On attributed tree transducers

By Z. FULOP

Introduction

The concept of attribute grammar was introduced by Knuth in [1] as a formal
tool for defining the meaning of sentences generated by a context free grammar.
Taking trees over some ranked alphabet instead of derivation trees of a context
free grammar, and allowing the values of attributes to be only trees over another
ranked alphabet, finally, restricting the semantic functions to tree-concatenation
-we obtain the notion of attributed tree translators.

In this paper we study some basic properties of attributed tree transformations.
Namely, we point out that each completely defined top-down tree transformation
can be induced by an attributed. tree translator while the class of all completely
defined bottom-up tree transformations and the class of all attributed tree trans-
formations are incomparable. Finally, we prove some results concerning the com-
position of attributed tree transformations.

-

I. Notions and notations

Before turning to the discussion of attributed tree transducers we recall some
fundamental notions and notations.

By a type, or ranked alphabet we mean a ﬁmte nonempty- set F of the form
F—FOUFIU .UF,), where the sets F, (n=0, ..., v(F)) are pairwise disjoint.
The elements of F, are called n-ary operator symbols :

For arbitrary ranked alphabet F and set S the set of trees over S of type F
is the smallest set T (S) satisfying ‘

(i) FUSE Te(S) and

(i) if feF, (1=0); py, ..., p,€ Tp(S) then f(py, ... ,p,.)ET $..

We can define the helght ht'(p)), rank (rn (p)), root (root (p)) and the set of
subtrees (sub (p)) of a tree p(€Tx(S)) as follows: if p€ F,US then ht(p)=0,
m (p)=1, root (p)=p and sub(p)={p} else, if p is of form f(py, ..., p,) for
some n{(=1) and f(e »), then ht(p)= max {ht (pl)ll<]Sn}+l m (p) 1+

+ 3 (p), root (=1 and sub ()= Usub (2))U (5}-
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Next we define the set path (p) of paths being in p as a subset of N* (where
N* is the free monoid generated by the natural numbers, with identity 1) in the
following way:

{2} if peFRUS :
path(p) = (L_J {jwlwepath(pj)}}u{z} it p=f(p,.; p)-

There_ is a corresponding label 1b,(w) and a subtree str, (w) for each path w
jn a tree p(€Tp(S)). They are defined as follows:

_ root(p) if w=24
Ib,(w) ={ . . ;
b, @) if w=jo,p=f(p1,....P), 1=j=n,
and
{p if w=1
str, (W) = str,, @) if w=ju,p=f(p,....p), l=j=n

In the rest of the paper the pairwise disjoint sets of variables X={x,, x,, ...},
Y={y1, Ysy .-} U={y, s, ...} and Z={z,, z;, ...} are képt fix. The variables,
Zg, 7y, ... are used as auxiliary variables. For an arbitrary integer n(=0) the nota-
tions X,, Y,, U,, Z, are used to denote the sets {x1, ..., X}, {¥1> s Vb {1y ooy ),
{235 s 24}, respectlvely

If at most the auxiliary variables z,, ..., z; (/=0) appear in a tree p, then p
is also denoted by p(zy, ..., z)). Substituting the elements s,, ..., 5, of a set S for
the auxiliary variables z,, ..., z; in a tree p(zy, ..., z;), respectively, we obtain an-
other tree which is denoted by p(s, ..., s).

Sets of form T(ZST, F(X )XTG(Y,,,)) (n m=0) are called tree transformations
and if (p, q)€T then ¢ is called an image of p.

By a bottom-up tree transducer we mean a system A=(T3(X,), 4, T(¥,),
A’, P) where n,m=0 are mtegers A is a nonempty finite set, 4"S A4, finally,
P is a finite set of rules (or rewriting rules) having one of the followmg two forms:

@) S @z, s 62)~a0 Gy oo 7) Where k1203 fEFy; @, ., aiEd:
gcT; (Y, UZ); 1=iy, ..., =k, and

(b) x;~ag where IS]<n, a€A, g€ T5(Y,)-

I there is a rule of form (a) in P for each k(=0), f(€ F); ay, ..., a, (€A4)
as well as a rule of form (b) for each j (1=j=n), then A is said to be completely
defined. Furthermore, if different rules have different left SIdes, then A is called
deterministic. Let p, g€ Te(X,U(AXT;(Y,)). We say that g is directly derived
from p — written p2q — if ¢ appears from p in one of the following two ways:

(i) the tree aq(p,l,. ., pi,) is substituted for a subtree f(a;p,, ..., @ p,) of
p and the rule (a) is in P;
(ii) the tree ag is substituted for a subtree x; of p and the rule (b) is in P.

Let us denote by =:> the reflexive, transitive closure of the relation = Then
the transformation T(A) induced by A is:

T(A) = {(ps 4)|P€ TF(Xn)s qe TG(Ym) and 14 % dq for somea (EAI)}
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Another type of tree-transducers is the top-down tree transducer. The system
A(=(Tp(X), 4, Ts (Y,), A, P)) is called a top-down tree transducer if A4 is a
finite nonempty set, A’C A and finally P is a finite set of rules of the following
two forms: _

. © af(z, . 2)~qay 2y, ..., @yz;)) where k,1=0; a,ay, ..., q€4; fEF;
=4, ..., L=k qETG(Y UZ);
' (d) ax;—~q where a€A, 1=j=n, gcT;(Y,,).
Consider the trees p, (€T (Y, U(AX Tp(X,))). The relation = is now de-

fined as follows: p=q if ¢ appears from p

(i) by substltutmg the tree g(a;pi,, .-, @pi) for a subtree af (py, ..., p) of
p if the rule (¢) is in P, or - ’
(i1) by substltutmg the tree g for a subtree ax; of p if the rule (d) is in P.
*

Again, = denotes the reflexive, transitive closure of = and the transformation
T(A) induced by A is given by

T(A) = {( D)IPETe(X,), g€T6(Y,) and ap=q forsomea(€4’)}.

If for all a(€A), k(= 0) f(€F,) there is a rule of form (c) in P, moreover, for
all a(€4), j(=1, ..., n) there is a rule of form (d) in P then A is called completely
defined. Finally, 1f different rules have different left sides and 4’ is a singleton set
then A is called deterministic.

The cardinality of a set S is denoted by |S| and we write s instead of the
singleton {s}.

II. Attributed tree transducers

We now introduce the concept of attributed tree transducers.

Definition 2.1. The system A(=(Ty(X,), 4, T (Y,), A;, P, rt)) where n, m=0
is called an attributed tree transducer — shortly, AT transduder — provided

(a) F and G are ranked alphabets;

(b) A is a finite set, the set of attributes which can be written in the form
A=A UA; where A, is the set of synthesized, A; is the set of inherited attributes
with A ﬂA =0;

(©) A/S4,;

(d) rt is a mapping of A4; into nonempty, finite subsets of T4(Y,) (Gf 4,=0
then rt is not specified);

(e) the set of rules P= (U PU [U P, ] is a finite subset of the set (4x
X(TF(Z)UX,,))XTG(Y U(AXZ)) For the sets P, for all k(=0) and f(€F), it
holds:

(i) for each a(€A,) at least one rule of the form af(zl, v Z)—=qlayzi, ..o,
az;) (1=0; 0=i,, ..., i=k; ay, ..., g€ 4; q€T(Y,,UZ)) is in P,

(i) for each a(EA ) and 1=j=k at least one rule of the form az;«q(a,z;,
az) (120; 0=iy, ..., ii=k; ay, ..., q€4; g€ Tg(Y,UZ)) is in Pf,
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(iii) P, contains only rules of type (i) and (ii). For P, (for each j (=1, ...,n))
it holds that for any a(€4,) at least one rule of form ax;<q(a,z,, ..., 4;zy) is in
P, and there is no other rule in P, . (Observc that here, as well as in the rest of
this paper, the elements (x, y) of P are written x< ¥.) '

If we write “one and only one” instead of “at least one” in (¢) moreover re-
quire A; and rt (a) (for each a€ 4;) to be a singleton then we obtain the concept
_ of deterministic AT transducer. :

Now let A be an AT transducer defined in 2.1 and take the trees p(€ Tp(X,U 2Z)),
g, r(€ Ts (Y,U(AXpath (p)) U(4X Z))). We say that r is directly derived from ¢
in p — and write ¢ =r— if r appears from ¢ by one of the following manners:

(a) substituting the tree g((ay, vy), ..., (a;, %)) for some leaf (a, w)(€ A X path (p))
of g if the following conditions hold: A

() acd,,
(i) Ib, (W)=f(€F, for some k=0),
(i) af(zy, ..., z) = d(ar 2y, ..., 4,2, )€ Py,

() v = wi; if 1=i,=k (=1,...,0;
(b) substituting the tree g((a, w), ..., (a;, w)) for some leaf (@, w) of ¢ if
(i) ac4,, _

() b, (W)=x; (€X,),

(i) ax; (a2, ..., aZg)€ Px, hold;

(c) substituting the tree §((a;, vy), ..., (@, v)) for some leaf (a, w) of g if
the following conditions hold: )

(l) aEAi’ .

(i) w=v (wEN*, jEN where N is the set of natural numbers),

(i) Ib,()=f (€F for some k=1), :

Gv) l=j=k,

(V) azj«q(alzils ...,(IIZ;I)EPI,.

. {v it i,=0

Vi) T i, if 1=i=k (=1,..,1);
(d) substituting a tree in rt(a) for some leaf (a, w) of g if
(i) w=4, '
(i) a€ A; hold; , .
(e) substituting the tree (a, z;) for some leaf (@, w) if lb,(w)=z;(€¢Z) holds.
Let <—_:Adenote the reflexive and transitive closure of the relationci. (Some-

P, ps

. * »
times, if A is clear, instead of the notations <—_A—;-<=A we simply write <=, «, re-

b p, 14 14
spectively.) -

Definition 2.2. Let A be the AT transducer defined in 2.1. By the transforma-
tion induced by A we mean the set

T(A) = {(p, DIPET, (), GET5(Y,0), (50, /) <= q for some so(€A))).
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Observe that, in order to define the transformation induced by an AT trans-
ducer, it would have been enough to introduce the concept of derivation in a simpler
way. Namely, it would have been enough to take p from Tr(X,) and the trees g, r
from T;(Y,, (U4 Xpath (p))) — hence, (e) would have disappeared. The previously
given more general notion of derivation will be needed only in Section 1IV.

" Definition 2.3. Let A be an AT transducer. We say that A is circular if there
exist p(€Tp(X,)), (€ Te(¥Y,,UAXpath (p))) and (a, w)(€4Xpath (p)) such that

(a, w)<—i.z q holds and (a, w) occurs in g as a leaf (where é is the transitive closure
of <=—) D. E. KNUTH has pointed .out in [1] that the crrcularlty problem of attribute

grammars is decidable. The algorithm presented by Knuth, with a small modi-
fication, is suitable to decide whether an AT transducer is circular or not. -In the
rest of this paper we shall always confine ourselves to noncircular AT transducers

Therefore, it is clear that for an arbitrary AT transducer A= (TF(X,,), ,
To(Y,), 4;, P, rt)), and for each p(€T:(X,)) and (a, w)(€A4Xpath (p)) there

exists a tree q(€T4(Y,)) (f A is deterministic then only one) for which (a, w)<=q
P

holds. Thus we may say that A is completely defined and this way of speaking is
in accordance with the discussion of bottom-up and top-down tree transducers.
Since A is completely defined it is clear that the domain of T(A) is the set Tp(X,).
Furthermore, if A is deterministic then T(A) is a mapping of Tr(X,) into Te(Y,),

Definition 2.4. The AT ‘transducer (defined in 2.1) is called reduced if the
following two conditions are satisfied by any leaf (a, 2)E(4X Z) appearing on
the right side of a rule in P:

(@ if z=z, then a€4,,

(i) if z€Z—{z,} then a€A,.

Concerning attribute grammars the property being reduced means that no
semantic rule may depend on a synthesyzed attribute of the left side or an in-
herited attribute of a nonterminal appearing in the right side of the corresponding
context-free rewritting rule.

It is easy to show that for every AT transducer A(=(Tp(X,), 4, T(¥y), A%,
P, rt)) there exists an AT transducer A’(=(Ty(X,), 4, T¢(Y,), A;,P’ rt)) which
is reduced and equivalent to A in the sense that T(A)=T(A’). P’ can be obtained
_from P by a suitable substituting of rules in P in each other, and this process will
terminate because A is noncircular.

Similary to the concept of dependency graph introduced by D. E. KNuTH
in [1], for every AT transducer A, each derivation (a, w) <=:q can be represented

by a directed graph. The nodes of this graph are the elements of AXpath (p),
moreover, if, in the derivation mentioned above some leaf (b, v) is substituted by
some tree q((bl, v, ..., (b1, v;)), then there are directed arcs from nodes
(by, vy), ..., (b, v) to the node (b,v). This representation of derivation makes
the notions and proofs clearer. E.g. the notion of circularity means that the de-
pendency directed graph corresponding to some derivation contains a directed
circle.
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We shall name the elements of 4 X path (p) attribute occurences in accordance
with the above representation.

Further on we shall not always study the properties of AT transducers on
the whole input set T;(X,). The restriction of T(A) to some R(ETp(X,)) will
be denoted by T(A)|.

ExaMmPLE 2.1. Let n=m=3 and A=(T(Xy), 4, Tp(Xy), S, P, rt) where
() F=FRUF, Fy = {g}, F,={f};
(1]) A= AsUAi’ As = {SO’ sl}’ Ai = {’}7
3
i) P= ngP,u(U p,,],
j=1

P, = {s08(z)) < g(s021), s,8(z;) ~ arbitrary tree, iz, « 5,2},
Pp= {sof(21, 22) +~ So22, 5:1f(21, 22) + 5,2y, iz, < arbitrary tree, iz, «~ fizy, 5, 22)},
ij={sox"_izo> slx'«x'}: ]‘_—1:2:3:

(1v) rt is an arbxtrary mapping.
It is obvious that A is a deterministic and reduced AT transducer. Take the

tree p=g(f (xz, f (%1, x3))) (€ Tp(X5)). The derivation (s,, 2) <:g((s0, 1)) = 2((s0, 12))
cg((sm 122)) cg((’ 122))<=g(f((1 12), (51, 122))) <———g(f(f((l 1), (51, 12)), -

(51, 122))) ‘= g(f(f((sl: D, (51, 12)), (54, 122))) Cg(f(f(X2, x1), x:;)) thIdS con-

sequently (p, q)ET(A) (see Figure 1). :
We can see the directed graph correspondmg to this derivation in Figure 2.
The path components of the elements of A X path (p) are left for the sake of clarity.

i 5t S
o o

4 b4
S TA) S
S f
x2 X;;
X1 X3 Xz X,
Fig. 1~

Let us introduce the notation

R= {g(f(xil’f(xiz, ---:f(xi,,_la xi,,)-")))ln = 21. 1= il, Tees in = 3}
One can show that ‘

T(A)IR _ {(g(f(xlp . Af(xl,. 19 xl,.) )) g(.f(f ‘f(xila xiz 3 sy xi,._l)a xi,.))ln = 2}9

hence A does not change the frontier of trees of R.
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III. Comparing between AT transducers and classical tree transducers

Let us denote the class of all tree transformations induced by
(i) AT transducers,
(ii) AT transducers having only synthesized attributes,
(iii) deterministic AT transducers, :
(iv) deterministic AT transducers having only synthesized attrlbutes
(v) completely defined top-down tree transducers,
(vi) completely defined deterministic top-down tree transducers,
(vii) completely defined bottom-up tree transducers,
(viii) completely defined deterministic bottom-up tree transducers
by
@) 7,
(1) 7 s,
(i) 7944,
(v) 794,,
w77,
i) 9927,
(vil) T 4,
(vm) TDB.
Before we shall go further let us introduce the concept of length of a derivation.
Let A(=(Ty(X,), 4, T¢(Y,), A, P, rt)) be an AT transducer and let p(e T#(X,)),

(a, w)(€ 4 Xpath (p)) and q(€T;(Y,)) satisfy the derivation d=(a, w)é q. The

. p

length 1t (d) of the derivation d is the least integer n(=1) such that (a, w)<"=q,
14

where < denotes the n-th power of the relation <.
P p
By induction on the length of derivation it is easy to prove:

Lemma 3.1. Let A(=(Tx(X,), 4, Tg(Y,), A;, P)) be a reduced AT trans-
ducer satisfying A;=0. Then the followmg equ1va1ence holds for each p(€ Tx(X,)),
(a, w)(€ A X path (p)) q(€ T;(Y,,)) and partition w=uw _

(a, w)<: g if and only if (a,v) f?q O
The next theorem has essentlally appeared in [2] but we mentlon it for the sake
of completness.

Theorem 3.1. 9 =9, .

Proof. First we are going to show that 7 S 7 «/,. Indeed let A( (TF( s
A, To(Y,), A, P)) be a completely defined top-down tree transducer Con51der
the AT transducer B(=(Tp(X,), B, T, G( s Bi, P')) where '

(i) B=B,=A, e g e
(ii) B;= A’ : el .
(111) P'=P.

It is easy to show by induction on ht (p), and makmg use of Lemma 3 1 that
for any p(€Tr(X,), a(EA) and q(€T4(Y, ).

ap=>q if and cnly if (a, A)éq, L
A N . . p,B T . -

2 Acta Cybernetica V/3
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consequently, T(A)=T(B). Conversely, take an arbitrary completely defined AT
transducer B(=(T3(X,), B, T¢(Y,), B;, P)) with B;=0. We may assume with-
out loss of the generality that B is reduced. Define A(=(T5(X,), 4, T((Y,,), A, P))
by the equalities from (i) to (iii). Then, as earlier, we have T(A)=T(B). This
proves 4,7 97. 0O :

It is obvious that if A was deterministic in Theorem 3.1 then B would have
been deterministic and conversely, hence we have

Corollary 3.1. 7929 =9 25,. O

However, it is easy to see that the tree transformation given in Example 2.1.
can not be induced by a (deterministic) top-down tree transducer. Therefore, it
is valid .

Corollary 3.2. 7 cI o and 9T CT D4. O

Now we are going to see that these inclusions are not true in the bottom-up
case. :

Theorem 3.2. The class 2% and I 2.« are incomparable.

Proof. The tree transformation given in Example 2.1. is in 792« but it can
not be induced by deterministic bottom-up tree transducers.
On the other hand the following deterministic bottom-up tree transformation
will not be in 7 2.4.
Let A(=Tp(Xy), 4, Tr.(Xy), A’, P)) be the bottom-up tree transducer where
() F=F={f g}, FF=F={A, f:,8};
(i) A=A"={ay,a)}; _
(ili) P consists of the following rules:
X1 > 01X, Xy = a2x2~,
g(a1z)) ~a,g(z1), g(a:z) ~ axg(zp,
flayz) »ay fi(z), f(azz) ~ a; fo(2).

It is obvious that A is completely defined and deterministic. Consider T(A)|gr where

R = {f"g"(x)ln, m = 0}U {f"g™(x,)|n, m = O}.
It is easy to see that

Tl = {(/"g"(x, 78" xD)ln, m = OYU{(f"g"(xa), 7 &™(xo))lm, m = O},

Suppose that T(A) is in 7 @« i.e. T(A) can be induced by a deterministic AT trans-
ducer B(=(Tp(Xy), B, Tp.(Xy), by, P, rt)) and suppose that B is reduced. Then
* T(A)|g=T(B)|r, necessarily. Let :

K=|B)|, L =|B| (where B= B ,UB),

N=max {ht (g)|q is the right side of some rule of P’}, let n=2NL(K+L)
be fixed, and consider the trees p{P=f"g/(xy), g{V =17g/(x), p{? =f"g'(x,), q? =
=frgi(xy for all j(=0,1,..., L). (In the special case when the operator symbols
appearing in some tree p are of arity 0 or 1, p is called unary. If p is unary then
the elements of path (p) are of the form 1%, further on simply written /.)
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Now let us fix an arbitrary index j(=0, 1, ..., L) and denote p{V, q(”, PP, g
by p@, g®, p®, g, respectively. Then (p\¥, q“))e T(B), i.e. (b,, 0) <=(§ g™. This
derivation can be written as f

(b0, 0) <5 = g((ss n+)) = 5 = q® ¢))
for some g(¢€ TF,(Zl)) and s(€B,), since otherwise the derivation (5,, 0) %—a_; q®

would be true, and it is obviously a contradiction. (1) means that the derivation is
to depend on some synthesized attribute of x,. Furthermore, as B was reduced,
we may suppose that for any tree g((b, w)) (g€ Ty (Zl) (b, w)€ BX path (p™)) if

(bo, )¢(—uq((b w)) u,q((s, n+J)) q‘”

then w<n+j is true. On the other hand we must have g=z, ie.

(bo, 0) <’—_ (S, n+]) q(l) - (2)

p»

If (2) would not be true then, by (b, 0) < pmq((s n+j)) we would have trees

gw,g® (e TF (X,)) with q(q(l)) q® and ¢q(@®)=¢®, yielding a contradiction,
In Fig. 3 a heavy line views of the directed graph corresponding to the deriva-

tion (b, 0) <=5
trees the directed. graph correspondmg to any derivation is a directed “line”.

(s n+j). Take into account that in case of unary input and output

Now we are going to study the derivation (s, n+-j) c:q“) Since there are

n operator symbols fi in g™ and n>2NL(K+L), for some c(€B;) and
r(€ Ty.(Z,)) we have .

(s, n+j) < 5 r((c n—L)) c—q(l) )

_and
(i) r=z, or r contains operator symbols f; only,
(ii) if for some tree g((b, w)) the denvatlon

(s, n+j) (l)q((b w)) r((c n— L))ﬁl—)q(l)

holds then w=>n—L.

This follows easﬂy by taking into account that each attrlbute occurence may
appear at most once in a derivation and at most 2L(K+ L) attribute occurences
are in the top n— — L-th level, moreover, that B is reduced.

As B is reduced there exist trees r(€ Ty (Zl)) and attributes i,(€ B,
1(=0,1, ..., L) such that

(S, n+]) (1) ro((’m n)) (1) rl((lla 1)) ) rL((lL, L L)) =

= r((c7 n '_‘L)) <°(_-T q(l)’ (4)

furthermore, if for some tree g((b, w)) (s, n+j) <= % q((b w)) <= > ro((to, n))thenw >n.

Consider the attributes iy, iy, ..., if(€B). Since L= |B| there exist indices
k,1 (0=)k<I(=L) with i,=i. Let i=i(=i), then (4) can be written as

-
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K synthesized L mherlted
/ A\ 1 \

_-——

fon—1

(s, n+]) i rk((l, n— k)) <5 r,((l, n— l)) o r((c, n—I:)) ;:(% qw.

Let us introduce the notatlons u=n—k,v= l k and t=r,. Then there exists

a ‘tree t'(€Ts(Z,)) such that’ r,—tt’ 1Thus (5) can be written as

JIR=T )

1 If t,and t! are trees we often wrlte tt mstead of t(t')

(s,n+]) 5 l((l u)) o 1t ((z,u b)) <= u)r((c n— L)) q(l)

> m times

©)

(6)

,.
LE
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Observe, that both ¢ and ¢’ may contain operator symbols f; only. Let m
be the greatest integer number satisfying u—mvz=0. It follows from (6) that

(s, "+J)¢=t(l )'"((!',u-mv))éq(l)” 0

(1)

(see Flg 3). Finally, introduce the notation y=u—myv. Consider the tree ¢” for Wthh
@, u)<=t”((a' u—y)) holds for some d(¢B;) and which satisfies that if (i, u) -

(1) (l)
g((b, w)) <= > ”((d, u—y))is valid for a tree (€ Ty (Zy)) and (b, w)(€ BX path (p™))
then w>u »y holds. It follows from the definition of z” that

(i, u—mv) <;§:) #((d, 0)) S ®

and t”=z; or t” contains operator symbols f; only, as ¢’ does.
We have from (2), (7) and (8) that

(bo, 0) c— 1t )"'t”((d 0) <5 9% ‘ ®

Do not we forget that we have fixed j, therefore, ¢, ¢",¢t”, m and d depend on j.
But from (9), we can read that for each j(=0,1, ..., L) there exists a tree
t; as well as an inherited attribute d; such that

(bo, 0) <=1) t;(d;, O)) =g

moreover, t; contains operator symbols /1 only. - Con51der the mhented attributes
dyy ..., dy. Then there exist indices k’,!” such that %'/’ and d,, =d,. This
1mp11es that the trees g{ and gPare of form 4(s) and 7, (s), respectlvely, where
s=rt(dy)= rt(d,) But it is a contradiction which arises from T(A) T(B) There-
fore T(A)is notin 7 2. O

By a slight modification of the preceeding proof we get- that T(A) can not
be induced by nondeterministic AT transducers. It is clear, besides, that the treé
transformation given in Example 2.1 can not be mduced by (nondetermlmstlc) :
bottom-up tree transducers. Thus we obtain - : .

Corollary 3.3. The classes 7 % and F «/ are incomparable. . [

IV. Compositions of attributed tree transformations

First of all we are going to enter some notions. For any tree transformations
T(ETe(X) X T(Y,), To( S T(Y,) X Ty(U,)), the composition of Ty and T, is
the following transformation: . -

Ty0T, = {(p, 9)l(p, NET, and (r, g)€T, for some r}.

n times
. ——
21f t is a tree then (¢)* means f#f...t1.
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Let %, and %, be classes of tree transformations. The composition of ¢, and
%, is the class
@, 0%, = {T,oTLIT1€¥, and T,€%.},

and for any class ¢ and nonnegative integer n %" is defined by induction
¢ =%
Gt = @0 if n=1.

We shall need the next Lemma.

Lemma 4.1. Let n,m=0 and let A(=(Tp(X,), 4, T¢(Y,), 4;, P, rt))be an
AT transducer. Then there exists a constant N such that rn(g)=N™® holds

“for all (p, q)(€ T(A)).
Proof. Let us enter the notations:
K =144,
— 4] where 4 =4,U4,,
M = max {ht(g)|q is the right side of some rule of P}.

Let (p,9)eT(A), ie. assume that d= (so,))c—;—q for some sy(€A45). Since A

r.A
is noncircular ht{g)=(K+L)Mrn (p) follows. It is obvious that there exists.
a constant R such that rn(q)=R™@ for all ¢(€7;(Y,)). It follows from the
- two latter inequality that the choice N=RX+DM will be right for our purposes. [

Theorem 4.1, TP A"CT DA 0T DA"

Proof.‘ The inclusion 7 P@A"CT DA 0T DA" is obvious. In order to show
that the inclusion is proper consider the transformation T'in the class 7@/ 0T DA"
defined in the following way.

Let A(=(Tr(Xy), 4, Ts(Xy), 5, P)) be a deterministic AT transducer with-

() F=F={f}, G=0G.={g});
@) A=4,={s};
(i) P=~P,UP,, where
Py = {s/(z) ~ gz, sz},
P, = {sz, « x1}.

If we denote by g,, the balanced tree over X, of type G, the helght of which is m,
then it is obv10us that

T(A) = {(/"(x, qm)lm = 0}. (10)
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Moreover, let B(=(T((Xy), B, T(Xy), b, P, rt)) bc the deterministic AT trans-
ducer, where

() G=G,={g}; ‘
(i) B=B,UB; and B;= {b}, B;={i}; ‘
(i) P’=PjUP,, where
P, = {bg(zy1, z) < g(bz1, bz)), izy «bzy, iz < iz},
P;l = {bxl «~ g(iz, izo)};
vy rt(i) = x,.

Figure 4 shows the effect of B on balanced trees of type G. Let R={g,|m=0}.
If we take into account, that for each
m(=0) the rank of ¢, is 2"*1—1 then
we can easily prove that

TB)r =

= {(qm’ qm/)lm = 0, m’ = m+l_ 1}

Xy
Now let T=T(A)oT(B)o...oT(B), Fig. 4
n times
hence T€IT DA 0T D" 1t follows from (10) and (11) that
: . om+l
n tlmC§ { .
T = {(fm(xl)’ qm')lm = Oa m, = 22 _1} (11)
and this means that the rank of the image of the tree f™(x,) at T is
n+1.times{ . . et
22 -1 ’ (12)

for each m(=0).

We show that T¢7 24" Indeed, in the opposite case we would have a de-
composition T'=Tjo...oT, where T;=T(A}) for some deterministic AT trans-
ducers Aj (j=1,...,n). Thus for each j(—l .,n), Lemma 4.1 would give
a constant N; belonglng to A} such that rn (q)SN"‘ @ if (p, q)€T; holds. From
it would follow that the rank of the image of f "'(xl) at T would be at least

1
NTY

NN."."
for each m(=0). This contradicts to (12). O

Taking into consideration the inclusion 24,7 P and the fact that
Lemma 4.1 is true for nondeterministic AT transducers, we have

Corollary 4.1. TRL'CT DA™ and T ' T ™. O
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As we have seen, the proof of Theorem 4.1 depended on the fact that the AT
transducers can ‘‘greatly” augment the rank of the trees. The question arises,
whether the above inclusions will be true if we study a smaller class of AT trans-
ducers which can not do it. For this purpose we mtroduce the concept of linear
AT transducer.

We say that an AT transducer A(=(T¢(X, ),A Ts(Y,), A, P, rt)) is linear
_ (where n, m=0) if there exists a constant K such that from (p, q)e T(A) it follows
that rn (g)=Krn (p). Let us denote the class of tree transformations induced by
(deterministic) linear' AT transducers by (7 9L ) T L oA

Theorem 4.2. The classes 9 and TDL AT DL/ are incomparable.

Proof It is obvious that there are tree transformatlons which are in 9.4/ but
notin 7@9L AT DL A . - S

As we have seen the tree transformatlon T(A) defined in Theorem 3.2 is .not
in 72«. On the other hand T(A) can be decomposed in the. followmg way Let
B(=(T¥(X»), B, Tr(Xy), P', b, rt’)) be the AT transducer where \

(1) E= Fl {fg}
(11) B BUB,, B, —{b} B—{bl, b},

Gi) P’ =PUPU ( 9] P;,.] with
PR J=
P = {bf(zl) < bz, bizy "‘f(_bﬂo), 5221“f(b2203}:
P, = {bg(zl)-‘?.bz-ls byzy < g(by2o), baz1 + g(bazy)},
P;, = {bxj - bjzo} (i=12),
(iv) re'(b)=x;, (j=1,2);
and C(=(Tr(Xy), C, Tp,(X,), P”, c; rt”)) be the AT transducer where

) F'=F={fifgh
@ C=CUC, C={c}, Ci={c,c},

' 2
(i) P”=P;UPU [U ijj] ‘with
. . \j=1 g
= {cf(2) « ¢z, &1z ~ frle12g), 27y “fz(czzo)},
PZ = {cg(z)) « ¢z, €121 + g(¢120), €221 g(c2zp)},
= {ij - Cjzo} (i=12, -

(iv) rt"c)=x; (j=12).

It is easy to see that both B and C is deterministic and linear, moreover, that
T(A)= T(B)oT(C) holds. This eends the proof. OO

In case of. n=1 Theorem 41 says that T DA CT DA 0T DA. If we ex-
change the factors of the composition then we have -
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Theorem 4.3. T DA 0T DA =T DA ..

Proof. Flrst we prove the inclusion I 9D o0T @M CT9A. :

For this -purpose let A(=(Tx(X,), 4, Tc(Y,), ap, P; rt)) and -B(= (TG( )
B, Ty(U,), by, P’)) be determlmstlc AT transducers and suppose that B has only
synthesized attributes. :

Consider the AT transducer C( (Tr (X, C, TH(U) o> P’ rt ’)) deﬁned as
follows:

(a) C=C,UC; where C;=BXA,, C BXA (4=4 UA,),

(b) ce—(bo, ar); ” |
(c) P”is built in the way: o
() for each a(eA), b(€B), k(=0) and f(€F), i of = qdaz; .., 47 )P}

(1=0; 0=iy, ..., isk; geTe(Y,UZ)) and (b,}t)éq((bl;zjl,...,(b,,z,-‘))

(1205t =)y, ..., ji=1l; g€ Ty(U, UZ,)) then take into’ Pf” the rule (b, @) f ~
<_q((bla ajl)zl 2 ( t> aj,)zl ) -~ 2
(ii) for each a(EAs),b(EB) X; (E ) if ax; «q(alzo, .. a,zo)EP (l 0

qéTG(Y UZI)) and (b /‘{):q((blﬂ Zjl)a" t’ J,))(t>0 15]1,' ',.]t—l’ quH

(U,UZ)) then take into Py x the rule (b, a)x; —»q((bl, ah)zo, vy (byy ;) 20);
(ii)) for each i(€4,), b(EB) k(=1), f(EFk) and l<]<k if iz; < g(a, z;

w5 @z)eP, (1205 0=iy, ..., {=k; §€T6(Y,UZ)) and- (b, ))<———q((b1,
w3 (b zp)) (6205 1=j, ... ,],él g€ Ty(U,UZ)) ‘then take 1nto P the rule
(b i)z; ‘-‘]((bl,a“)za o (b ai)zy);
(d) for each (b, 1)(EC,) let rt”((b )= q(ETH(U)) 1f rt(z) q(ETG(Ym)) and
(b, )t)<:q hold.
We can prove the following: for each p(e TF( ) q(E TH(U)) a(EA) b(¢B)
and w(€path (p)):-(3¢’ (€T(Y,, ) ((a, w)<_—q and (b, /l)c:q) ift and only if

,1, s

-((ba)w)<:q . L S —
The proof of the only if part is performed by an 1nductxon on the length of

the derivation (a, w) <:q

If It ((a, w)<=q )—-l then one of the followmg cases is va11d

acd,, lb,(w) =1, M«%wp'"' - a3
a€d,, lb,(w)=1x;, ax; < q’ ‘€P,,; (14)
acA;, w=yvj @eN', jEN),  1b,(v) = f(EFk, k=1, (15)

1=j=kand azj«_quf, _ :

‘acd;, w=4, ¢ =ri(a). R o (16)

Thus, what we wanted to prove it holds by definition in all of the four cases.
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Now let 1t ((a, w) % q’)>1. Then the derivation (a, w) c*:A q’ can be:
ps P,
written as

’ ¥ 7 ’ ’ ’
(a’ W)ﬁqo((an wl)’ R (ab wl));"_z qo(ql: --"ql) =4q (17)
(I=1; ay,...,ai€4; q€Te(Y,UZ)).

Let g,(€ TH (Z))) be the tree for which

(b, 1) == go((b1, 23, - (bis 7)) (=0 1=, fy S D) (18)

is valid. Then the derivation (b, ).)<;_—Bq can be specified in the following form:
* *
(b’ A’) <q=’.§ qO((bl, l)]_), vy (bn Ut)) ?,% qO(ql’ ety qt) = q (19)

where strq.(vs)=q;’ for all s(=1,...,1). Téking into account this latter fact
as well as the derivation (b, vs)?%qs (s=1,...,t) by Lemma 3.1 we get

(b =g, (s=1,..,1). (20)
9,8 : '

Studying (17) we can say that three cases are possible, namely
acd,, b, (w) = f(EFk for some k = 0); @1)
acd,, 1b,(w) = x;(€X,); (22)
acd;, w=vj, Ib,(v) =f(EF, for some k(=1) and 1 =j=k). (23)

We only detail case (21) because the others can be done similarly. Then, from (21)
and (17) we obtain

af (zy, .., 2) < qo(@r ziy, ., ;2 )EP, (0 =iy, ..., i) = k) 24)
and .
(a;, ws)c:qs’ for all s(=1, ..., ). 25)

Taking into account the relations (18) and (24) by the definition of P” it follows
that

(ba a)f(zl’ .. Zk) - %((bu _,1 T (bt,aj,)zij‘)ePZ~ (26)
Since 1=j,, ...,j,=! thus, from (25),
@500 W35 45, @7)

follows for all s(=1,...,t), moreover, from this and by (20) and the induction
hypothesis, we obtain ((b,, a;), w;,) <=*:q;-' (s= 1, ..., t). Finally, from these latters

and the derivation ((b, a), w) <= qo((bl, a;)wj,, ..., (b, a;) M;‘j‘) (flowing from (26))
we have what we wanted to prove
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In order to prove the if part of our Theorem let-us suppose that the derivation
d=((b, a), w)<:q holds and let 1t (d)=1. There are four possible cases. Three

of them can be specified as (21), (22) and (23) and the fourth is the case ac4;,
w=A. Because of similarity, we deal with case (21) only. Since lt(d)=1 thus
(b, a) f~qe P} follows by the definition of the length of a derivation. From this
we get af(zl, ces Z) ~ g5 (ay 2y, ,a,z,,)EPf(_l>0 0=iy, ..., i =k; g€ Te(Y,,UZ))

and (b, 1) <=-—-q Consider the derivation (g, w)c% 95 ((ar, wp, ..., (@, W)
QOt ’ . P,

<—:£qo(q1, ..., q1), which exists because of A is completely defiend. If we take
B,

the tree ¢’ =q, (41, ...,I g;) then (b, /l)c:q holds obviously. -
Suppose now that 1t (d)>1. Then d can be written in the following form:

((b: 'a)a W) :)_,T_C_ q()((bl, al)wl, (A3} (bn ar)wt) :‘—é ‘Io(%a sey qt) =4q. (28)

Then three different cases exist, namely (21), (22) and (23). Again, since these cases
are similar we deal with case (21) only. In this case, (28) means that

‘ (b’ a)f(zla ey Zk) b qo((bn al)zip bAAS] _(bt, at) Zi,)EP”’ (29)
moreover,
((bs» @), w,) ;:% g, forall s(=1,...,1). (30)

By the definition of Py, this implies that
af(zy, ..., ) < qo(ayzq, ..., ai z[)EP; , @31
for some /(=0) and gg(€ T((Z;)), furthermore,

* .
(b, D) €= qo(by2,,, ..., by z;) (32)
. quB
and a;=a;, z;=z; (s=1,...,¢). Then from (31), it follows that
¥ I ’ ’ 7
(a, W)<== 90 .((ah wi), ..., (aj, Wl)), (33)
furthermore, w,=w; for all s(=1, ..., t). Then, by the induction hypotesis and
(30), we obtain N
(340 (@5 w) e a7 and (b, <=q) for all s=1,..,0).  (34)
s ‘P

Define the trees g¢;(€T6(Y,)) (r=1,...,1) as follows

g/ if r=i, for some s(=1,...,)
g; = ythe tree which can be derived from
(al,w}) in pwith A, otherwise.

(Note that if in the above definition both r=i; and r=i, hold for some
r(_l ,I}) and sss’ then w,=w, holds because of wi=w], and a,=a,
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' holds because of a;=a;,. Thus, also ¢7/=gq # On the other hand 1f r=i does

not hold for any s then q, exists because A is completely deﬁned)
Finally, we are going to show that the tree q'=gq;(q;, .. o g)) (€Tg(Y, )) is
suitable.. Indeed, it follows from (33) and the definition of q, (r=1,...,1) that

(a, w)c:q Moreover, it follows from (32) that (b, A <=—_]—3 qo(blvl, s b))
and str (v) q, for all Ss(=1, ..., ). Takmg into account that q; ~—q”, from
(33) and by lemma 3.1, we. have b, <q7—_q This ends the proof of the if part.

If we choose a=a,, w=/, then we have T @A 0T DA ST DA. e
The equality follows from the fact that every tree transformation being in 7 DA
can be decomposed by itself and the ldentlty and this latter is in 9,. O

If in the former theorem A4; =0 then EC @, hence, we obtain
‘Corollary 4.2. 79, 0.9'@42{ T9A,. O

“Finally, we want to show that if we apart from the condition that A is de-
terministic in Theorem 4.3 then this equality does not remain valid. Namely, we
have the stronger

" Theorem 4.4. The classes T o, oT DA and 7 are mcomparable

Proof. It is easy to show that the tree transformation given in Example 2.1
iIsnotin J,07 DA s.

On the other hand consider the AT transducer A(=(Tp(Xy), 4, TG(Xl), a, P))
where

N

(i) F=F= {f} G=G, = {gl’g”}
(i) A=4,={a};
Giiy P =P,UP,,
P, = {af (z) < gi(azy), af (z)) < gaazy)},
P, = {ax; < x1};
and the AT transducer B(= (TG(XI), B, TH(XI), b, P’)) where
(i) H= HIUHQ, H, = {hl}, H, = {hy};
(i) B=B,={b}; ‘
(iiiy P’ =P, UP, UP, where
P, = {bg(z) = h(bz)} Py, = {bga(z) — ho(bz, bz,
Py, = {bx; — x,}. 4 ’

Let T,=T(A), T,=T(B) and T=T,oT,. Obviously, T,cT L, T,cTDL,.
Since both A and B contain only one synthesized attribute it is obvious to show
by.induction on » that

T|f(x ) <L {(fn

where

s ho(a, q))lqET!f';x 3
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for each n(=1). Taking into account that T}, =(x,, x;) it is easy to show that
the images of tree f"(x,) are ‘“‘simmetrical” for all n(=1). Moreover, it can be
seen that the tree f"(x;) has 2" images, and.2"-! of them are of .form #,(q, g).
Assume that T=T(C) for some AT transducer C(=(Tx(XY), C, Ty(X),
C;, P”,rt)). Let
K=]|C|, L=|C| (where C=CUC),

= |{glq is the right side of some rule of P” and has the form h,(g;, ¢2)}|-

Let us fix an arbitrary integer n(=1).” Consider the derivation of some image
hy(q, q) of the tree p=f"(x;). This derivation can be written in the following way:

(a3 )") ;‘%(b: W) ﬁ h2(q1((a19 vl), teey (arn U,,)), qz((bla wl)’ L] (bm, wm)))
' . : (33
_ﬁhz(41(r1a sy rn): qZ(sl, cres sm)) : hz(qa q) '

for some a(€C7). Observe that it holds: if (a;, v) %r} then r;=r} (j=1, ..., n)

and if (b, wk)<—;zsk then sk—sk (k=1, ..., m). Indeed, in the opposite case if

py
r;#r; would hold for some j (—1 . n) then — since the images of p are sim-
metrlcal — we should have Ch("l,- is s r)=q and ql(rl, s By, T =q
and it is a contradiction.

Thus, each derivation (35) is determined by the attribute occurence (b, w)
and the alternative of the rule applied there. As the number of attribute occurences
is (K+L)(n+1) and the number of alternatives of a rule is at most M we obtain
that the number of images of p, which has the form 5, (g, q), is at most (K-+L)YM(n+1).
This is again a contradiction provided # is sufficiently large. [
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