

Vj = Vj-v'j.l5 j = l,2, . . . , / . 

The ^-reduction of Q is then 

{2<*> = 3>^Q = = Q / i + 1 

and the ¿-reduction of Q is 

Q* = A*Q = 3>A 77 D9'J)Q = QY. (121) 
\j=J-i J 

The factorization (121) shows that the ¿-reduction of any configuration 
is equivalent to some alternate series of ^-reductions and ¿-operations. This fact 
clearly shows the connection between the two kinds of reduction. 

9 Acta Cybernetica 
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The reduction operators Ai and A2 differ in both of their factors, and <5,-: 

A1 = 8l91, A2 = 52®2 (122) 

but the manifestations (121) of the At- and A ¡.-reductions, if finite, are of similar 
factorizations in structure. In the analogous to (121) of the A2-reduction of Q 
the same operator <2> can be applied because a configuration <2(+) is reduced by 
both of and 3>2 at once and the degrees of compositeness by 3>x and S)2 have 
a known connection [4]. Nevertheless, the series (L) by Ax and A2 are different and, 
consequently, the series (v) playing the central role in (121) are also different. 
Though the data of Ax- and A2-reduction are not independent of each other, the 
interrelationships are likewise complicated and hardly provide a useful basis in 
practice to avoid evaluation of one of the two schedules i ? i , 2 ( 0 and i ? 2 > 1 ( 0 . To 
inspect the relationships between both schedules the two reductions Ax and A2 
seem to be a usable basis. The results given here can provide a grounding to this 
inspection by revealing the nature of the priority schedules in themselves. The method 
of /4-reduction is a useful tool to this. 

We mention the connection of the A -reduction with the regular continued 
fraction expansion. The Euclidean algorithm of the expansion of the number 
£ = xih-i c a n be defined as the iteration [2]: 

1,0 — T l> T 2,0 = r2 and for n = l , 2 , .. . 

l , n - l — b , „ - 2 T , 2 , n - i + T i , „ where 

b2n-2 — 0 is an integer and 0 s T1>n r. 

¿>2/1-2 ar>d r1>n are not defined otherwise 

*2,n —1 ~ ^ 2 / i - l T i , n + T 2 , „ where 

i>2„-1 S 0 is an integer and 0 S T2J„ < T: 

bi„-1 a " d T2_„ are not defined otherwise. 

2,11-1 if ,„-1 > 0, 

if t , „ > 0 , 1,n 11 1,n 

Both components of the pair (T1>n_i, T2,„-I) are reduced by the step. This iteration 
ends with a t ; > „=0, z'=1 or 2, n S O if ^ is a rational number and is infinite if ^ 
is irrational. 

The definition (2) of the zl-reduction differs from this iteration by and T2 
being decomposed into two parts: r - i / j + S , - , i ' = l , 2, and this parts are reduced 
separately except rfx which is not reduced at all. The iteration can end not only 
with a zero component but with conditions (5) of the reducedness. We have seen 
that the zl-reduction becomes continued fraction expansion if one of the parts 
i]2 and 32 is zero. If, however, 92=0, the reduction becomes the expansion of 
9Jri2 and not of t J 3 2 . 

The entities defined in section 2 in connection with ¿4-reduction remind us 
of those in connection with the regular continued fraction expansion [3]. The special 
case of t]=0 corresponds to the expansion of i = T 1 / t 2 . 
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7. Summary 

We review below the points Q of the configuration space 2 by our theorems 
proved from the point of view of whether the Question of periodicity and evaluation 
of the priority schedules i?1>2 and i?2,i of Q is answered. See Fig. 10 as an illustra-
tion. Tx refers to the Theorem x in the Fig. 10. 

Fig. 10 
The domains of 2- where theorems answer the question of periodicity 

Tx 
of Ri,t(Q) (Tx) and Ri.iiQ) (Ty) as — 

Ty 

9» 
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By Lemma 3 any configuration Q is reducible to a Ax-reduced configuration 
Q* or a defective configuration Q' with r\'x 9'2 = 0. This means that the questionable 
part of 2 is reduced to the three-dimensional subspaces t]x=0, f]2=0, 9X=0, 9 2 = 0 
and to the four-dimensional domain of 2 the two-dimensional cuts by fixing 
Oil. Ч2) of which are the domains (a), (b), and (y) in Fig. 9d. Lemma 3 (L3) is used 
in Fig. 10 only when no other theorem answering the Question directly exists. In 
the three-dimensional subspaces t]x92 =0 the Question of R12 is solved by Theorem 2 
if 9 1 T 2 =0 and by Theorem 4 if 91T2>0. These solve the Question of R2 x in 
the subspaces tj29x=0. The Question of RX2 in the space 9X=0 and of R2X in 
9 2 = 0 is solved by Theorem 2 independently of //,• and т 3_ ; . 

If rj2=0 but rix9x9.£>0 the Question of R12 is answered by Theorem 7 and 
this answers the Question of R2X if qx = 0 but r]29x92^-0, too. 

The Question is answered so for every defective configuration and, by Theorem 
3, for every configuration reducible to a defective one by any of the operators Ax 
and A2. By Lemma 3 all other configurations are reducible by both of Ax and A2 
to configurations Q* and Q**, respectively, which are in the. domains (b) and (7) 
and domains (a) and (y), respectively, in Fig. 9d. Theorem 6 answers the Question 
of Rx 2 in the domain 92<r]x and of R21 in the domain 9x^t]2 without reduction. 

As far as the configurations Q reduced by both of Ax and A2 the Question of 
RX 2 is answered by Theorem 5 in the domain тх = т2 and the Question of T?2,i in 
the domain txSz2. Theorem 9 answers the Question of Rx 2 in the domain 9xs92 
and the Question of i?2,i ' n the domain 9 X ^ 9 2 . 

In Fig. lOd the only questionable domain remained for R2 x is 

ri2sr2-rix<9x'=:92. 

This contains "absolutely" (by both of Ax and A2) reduced configurations for which 
t ] x s 9 2 < T 1 and t ] 2 s 9 x ^ x 2 . In general, the unanswered domain of 2, remaining 
Only if Г]Х^Г]2, is 

0 < 1i = Ь - П з - i < $3-/ < for Ri,3-i if J/i -= i/3-i- (123) 

Further parts from the domain (123) are answered by results based upon the Lemma 
10 and mentioned after (115) but not proved here. These are found in [4]. A direct 
answer is given by Theorem 6 for Rx 2 in the domain 92<r]x and for R2 x in the 
domain 9x<t]2 which is the answer for both schedules in the domain 0 

The flow of evaluation of the priority schedules Rx 2 and R2 x for a configura-
tion Q is illustrated on the flow-chart in Fig. 11. Tx refers to the Theorem x and in 
\ xx; yx\ x2; y2 \ xt, yt refer to the schedule 7?>>3_;. x{=p means periodicity, xt= ? 
refers to unanswered Question and = other refers to the rationality of x t as the 
condition of periodicity. number gives the efficiency value of i? I>3_ ;, 
refers to the undefinedness of the efficiency or unanswered Question and ^ ¡ = T x 
refers to the Theorem x as means of determination of the efficiency. (xi,yi)=Ai 
refers to the application of the operator A{ iteratively until a configuration results 
which is in a domain where the schedule is directly évaluable by one of the 
Theorems 2, 4, 5, 6, 7, 9. 

KEYWORDS: steady job-flow pairs, priority schedules, reduction method 
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Fig. 11 
The flow-chart of the evaluation of the priority schedules /?,j2 and R2A 

COMPUTER SERVICE FOR 
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