Subdirectly irreducible commutative automata

By Z. Esik and B. IMREH

M. YoELI gave a characterization of finite subdirectly irreducible automata
with a single input sign (cf. [9]). In [8] G. H. WENZEL generalized this result for
the infinite case. In this paper we present another result along this line. Namely,
we characterize all subdirectly irreducible commutative automata and hence all
subdire¢ily irreducible commutative semigroups as well.

Notions and notations

An automaton is a system A=(A4, X, 5) where 4 is a nonempty set, the set
of states, X is an arbitrary set, the set of input signs and, finally, : AXX—4 is
the transition function. As in general, we shall also use this transition function
in the extended sense, i.e. as a mapping §: AXX*—~A. Here X* denotes the free
monoid generated by X. The identity of X* is the empty word 2 and X *=X"\ {4}.
We use the notation J, to denote the mapping induced by p: §,(a)=0d(a,p)
(a€A, pcX*). If a sign x€X induces a permutation of A4 then it is called a permuta-
tion sign. In this way we can divide X into two disjoint sets Xp and Xyp. X p is
the set of all permutation signs and Xyp=X\ Xp.

The mappings J, (p€X™*) form a monoid with respect to the composition of

“mappings. The identity of this monoid is the identity mapping on A4, §,=id,. This

monoid S(A) is called the characteristic semigroup of A. Sometimes another rep-
resentation of the characteristic semigroup is useful in the literature. However,
there is no essential difference among these definitions.

Each automaton A=(4, X, §) can be considered as a unoid, i.e. as a uni-
versal algebra equipped with unary operations only. Thus the notions such as
subautomaton, homomorphism, congruence relation, quotient automaton, free
automaton etc. can be introduced in a natural way. In connection with these notions
we shall use the following notations: if B= A then [B] denotes the subautomaton
generated by B, C(A) denotes the lattice of all congruence relations of A, if € C(A)
and aEA then 6(a) denotes the block containing @ in the partition induced by
6, 4,4 is the equality relation of 4, if B A then 8;;=0\BXB, finally, if 0cC(A)
then the quotlent automaton 1nduced by 8 is denoted by A/6=(A4/6, X, §). Ob-
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serve that we have used the same notation é for the transition function of A/f as
well. An automaton A is called subdirectly irreducible if either A has one state
only, or 4, N(6: BEC(A) 04 ,).

Each subautomaton B=(B, X,dJ) of an automaton A=(4, X,J) can be
viewed as a congruence relatlon o€ C(A): aogh if and only if a, b€ B or a=b.
And what is more, C(B) can be embedded into C(A) in a natural way, i.e. by the
correspondence 0" where a’b if and only if afb or a=b for any a, b€ A. From
this it follows that an automaton is subdirectly irreducible if and only if each of
its subautomaton is subdirectly irreducible (cf. also [8]).

In the sequel we shall need a more general concept of subautomata, too. The
automaton B=(B, Y, &) is an X-subautomaton of A=(4, X,d) if B4, YcX
and 9 5.y=0d". For the sake of simplicity we shall not make any distinction be-
tween 5 and &. A special X-subautomaton of A is the X-subautomaton
B=(A, Xp, ). It is called the permutational subautomaton of A.

Various concepts of connectedness can be found in the literature. In what
follows we shall use two of these concepts. An automaton A=(4, X, 8) is called
strongly connected if each state a€A is a generator of A and it is called connected
if for arbitrary a, b€ A [e]N[b]=0.

Our results pertain to commutative automata. An automaton A=(4, X, 5)
is said to be commutative if d,,=6,, is satisfied for any x, yeX, ie. xy= yx. is
an identity in A. It is well- known that A is commutative if and only if §,is an
endomorphism of A for every p€X™*, and this is the reason why if A is generated
by a state a then A is a free automaton with free generator a.

Thus a strongly connected commutative automaton is freely generated by any
of its states. This implies that each input sign of a strongly connected commutative
automaton A is a permutation sign, ie. S(A) is a commutative permutatlon
group on A.

We have proved in [2] (cf. Theorem 1) that if a finite commutative automaton
A has a generator state then C(A)=C(S(A)) and |4]|=|S(A)|, where C(S(A))
denotes the lattice of all congruences of S(A). However, we have not used the
finiteness of A in proving this statement thus this remains valid for arbitrary com-
mutative automaton as well. Consequently, if A is a singly generated commutative
automaton then A is subdirectly irreducible if and only if S(A) is subdirectly
irreducible. This was also discovered by 1. PEAK in [5].

Strongly connected commutative automata

The previously mentioned fact helped us to prove in [2] that a finite strongly
connected commutative automaton is subdirectly irreducible if and only if it isa
cyclic automaton of prime-power order. In this section we extend this result to the
infinite case.

According to [3, 6] Abelian groups Z,x and Z,~ — where p is a prime — are
called cocyclic. An automaton A=(4, X, d) is cocyclic, if its input-reduced sub-
automaton is (4, X)-isomorphic' to a strongly connected X-subautomaton of

* Ao automaton A=(4, X, d) is said to be (4, X)-isomorphic to an automaton B=(5, Y, ")
if there exist bijections u: A—B and v: X~Y such that u(6(a, x))=6"(u(a), v(x)) for any a€ 4
and x€ X.
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an automaton obtained by viewing a cocyclic group as an automaton. (By the
input-reduced subautomaton of an automaton A=(4, X,J) we mean an X-sub-
automaton B=(4, ¥, ) where Y is a maximal subset of X with the property
that y,>y,(€Y) implies J,#6,. B is unique up to isomorphism.) Observe
that a strongly connected commutative automaton A is cocyclic if and only if* S(A)
is a cocyclic group. It is known that an Abelian group is subdirectly irreducible
if and only if it is a cocyclic group (cf. [3, 6]). Thus, by our previous remarks we
obtain the following

Statement. A strongly connected commutative automaton is subdlrectly ir-
reducxble if and only if 1t is a cocychc automaton.

The general case

In’ this section we shall characterize all subdlrectly irreducible commutative
automata. First we need some definitions.

Let A=(A4, X,d) be an arbitrary commutative automaton and define the
binary relation = on A as follows: a=b if and only if there is a word peX*
satisfying * &(a, p)=b. It is not difficult to see that this relation is a preorder on
A and it has the substitution property. Thus the relation = determines a con-
gruence relation 0¢C(A): afb if and only if a=b and b=a. Furthermore, the
system (A4/8, =) — where 0(@)=0(b) if and only if a=b — becomes a partially
ordered set. It is obvious that if B=(B, X, 9) is a subautomaton of A then
B= U(G(b) bEB) and .B/f is an upper ideal in (A/H =). Conversely, if B is an
upper idéal in A/8 then (U (6(b): 6(b)€B), X, 8) is a subautomaton of A.

The automaton A is called quasz-nzlpotent if the following three conditions
are satisfied by A:

i) (4/6, =) has a greatest element B(ao) and O(a)={a,} where q, is called
the absorbent state,

ii) 4/0\0(ay) has a greatest element which will always be denoted by 0(ay),

iii) 0(a)<5(0(a), x) holds for any acAN\ {4} and x€X provided that
. 0,id 4 holds in the factor automaton A/0.

Observe that for a quasi-nilpotent automaton A=(4, X, J) the condition
0,=id e is equivalent to the condition that x is a permutation sign of A. Further-
more, if A is quasi-nilpotent and finite then (A4/0, Xyp, ) is nilpotent.

Let A=(A4, X,d) be again an arbitrary commutative automaton and- let
P(A/0) denote the power set of 4/0. Define the mapping f: P(4/6)—~P(A4/6) by
f(C)=CUmax C where max C denotes the set of all maximal elements in the
complemeint of C. It is easy to verify that f is a monoton mapping,ie. f(C)c
cf(C’) providled C<C’. Thus, by Tarski’s fixpoint theorem, (cf. [7]) f has
a least fixpoint M’. M’ is the smallest subset of 4/0 such that max M’=0. Let
M(A)=U(8(a): O(@)eM’).

On the other hand it is well-known that the least fixpoint of a monoton mapp-
ing on a complete lattice can be obtained as the least upper bound of a chain con-
structed from the least element of the lattice. Applying this construction ‘to f we
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get M'= U M, — or equivalently. M"=|J M, — where for an arbltrary ordinal

o the set M . is defined by transfinite 1ndlfct10n as follows:

1) Mg=max A/0,

i) M,= M;lUmax M, if a= a1+1

1ii) M’ U M, if a0 is a limit ordinal.

ay<a

1t is obvious — by transfinite induction on o — that M is an upper ideal in
(4/0, =) and M, does not contain w-chains. (By an w-chain in a partially ordered
set (R, =) we mean a subset Q= {qo,ql,. .}JSR such that g,<g;<.... wor-
chains are sxmllarly defined just require ¢,>¢q,>... instead of the above condi-
tion.) As M is always an upper ideal in (4/9, <) the system M, (A)=(U(0(a):
O(a@)eM)), X, 5) is a subautomaton of A. Observe that if A was a quasi-nilpotent
automaton then M (A)=1{a,} and M,(A)={a,}U8(a,). If there is no danger of
confusion we shall omit A in M,(A) and M(A).

A quasi-nilpotent automaton A=(4, X, d) will be called separable if for
arbitrary states a=bcA such that {a, b}E M, there is a word p€Xy, satisfying
both {d(a, p), 6(b, P} M0 and d(a, p)%5(b, p).

We are now ready to state our main result.

Theorem. A commutative automaton A=(4, X, ) is subdirectly irreducible
if and only if one of the following three conditions is satisfied by A:

(a) A is a cocyclic automaton,

(b) A is a separable quasi-nilpotent automaton and the X-subautomaton
(A\{ao} Xp, 0), ie. its permutational subautomaton without the absorbent state
a,, is the dlS_]Olnt sum of pairwise isomorphic cocyclic automata,

(c) A is the disjoint sum of a cocyclic automaton and an automaton of one
state.

Proof. In order to prove the necessity of our Theorem assume that A is sub-
directly irreducible. First we shall consider the case when A is connected and show
that (4/0, =) has a greatest element.

As A is connected there is at most one maximal element in 4/0. Therefore,
it is enough to show that each element of 4/0 has an upper bound which is max-
imal. Assume to the contrary that there is no maximal element in the upper ideal
B’ generated by an element 0(a)€ 4/0. Let B=U(0(b): 0(b)€ B’). (B, X, &) is exactly
the subautomaton generated by a, ie.. B=[a]. Let b€B be arbitrary. There is
a state »’€¢B such that 0(b)<0(), thus op;=4,. We shall show that
(Wop: beB)=4,.

Suppose that cd and copy d holds for any beB. Of course we have c, d€B.
There is a state b B such that {c, d}E[b]. Indeed, if 0(c)=0(d) then we may
choose b such that 0(c)<0(b) if 0(c)<6(d) or 0(c) and 6(d) are 1ncomparable
then let b=d. We supposed that copzd. But this is possible only if ¢=d, a con-
tradiction. Therefore, N(dy: bEB)=4,.

Let B(ao) denote the greatest element of 4/0. Since 8(q,) is maximal .in Al6
(6(ap), X, 8) is a subautomaton of A, furthermore, by the definition of 6, itis strongly
connected. On the other hand we know that (B(ao) X, 5) has to be a subdirectly
irreducible automaton, thus, by the previous statement, it is a cocyclic automaton.
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Suppose that [0(ay){=1. We show that in this case 6(qg)=4, i.e. A satisfies
condition (a) of our theorem.

Assume that a€4 and a§6(q,). Because of 0(a)<0(q,) there is a word
peX* such that d(aq, p)=a,. Let g€C(A) be the congruence relation induced
by the endomorphism J,. As Jpje(, 18 @ permutation of 8(a,) we have gloey =
=Ag@,) and ¢#d4,. Thus @oguy=4,. This, by [0(a)|=1 vyields that A
is subdirectly reducible, which is a contradiction.

Now consider the case 0(aq)={a,} and A {a,}. By the same order of ideas
as we have shown that A/0 has a greatest element one can easily prove that every
element of A4/0\0(a,) has a maximal upper bound in A/0\0(a,). But A/6\6(ay)
can not have two distinct maximal elements, consequently, there exists a greatest
element 8(a,) in A/0\0(a,). Indeed, if both O(a) and 0(b) are maximal in
A/0N\8(ay) then o Nop =4, and op,, o4, are satisfied, contrary to the
subdirect irreducibility of A. : ,

Let 6(a;) be the greatest element of 4/0\0(ay). Let us divide X into two dis-
joint sets X and Xp: X;={x: x€X, d(ay, )€0(a)}, Xo={x: x€X, 6(ay, x)=a,)-.
Since 0 is a congruence relation we have d(6(ay), x)g@(al) if x€X; and
0(0(a)), x)=0(ay) if x€X,. Hence A,;=(0(ay),X;,8) is a strongly connected
X-subautomaton of A. We now show that A, is a cocyclic automaton.

Assume that A, is subdirectly reducible, i.e. there exist congruence relations
{e:€CAY: icl} with N(g;: i€)=Ap@,y and ¢;#Agq, (i€I). Define the con-
gruence relations ¥;€C(A) (i€]) by the equivalence a¥;b if and only if ag;b or
a=b (a, b€ A4). It can be immediately seen that N(¥;: i€l)=4, and W¥,#4,
(i€I) are satisfied. This contradicts the subdirect irreducibility of A. Therefore,
A, is subdirectly irreducible and thus, by our Statement, it is a cocyclic automaton.

Next we show that &, is a permutation of 4 and (0 (a), x)E0(a) holds for
any x€X; and acA. Indeed, J, is injective since otherwise we would ‘have
OougUey(10=4, and oewyuew,), 0%4,4 where @€C(A) is the congruence
relation induced by the endomorphism J,. Now let acA4 be arbitrary and let .
r* be the order of §, in S(A,). Define ¢S AXA by cod if and only if there is a non-
negative integer n such that either 8(c, x*)=d or &(d, x")=c. It is obvious
‘that g is reflexive and simmetric and has the substitution property, i.e. it is an in-
variant tolerance relation of A. By the injectivity of é,, it can be seen that it is
transitive as well. Thus g€ C(A). It is not difficult to see that ¢ Naewyuewy=44
while Gg@yue@)#44 On the other hand ¢=4, holds if ag {d.m(a): m=1}.
Therefore, for every x€X,; and ac€A there is an integer n=1 such that a=4(a, x").
Consequently, &(8(a), x)S0(a) and x"=A is an identity in [4] implying that &,
is-a permutation of A4. :

As XS X, and X,S Xy, we get X;=2Xp and X,=Xyp. We have shown
that if x€X, then 6(f(a), x)S6(a) holds for each acA. Conversely, if
5(0(a), x)S0(a) holds for some acANI(ay) then also 8(68(ap), x)Sb(ay) ie.
x€Xp. This can be seen immediately as follows. As J(0(a), x)=0(a) holds in
A/6 we obtain that x=21 is an identity in [#(a)]. But 0(a,)¢[0(a)], thus,
8(8((ay), x)=6(a,) in A/6, ie. 5(0(a), x)S0(ay) in A.

So far we have proved that if A is subdirectly irreducible, connected; moreover,
0(a))={a} and A£0(a,) then it is a quasi-nilpotent automaton. Next we show
that in this case (0(a), Xp, 8)=<(0(a,); Xp, 8) for any a€AN\6(a,), hence the per-
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mutational subautomaton of A without the absorbent state is the disjoint sum of
pairwise isomorphic cocyclic automata.

Indeed, if acAN\O(a;) then there exists a word peX™ suchthat 5(a, p)=a,.
By commutativity, the mapping o (9(,,) 0(a)—>0(a1) is a homomorphism of
(6(a), Xp, 8) into (0(ay), Xp, 6). As ( (a), X, 8) is strongly connected 0,6, is
an epimorphism. Now we shall show that 5”9(,,) is an isomorphism. Assume that
b, ccO(a) satisfy the condition &(b, p)=4(c, p)=d. Since (0(a), Xp, 8) is strongly
connected there is a word . g€ X7 such that 6&(b,g)=c. By commutativity,
0(d, q)=d, thus, g=2 is an identity in (6(a)), X, 6). In other words Sqj0an=
=idg,) Let us define the relation g€ C(A) by ugv if and only if there is an integer
n=0 such that either d(u, ¢g")=v or (v, ¢")=u. Obviously, @NoewyUeE)=44,
and hence, by the subdirect irreducibility of A, from this it follows that g=
Thus b=c and §, ¢, is an 1somorphlsm '

1t remained to prove that A is separable. Consider the set Z of all pairs (q, b)
(a=b€A) such that {a, b}EO(ap) Ub(ay) and for every word peXyp if 6(a, p)e M
then é&(q, p)=06(b, p). We shall show that if (g, b)€¢Z and x€X, then also
(6(a, x), 6(b, x))€Z. Assume to the contrary (6(a, x), 6(b, x))¢ Z. There are two
cases. Either there is a word pcXJ, with 8(3(a, x), p)EM and §(3(b, x), p)efM
or é(a, xp), 6(b, xp)EM and 6(a, xp);éé(b xp). In the first case, by commutativity
and the facts 6, (M)SM and §,(M)SM it follows that d(e,p)¢ M. 'and
8(b, p)¢ M. This contradicts (a, b)¢Z. One can get a similar contradiction in
the other case, too. '

Suppose now that A is not separable, i.e. Z0. Let (a, b)¢Z and denote
by 0€C(A) the congruence relation generated by the pair (a, b). By Malcev’s
lemma {cf. Theorem 10.3 in [4]), ¢ is the transitive closure of the relation ¥ given
by ¢¥d if and only if there is a word peX™ with {c, d}S {6(a, p), 6(b, p)} or c=d.
As (a,b)eZ and (d(a, p), 8(b,p))€Z holds for every p€Xp it is not difficult
to see that if O(u)>0(a) and u%¥v are valid for some states u, € M then u=wv.
COHSCqUCDﬂy, Q{([a]\e(a)){'}M=A([a]\6(a))nM' -If ac O(GO)UH(GI) then 6(0, p):ao
holds for each pcXJp. Thus (b, p)=a, is also valid for each p€Xgp. But this
is possible only if b€60(a)U0(a,) contradicting {a, b}E 0(a,)Ub(a,). Therefore
0(a)<0(a) and hence ge@yueey=Jdew@uee. Thus ¢NoeuyueEy=4s 2
contradiction.

We have already proved that if A is a subdirectly irreducible connected com-
mutative automaton then A satisfies condition (a) or (b) of our Theorem. Assume
now that A is not connected. Then A is the disjoint sur_h of its” connected sub-
automata B;=(B;, X, 8) (ic1, |I|=2). We have N(o4\p,: i€[)=4, while if [I|=3
or |I|=2 and |B;|=2 (i€I) then o.5,#4, (i€I). Therefore, [I[[=2 — say
I= {1 2} — and |B,|=1. As B, has to be a subdirectly irreducible automaton
and it is connected, one can show that B, is a cocyclic automaton, i.e. A satlsﬁes
condition (c) of our Theorem: This ends the proof of necessity.

Conversely, by our Statement, it is obvious that if A contents condmon
(a) ‘or (c) of the Theorem then A subdlrectly 1rreduc1ble Hence assume " that
condition-(b) is. satisfied by A. :

We shall show that Qle(a DU Bay) #Ae(no)ue(al) holds for each congruence rela-
tlon Q€ C(A) generated by two distinct’ states . @, b€EA. .

. This is quite obvious if a, b€6(a)U0(ay). Hence suppose that {a,b}&
g()(ao)UH(a,) and set Z={g(c): ‘c€ M, |o(c)|>1}. Since A.is separable there is
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a word p€Xyp such that — say — 6(a, p)éM and 6(a, p)=#06(b, p). Thus Z=0.
Since M/0 does not contain w-chains there is a state c¢,€M . such that g(cl)€Z
and 6(c,) 4 0(c) holds for any g(c)€Z.

Let us distinguish three cases and let d,€9(c,), dy#c,. First assume that
co=ay. If dycO(a)) we are ready. If dy¢6(a,) then there is a word peXyp with
6(dy, p)€0B(a). At the same time 0(ay, p)=a, thus we get a,00(dy, p), ie.
Q16ag) Ustay Aot Uotay) - Secondly assume that c¢,€8(a;). If dy€0(a;)) then we
are again ready. If 6(d,)<6(a,) then there is word p€Xyp such that d(d,, p)€0(a,).
But d(co, p)=a, thus, a,0d(d,, p). Finally, let cq¢ 6(a)U8(a,). By separability,
there is a word p€ Xy, with 3(cq, p)#d(d,, p). But 5(c0,p)EM because (M, X, 6)
is a subautomaton of A and 6(d(c,, p))=0(c,) since A is quasi-nilpotent. Con-
sequently, (6(co, p), 6(dy, p))€ Z contradicting the maximality of 8(c,).

We have proved that every congruence relation g€ C(A) generated by two
distinct elements of A satisfies @jo(aug(ap ¥4 gtagpuoay - Therefore, A is subdirectly
irreducible if and only if (O(ao)UB(al), X, 8) 1s subdirectly irreducible. On the
other hand (8(ag)U8(ay), X, 6) is subdirectly irreducible. This ends the proof of
the Theorem.

Commutative automata with a finite set of input signs

In this section we shall point out that there is a somewhat simpler characteriza-
tion of subdirect irreducibility in case of commutative automata with a finite set
of input signs. Actually, we prove

Corollary 1. Let A=(4, X, J) be a commutative automaton with finite X,
Then A is subdlrectly irreducible if and only if one of the following three conditions
are satisfied by A

(a) Aisa cychc automaton .of prime-power order,

(b) A is a quasi-nilpotent automaton and its permutational subautomaton
without the absorbent state is the disjoint sum of pairwise isomorphic cyclic auto-
maton of prime-power order, furthermore, for any a#b€A such that {a, bYE
E0(ap)Ub(a,) there is a sign x€Xyp with 6(a, x)76(b, x),

(c) A is the disjoint sum of a cyclic automaton of prime- power order and
an automaton of one state.

~ Proof. The proof follows by our Theorem and the fact that if A is quasi-nil—
potent then we have .A=M(A). This latter equality can be seen by showing that
if A is quasi-nilpotent then A/@ can not contain an w-chain.

Assume to the contrary A is quasi-nilpotent and 0(by)<68(b,)<... is an w-
chain in (4/0, =). Let X={x;,...,x,}. As 0(a) is the greatest element of
A0\ O(ay) there is a word g, —-x“(") x"’i") with 6(b,, g,)=a;, for any n=0. Let
o™ denote the vector cons1st1ng of the exponents occuring in g¢,, ie. a™=
=(a™, ..., a™) (n=0). By induction on ¢ (¢t=0,...,r) we show that thereis an
infinite sequence of indices I,S {0, 1, ...} such that of?=0a{ holds if s=¢ and
i<jel. If t=0 thenlet I,={0, 1, } Assume that we have already constructed:
the set 7,_, (¢/=1) and con51der r= {(?, ..., af?y: i€l,_,}). Supposing I' is finite

we obtain integers i<j (i, j€I,_;) with (a(" o=, .., ad).  Let
(J) (1)

w= xai”-a‘x” xj-17%-1, By commutativity, 5(b,,q,) 5(b,,qj) 5(bj,wq,) =a,.
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On the other hand, by 68(b)<0(b;), ther¢ is a word p€XypX™ with 6(6(b), p)=
=0(b;). Or even, we may choose p in such a way that (b, p)=b;. Thus ag,=
_6(6(bn ql)!p) 5(5(b,,p)q,) 6(bp ql) 5(b1’ qxw) 6(b1r wa) ay, le aO—al
yielding a contradiction. We have shown that I is infinite from which the existence
of 1, follows.

Now let I=1, and i<j (i, j¢I). Applying the same sequence of ideas for
the corresponding states b; and b; one can get a similar contradiction. This ends
the proof of Corollary 1.

It is interesting to note that if A=(4, X, J) is a subdirectly irreducible com-
mutative automaton and X is finite then A=M, (A) This can be seen as follows.
We have proved that 4=M and one can prove in a similar way that there is no
commutative automaton B with a finite set of input signs which is generated by
one state such that (B/, =) contains an w°’-chain. Now, to see that A=M_(A)
assume to the contrary max M., =0 and let 8(a)¢max M. Set Z={0(b): 8(a)<
<6@(b)} and let Z, consist of all minimal elements of Z (with respect to the or-
dering =). Of course ZS M. For every 0(b)€Z, there exists a sign x€X with
d(a, x)€0(b). Thus Z, is finite, Z,={8(b), ..., 6(b,)}. On the other hand Z can
not contain ®w°P-chains since otherwise [@}/0 would contain w°P-chains. Thus, to-
gether with the fact that M, isan upperideal, Z={8(b): (39) (i€ {1, ..., n}, 6(b )<9(b))}
As M= |J M;, there corresponds an integer k; to each i€ {1 ..,n} such that

k<o

()(b,-)EM,:i Let k=  Jnax k; k;.- Obviously, Z,C M; and, since M; is an upper

ideal as well, Z EM’ But in this case if 6(b) is such that 6(a)<6(b) then
(b)c M;, therefore, A(a) is maximal in M, too. This results that 8(a)e M, ,S M.,
contradicting our assumption 6(a)éM,.

Also observe that if A=(4, X, d) is a subdirectly irreducible commutative
automaton with finite X and if A is generated by one state then 4 is finite, too.
Indeed, we know that A=M, holds, thus, a,c¢ M, where a, denotes an arbitrary
generator of A. But M, = |J M,, therefore, there is an integer n such that

n<o

a,cM, and hence, A=M,. On the other hand the finiteness of X implies the
finiteness of M.

The followmg simple example shows that the equality 4=M(A) does not
hold in general for arbitrary subdirectly irreducible commutative automata. In-
deed, let A={a,, b;: i=0}, X={x}U{y;: i=0} and let 6: AXX—~A be defined by:

5 {ai_l, if i=0
(a) . (aiax) - ao, lf l — 0’
® ' o(a;, y)) =a, (i,j =0),
© . 0(b;, x) = byq,

. a;_;, if j=i
@ TP DA

It can be seen by an easy computation that A=(4, X, ) is a subdirectly
irreducible commutative automaton with M (A)={a,, a;, ...}.
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Subdirectly irreducible commutative semigroups

Our Theorem makes possible for us to describe all subdirectly irreducible com-
mutative semigroups.

First we note that if S is a commutative semigroup which has no identity then
S is subdirectly irreducible if and only if S* is subdirectly irreducible where S*!
is S equipped with a new element 1, the identity of S*. The sufficiency of this state-
ment is obvious and does not requlre the commutativity of S. Conversely, assume
that S? is subdirectly reducible, i.e. there are congruence relations g;=A4s (i€])
of S such that N(g;; i€c)=A4xn. We shall show that g;|s Asis satisfied for each
i€l Suppose that g;|s=As. There is exactly one element s€.§ with sg;1. Let s'¢S
be arbitrary. As p; is a congruence relation of Slss’g;s”. As S is closed under
composition and g; s=4s from this we obtain ss’=s’. This means that s is a left
identity, and by commutat1v1ty, an identity. This contradicts our assumption on S.

In the next corollary we use the notations in accordance with [1]. Observe
that the congruence relations 0 of the previous section corresponds to the Green’s
congruence relations # of commutative semigroups. A

Corollary 2. A commutative semigroup S is subdirectly irreducible if and only
if one of the following conditions is satisfied by S:

(i) S is a cocyclic group,

(i) S is a commutative monoid with zero element and

(a) there is a least O-minimal ideal R in S,

(b) J, is a cocyclic group, (J,, J;|J)=2J; under the correspondence o—alJ,
(a€Jy) if s#0 furthermore, J,=JJ,,, for arbitrary s€ S\ {0} and s€ S\J;,

(c) for any {sy, S} ER (s1¢s2) there is an element s€.S\J; with {815, $a5}N
NM=0 and s57s,s where M denotes the least ideal in 'S such that M/ ¢ does
not contain maximal elements with respect to the ordering J,=J,, if and only
if sls” (s,8°€S),

(iii) S does not contain identity element and S? satisfies condition (ii) with
L=1{1}.

Every finitely generated subdirectly irreducible commutative semigroup. is
finite.

Proof. By our Theorem, Theorem 1 in [2], the representation theorem of semi-
groups and our previous remarks.

This Corollary implies Corollaries 1V.7.4. and IV.7.5. in [6].
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