On finite nilpotent automata

By B. IMREH

In this paper we consider the isomorphic and homomorphic realizations of
finite nilpotent automata. First we characterize all finite subdirectly irreducible
nilpotent automata. Secondly we give necessary and sufficient conditions for a
system of automata to be isomorphically complete for the class of all finite nilpotent
automata with respect to the a-products (see [2]). Finally, we characterize the
homomorphically complete systems for the class of all finite nilpotent automata
with respect to the a-products.

The terminology and notations will be used in accordance with [3). By an
automaton we always mean a finite automaton. It can be seen from the definition
of nilpotent automata that if A=(X, 4, é) is a nilpotent automaton with absorbent
state g, then

(i) A is connected in the sense that for any a, b€ A there exist p, g¢ X* with
ap=by,

(ii) the binary relation aéb@(ap) (pEX * & ap=>b) is a partial ordering in
A and q, is the greatest element in (4, =

Theorem 1. A mlpotent automaton A= (X A, 9) (j4|=2) is subdirectly ir-
reducible if and only if .

(1) there exists an @€ AN\{g,} such that a, is the greatest element in
(A\{aO} —):

(2) for any a,b€A if a=b and {a, b}<E {a,, a,} then there exists a pEX +
with aps=bp.

, Proof. Theorem 1 will be proved in a similar way as the corresponding state-
ment for commutative automata in [1].

In order to prove the necessity assume that A is subdirectly irreducible and
(1) does not hold. Then (A\{4,}, =) has at least two maximal elements. Denote
them by a, and a,. Consider the following relations: for any a, b€ A

ac, b if and onyl if {a, b}< {a,, a,} or a=b,

ac,b if and only if {a, b}< {a,, a,} or a=b.
It is not difficuit to see that ¢, and o, are nontrivial congruence relations of A and
0,Noy=4,, where 4, denotes the equality relation of A. This is a contradiction.
Now assume that (1) holds and (2) does not hold. Then there exist u,v€A4 such
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that wusv, {u, v} E {a,, a,} and up=wvp for any pcX*. Consider the following
relations: for any a, b€ A }

ac,b if and only if {a, b}C {ao, a,} or a=b,

¢oyb if and only if {a, b}C {u, v} or a=b.

It is clear that o, and o, are nontrivial congruence relations of A and o.Noy,=4,,
which is a contradiction.

To prove the sufficiency assume that (1) and (2) are satisfied by A, and A is
subdirectly reducible. Then there exists a congruence relation ¢ of A such that
0#4, and ay%a,(¢). By g;éA 4> there exist uzv€A with u=wv(g). Consider
the nonvoid set

B ={{a,b}: a,b€A, a = b, (3p) (peX* and {u,v}p = {a, b})}.

Define the binary relation = on B as follows: {a, b}={c¢’, b’} if and only if there
is a word peX™ satisfying {a, b}p={a’, b’}. It is obvious that = is a partial or-
dering in B. Let {a, b} denote a maximal element of B. Then, by the definition
of B, a=b and a=b(e). Therefore, {a,b}& {ap, a;}. On the other hand, {a, b}
is a maximal element in (B, =), thus, ap=>bp for any peX™, contradlctmg con-
dition (2). This ends the proof of Theorem 1.

By Theorem 1, we can give all subdirectly irreducible nilpotent automata
directly. Indeed, let m=1 be a fixed natural number and consider the input set
Xo={x1, ..., x,}. Take the sets A{™={0}, 4{"={0, 1},

Ay = AP U(uy; oo )0 g, o, ug€A45™ and {uy, .., u, (AN ASY) 50}
for all n=2. Now, define the automata A{™ n=1,2, ... in the following way:
A = (X,,, (™, 8)), where 5,0, x) =0 (t =1, ..., m),

A = (X,,, A{™,5,), where §,(0, x) = 5,(1, x) =0 (t=1,...,m), -

and in case of n=>2 '
AM = (X,,, AT, 8,) with 8p som . = 0,z and 8,((uy, ..., ), X)) = 1,
(t=1,...,m) for any (4, ..., u,)EAL\AS™,, where the. restriction of 8, to

Afmy ><X is denoted by OnlA XX,

Using Theorem 1 it is not difficult to prove that a nilpotent automaton A
with the input set X, is subdirectly irreducible if and only if there exists a natural
number 1 such that A can be embedded isomorphically into a quasi-direct product
A (X, ) of Al™ with a single factor. From this we get the following

Corollary. A system X of automata is isomorphically complete for the class
of all nilpotent automata with respect to the quasi-direct product if and only if
for any pair (#, m) of natural numbers n, m=1 there is an automaton A€ZX such
that A{™ can be embedded 1somorphlca11y into a quasi-direct product of A with
a smgle factor.

. This Corollary shows that there exists no system of automata which"is iso-
morphically complete for the class of all nilpotent automata with respect to the
quasi-direct product and minimal.
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We say that an automaton A can be realized homomorphically by an e;-product
- of automata A, (t=1, ..., k) if there exists a subautomaton B -of an «;-product
of automata A, (=1, ..., k) such that A is a homomorphic image of B.
We are going to use the following obvious statements.

Lemma 1. If an automaton A can be embedded isomorphically into an
ap-product of automata A, (¢=1, ..., k) and for some 1=i=k the automaton A;
can be embedded isomorphically into an «y-product of automata B; (j=1, ..., 5)
then the automaton A can be embedded isomorphically into an og-product of
automata A, ..., A;_, By, ..., B, Ajyq, oo, AL

Lemma 2. If an automaton A can be realized homomorphically by an
ag-product of automata A, (¢t=1, ..., k) and for some 1=i=k the automaton A,
can be realized homomorphlcally by an o,-product of automata B; (j=1, ..., s)
then the automaton A can be realized homomorphically by an ao-product of auto-
mata Ay, ..., A;_1, By, ..., By, Ajpy, o, Ag

Let us denote by R,,—({xl, ...,x,,_l}, {1, ...,n},8,) the automaton, where
0,(t, x,)=min (t+s,n) forany 1=t=n, x€{x;, ..., x,_1} and n=2.

Concerning the isomorphic reallzatlons of nilpotent automata with respect
to the oy-product we have the following result.

Theorem 2. A system X of automata is isomorphically complete for the class
.of all nilpotent automata with respect to the «y-product if and only if one of the
following four conditions is satisfied by X:

(1) there exists an automaton in X which has three different states- b, ¢, d
and four input signs y, z, v, w (need not be different) such that by=>b, bz=c, cv=
=dv=bw=d hald,

(2) ¥ contains an automaton which has two different states b, ¢ and two input
signs y, z such that b=cy=>by and bz=c hold,

(3) Z contains an automaton which has two dlfferent states b, ¢ and two in-
put signs y,.z with b=by, bz=cz=c,

(4) for any natural number n=3 there exists an automaton in % which has
n different states a, (t=1, ..., n) and inputsigns x{ (¢.=1, ..., n—1) (k=1,...,n—1t)
such that a,x{?=a,,, if létén—l, 1§k§n—t furthermore, a,,x{"‘l):a,l hold.

Proof. In order to prove the necessity assume that X is isomorphically com-
plete for the class of all nilpotent automata with respect to the «y-product. Let
n=3 be arbitrary and consider the automaton R,. Since R, is nilpotent, by our
assumption R, can be embedded isomorphically into an ag-product

]] A,({xy, ..., x,_1}, ) of automata from Z. Let u denote a suitable isomorphism,

and for any i€{l,...,n} let (@, ..., a;) be the image of i under u. Denote by
m the least index for which Am7#a,_,, holds. Observe that if a;,=a,, for some
1=i<n—1 then (2) holds, while (3) holds if a;,=a,_,,. Furthermore, if
¢ {8n-1m> @y (=1, ...,n—=2) and a;,=a;, for some indices l=i<j<n—1
then I satisfies condition () by A,. In the remaining case the elements a,
(i=1,...,n) are pairwise different and this implies. that A, has the property re-
qulred in (4). Therefore, since n was arbitrary, if none of condltlons (1, (2) and
(3) is satisfied by X then (4) holds.
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We have already shown the necessity of our statement. Conversely, assume
that (1) holds by B¢€ZX. We shall prove that every nilpotent automaton can be
embedded isomorphically into an ay-power of B. We proceed by induction on
. the number of states of the automaton. The case n=2 is trivial. Now let n=>2
and assume that for any m-<n the statement is valid. Denote by A=(X, 4, J)
an arbitrary nilpotent automaton with n states. If A is subdirectly reducible then
A can be embedded isomorphically into a direct product of nilpotent automata
with fewer states than n. Therefore, by our induction hypothesis and Lemma 1,
the statement is valid. Now assume that A is subdirectly irreducible. ‘Then A has
elements a, and a, satisfying (1) in Theorem 1. Define the congruence relation o
of A in the following manner: for any a, b€ A acb if and only if {a, b}< {a,, a,}
or a=b. The quotient automaton A;=A/s is nilpotent with n—1 states. Consider.
the a,-product A; XB(X, ¢), where ¢,(x)=x and

y if o(a) #o(ap) and &(a, x)€AN\o(ag),
z if o(a) #0(as) and 6(a,x)=ay,

w if o(a)#0o(a,) and d(a,x) = a,,

v if o(a) =a(ae),

(0 (a), x) =

for any x¢€X, o(a)€4/o. It can be easily proved that the correspondence

(6(a), b) if acAN\o(ay),
v(@) =1(c(@),c) if a=ua,,
(o(a),d) if a=ay,

is an isomorphism of A into the «,-product A, XB(X, ¢). Therefore, by our induc-
tion assumption and Lemma 1, A can be decomposed in the required form.

The sufficiencies of condmons (2). and (3) can be proved in a similar way as
the sufficiency of (1). :

Now assume that condition (4) holds. We proceed by induction on the number
of states of the automaton. The case n=2 is trivial. Let n>2 and assume that
the statement is valid for any v<n. Denote by A=(X, 4,8) an arbitrary nil-
potent automaton with. n states. If A is subdirectly reducible then, by our induc-
tion assumption and Lemma 1, the statement is valid. Now assume that A is sub-
directly irreducible and let X={x;, ..., x,,}. Then, by the observation connecting
with Theorem 1, there exists an automaton A{™ such that A can be embedded iso-
morphically into A (X,,, ). Denote by § the least natural number for which A
can be embedded isomoriphcally into A{™(X,,, ¥). Let i denote a suitable isomorp-
hism. Since 2 satisfies (4) there exists an automaton B¢ X which has 5 different states a;
(j=1, ..., 5) and inputsigns x{ (t=1,...,5—1) (k=1,...,5—1¢) such that a,x("—
=0, (t_ sy §=1) (k=1, ..., 5—1) and asx$ 1)_as hold. Now consider the
og-product A; XB(X, ¢) where A1 is defined in the same way as above and ¢, (x)=x,

XD f p(a)€ANA4;-; for some 3=i=5 and
l‘(é(a x))EA,\A, ~; forsome 1l<j<i or
p(6(a, x))e4; with j=1,
¥V if 6(a) = o(ay),

(02(0' (a)’ X) =
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for any x€X, o(a)€4/o. It is not difficult to prove that the correspondence

(a(n) as_;+1) Iif  p(a)€ANA4;~, for some 3=i=35,
v(a) = (U(ao) as_ 1) if u(a)€A,\4,, i
(O'(ao), ) . if p(a)ed;,

-is an isomorphism of A into the ag-product A, XB(X, ¢). Thus, by our induction
assumption and Lemma 1, we have a required decomposition of A. This completes
the proof of Theorem 2.

The following theorem holds for a;-products with i=1.

Theorem 3. A system X of automata is isomorphically complete for the class
of all nilpotent automata with respect to the a;-product (i=1) if and only if one
of the following three conditions is satisfied by ZX:

(1) there exists an automaton iri £ which has two different states b c and three
input signs y, z, » (need not be different) such that by=5b and bz=cv=c hold,
v 2 z contains an automaton which has two different states b, ¢ and three
input signs y, z, v (need not be different) such that by=cv=b and bz=c hold,

“* (3) for any natural number n=3 there exists an automaton in X which has
n different states a; (j=1, ..., n) and inputsigns x{” (t=1, ..., n—1)(k=1, ..., n—1),
y such that a,x{"=a,,, (t=1,...,n—1) (k=1,...,n—1) and a,y=a, -

Proof. The necessity of these conditions can be proved in a similar way as
in the proof of Theorem 2. To prove the sufficiency, again, by Theorem 2, it is
enough to show that an a,-product of «,-products with single factors is an al--
product. But this is immediate from the definition of the «;-products.

For any natural, number n=1 denote by 1, ={x}, {1, ..., n}, 6,) the ‘auto-
maton satisfying 6,(i, x)=min (i+1,n) for all ic {1 , h}. Furthermore, for any
natural number n=3" denote by Q,=({x,»}, {1, . ,n} 5,,) the automaton’ for
which' 8,(f, x)=46,(#, y)=min (i+1, n) forall i#Zn—2, 16{1 ., n} andé(n 2, x)—-
=n-1, 5 L(n—2, y) n. '

In the sequel we shall need a more general concept of a subautomaton. The
automaton B=(Y, B, §’) is an X-subautomaton of A= (X A, 5) if YEX,BSA
and d;p,y=9¢".

Take an automaton A=(X, 4,5). Let acAd and x€X be arbitrary. The
X-subautomaton generated by a and x is called a cycle and it will be denoted by,
(a, x). (Also, this notation (a, x) will be used to denote the set of states of this
X-subautomaton) For a cycle (g, x) there exist natural numbers nz=1 and m=1
such that

(i) n—1 is the least exponent for which there exists a t=>n—1 wrth ax"! —ax'

(ii) m is the least nonzero natural number for which ax"- 1-ax"+'" -1 holds

(iii) the states a, ax, ..., ax"*™-2% are pairwise different.

In this case we say that (a, x) is a cycle of type (n, m).

Observe an important property of cycles which we are going to use in the proofs
of Theorems 4 and 5. Let A=(a, x) be a cycle of type (1, m) and let B=(b, x)
be a cycle of type (n, m), where A and B have the same input sign x. Then the
automaton B is a homomorphic image of A if and only if ii=n and m|[m hold.

3*
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Theorem 4. A system I of automata is homomorphically complete for the
class of all nilpotent automata with respect to the o4-product if and only if one of
the following three conditions is satisfied by X:

(1) there exists an automaton in X which has states b, ¢, d, input sign z
and input words p, r, g such that |p|=1, bs¢c, bz=cz, czq=c, dp=d and dr=> hold,

"(2) (i) Z contains an automaton which has a state b and input signs x,, ..., x,, y
such that bx,...x,=b and bx, by,

(i1) for any natural number n=3 there exist a nonzero natural number m
and an automaton in X having n+m—1 different states a, (t=1, ...,n+m—1)
and input signs x, (I=t<n+m—1) for which a,x,=a,,, (1=t<n+m—1) and
Apim-1Xn-1=4, hOId’ A

(3) (1) for any natural number n=3 there exists an automaton in X which
has n different states b, (r=1,...,n) and input signs x, (1=r<n) such that
bx=b,, If |=t=n-2 and b, _,x,_,=b,,

() for any natural number n=3 there exist m=1 ‘and an automaton in
Z having n+m—1 different states a, (¢=1,...,n+m—1) and input signs x,
(1=t<n+m—1) for which a,x,=a,,, (1=t<n+m-—1) and a,,-1%,-,=a, hold.

Proof. In order to prove the necessity assume that X is homomorphically
complete for the class of ali nilpotent automata with respect to the oy-product. If
X satisfies condition (1) then we are ready. Consider the case when ¥ does not
satisfy condition (1). We shall show that in this case (2) (i) and, henceforth, (3)
(i1} also hold. Indeed, let »=3 and consider the automaton I,. As ¥ is homo-
morphically complete I, can be realized homomorphically by an «;-product of
automata from Z, i.e. there exists a subautomaton A of an a;-product of automata

from X such that I, is a homomorphic image of A. Let us denote by [T A,({x}, ¢)
t=1

such an «,-product and let p be a suitable homomorphism. Let a be a counter image
of the state 1 under g, i.e. p(a)=1. .Consider the cycle (a, x) in A. It is obvious
‘that (a, x) is a cycle of type (1, m) for some m=1 and n=n. From this we get
that a cycle of type (n, m) can be embedded isomorphically into the o,-product

]s] A,({x}, ¢). Let us denote by B=(b, x) the cycle of type (n, m) and by v the
t=1 : :

isomorphism in question. Further on, we write b,=b, b, ., =bx'(1=t<n+m—1).
For any ¢t (I1=t=n+m-1) let (a,, ..., a,) be the image of b, under v. Now con-
sider the congruence relations m,=n,=...=n, on B which are defined in the
following way: for any l1=r=s b;=b;(n,) b;, b;c(b,x) if and only if a,=a
(t=1, ..., r). Since the quotient automaton B/r, is a homomorphic image of B
we obtain that B/r, is a cycle of type (n,, m,) for some natural numbers n,, m,,
where n,=n and m,|m. On the other hand, by m=n,=...=n, we get n=
=n,=...=n,=n. Now, if n,=n then the automaton A, has the property required
in (2) (i)). In the opposite case there exists a natural number r (1=r<s) such that
n,<n and n,,,=n. Itis not difficult to see that in this case a cycle of type (n, m, ;)
can be embedded isomorphically into the ay-product B/m, XA, ;({x}, ¥), where
Y (X)=x, Yy(n,(b), x)=0,,1(@ay, ..., a,, x) for any m,(b)EB/n,. For the sake
of simplicity let m,,;=m and denote by D=(d,x) and C=(c,x) a cycle of
type (n, m) and (n,, m,), respectively. Therefore, we obtain that D can be embedded
isomorphically into an «y-product C XA, ;,({x}, ¢’) under a suitable isomorphism .
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We write .dy=d, d,,,=dx' (1=t<n+m—1), and for any ¢ (1=t=n+m—1) let
(¢, a) be the image of d, under 7. Since n,<n and m,|m, ¢,”1=c¢,1 ;. From
this it follows that a,_;#a,;m-1 and 6,+1(@y_1,2)=0,+1(@ysm—1,2) for some
input sign z€X,,,. Now observe that the states a,, ..., a, are pairwise different
and {ay, ..., a,.1}{a,, ..., yem—1y=9. Indeed, in the opposite case it can easily
be seen that the automaton A, , has the property required in (1) and this is a con-
‘tradiction. On the other hand, if a,, ..., a, are pairwise different and {a,, ..., a,_;}N
N{a,, ..., ,,+,,,_1} 0 then it is not difficult to prove that A,,,; satisfies the con-
ditions required in (2) (ii). Since n was arbitrary we get that ~ satlsﬁes condi-
tion (2) -(ii).

Now assume that ¥ does not satisfy condition (2) (i). We shall show that
in this case (3) holds. Indeed, let n=3 be arbitrary and consider the automaton
Q,. By our assumption, Q, can be realized homomorphically by -an ay-product:

] .
1T A, ({x, ¥}, ¢) of automata from Y. Denote by u a suitable homomorphism.
t=1 ‘ ’

Let b be a counter image of the state I under u. Consider the states b,=b, b, , =bx*
(I1=t<n-1), b,=b,_,y in the a,-product. They are pairwise different since their
images under p are pairwise different. Let b,=(ay, ..., a,) for any r (1=t=n).
Denote by % the least index for which a n—1k7 @n. It can be easily seen that if
there exist indices i, j (1=i<j=n) with ay=ay then X satisfies (2) (D) by A,,
which is a contradiction. Therefore, the states ay, (1<t<n) are pairwise different.
Then A, has the property required in (3) (i). Since # is arbitrary we obtain that
T satisfies (3). This ends the proof of the necessity.

The proof of sufficiency consists of two steps. First we shall show that if one
of the conditions (1), (2), (3) is satisfied by Z then the automaton Q, can be real-
ized homomorphically by an ay-product of automata from X for any n=3. Sec-
ondly, it is proved that every nilpotent automaton can be realized homomorphically
by an «y-product of automata from {Q,: n=3}. By Lemma 2, this will complete
the proof of sufficiency.

Indeed, suppose that X satisfies (1) by the automaton A(€ZX). We show that
the automaton I, can be realized homomorphically by an ay-power of A for any
n=2. This statement is proved by induction on n. Let n=2 and take the states
b, c(€ ) and the input sign z of A for which b=c and bz=cz. Consider the cycle
(b, 2). Let (k, I) be the type of (b, z). If k=1, then I, can be realized homomorph-
ically by an a,-product of (b, z) with a single factor. If k=1 then, by b>¢ and
bz=cz, it can be easily seen that c¢ (b, z). In this case I, can be realized homo-
morphically by an «,-product of (¢, z) with a single factor. Now let n>2 and assume
that our statement is valid for any m-<n. We distinguish two cases depending on
the value of k.

First suppose that k=1 in the type (k, ) of (b, z). Since X satisfies (1) by
A, there exist a state d(€A4) and input ‘words p, r with |p|=1, dp=d, dr=b. Let
p=x;...x; and let r=y,...y; if ris nonempty Consider the oy-product I,_;X
XA({x}, ), where ¢, (¥)=7x,

z if t=n-1,
@o(t, X) =1y;—, if Jrl =1 and t=n—2—v for some 0 =v <,
Xy if t=n—-2—|r|-ui-v for some 0 =v<iand u=0,1,..
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for all 1=t<n. Define the state a of A in the following manner: a=dy,...y, if
|rlz1 and n=j+2—» for some 1=v<j; a=d if |r|=], n=j+2; a=dx;...x;_,
if |rj=1 and n=j+2+ui+v for some 0=v<i and u=0,1,...; a=bx;...x;_,
if |[r|=0 and n=2+ui+v for some 0=v<i and u=0,1,.... It can be easily
seen that I, is a homomorphic image of the subautomaton generated by (1, @) in
the ogy-product I,_;XA({x}, ). From this, by our induction assumption and
Lemma 2, we obtain a required decomposition of I,.

© Now assume that k=1. In this case c¢(b,z) and thus, by. cz=bz, we have
c#cz. On the other hand czg=c, thus g=z,...z; where i=1. Consider the
ap-product I,_, XA({x}, ¢), where ¢,(x)=x and

z if t=n—1-u(i+1) for some u=0,1,..,
Zicpsr i t=n—1—u(i+1)—o for some 1 sv=iand u=0,1,...

oatt, ) =]

for all 1=t<n. Define the state a(€4) in the following way: a=cz if n=1+
+u(i+1) for some u=0,1,...; a=czz,...2;_ 4, if n=1+u(i+1)+v for some
1=v=i and u#=0,1,.... It is not difficult to see that I, is a homomorphic image
of the subautomaton generated by-(1, a) in I,_; XA({x}, ). This yields a required
decomposition of I,,.

' Now let n=3 be arbitrary and consider the automaton Q,. We know that
dx,...x;=d. We write d=d, and d,,,=d,x, (1=t<i). Without loss of generality
we may assume that the states d,, ..., d; are pairwise different. We show that there
exist an index j (1=j=i) and an input sign w of A such that d;x;#d;w. Indeed,
in the opposite case d,x,=d,x holds for any input sign x and d (t— s eees D)
Since dyr=b and d,rzq= bzq czq=c, there exist 1=¢,, t,=i w1th b= d and
c=d,,. On the other hand, bz=cz from which ¢,=t, and, henceforth b=c
follows y1e1dmg a contradiction. (Observe that we have proved that A has the pro-
perty required in (2) (i).) Now let j(1=j=i) denote an index such that d; x;Ad;w
for some input sign w of ‘A. Take the following a«y-product I, XA ({x, ¥}, qo) ' whére

P1(x)=x,

Xj4ep i i=>1and t=n-2+4v for some 0 =v=i—j, .
Xj4o-i if i>1and t=n-2+4v for some i—j <v =2,
: o Jxj., ifi=1and r=n-2-v for some [ =0 <j,
$alts ) = x_, ifi=>1and t=n—2—j—ui—v for some 0 =v < i
and u =0,1, ...,
- X if i=1, -
snd -

- if t=n-2
@Aw=V1 ’
o (p2(1 x) otherwise,

for all 1=r=n. Define the state a(€4) in the following manner: a= =dy 4 if
i>1 and n=j+2—v for some’ 0<v<_1, a=d;_, if i>1 and n=j4+3+uitv
for some O0=v<i and u=0,1,...; a=d, if i=1. It can be easily seen that the
automaton Q, is a homomorphic image of the subautomaton generated by (1, a)
in L, XA({x, y}, ). By Lemma 2, we got a required decomposition of Q,, and thus
we have proved the- homomorphlc realizations of automata Q,l by z 1f Z satisfies
condition (1).. R : ..
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Now assume that X satisfies condition (2). First we show that the automaton
I, can be realized homomorphically by an ay-product of automata from X for any
n=2. We prove this by induction on n. Let n=2. Since X satisfies (2) (ii), there
exists an automaton A in X which has m+2 different states a,, ..., @, » and input
signs x, (1=t<m+2) such that agx,=a,,, if 1=t<m+2, and a,,,x,=a;.
Take the cycle (a,, x,) in A. If the type of (a,,x,) is (k, /) with k=1 then I, is
a homomorphic image of an «,-product of (a,, x,) with a single factor, and thus
I, can be realized homomorphically by an a,-product of A with a single factor.
In the opposite case, it is not difficult to see that a,,.¢(a,, x,), and thus I, is
" a homomorphic image of an «,-product of the cycle (a,,+2, X,) With a single factor.
Therefore, I, can be realized homomorphically by an «y-product of A with a single
factor. Now let »>2 and assume that our statement is valid for any j<n. Since
I satisfies (2) (i) there exists an automaton Ain X having different states
a(t=1,...,n+m—1) and input signs x, (1=t<n+m—1) such that a,x,=a,,, if
1§t<n+m—1 and a,,,_1x,_1=a,. We distinguish two cases.

First assume that k=1 in the type (k, /) of the cycle (a,_,, x,_,). Consider
‘the &,-product I,_; XA({x}, @), where ¢,(x)=x and ¢,(t, x)=x, for all 1 =¢t<n.
It is clear that I, is a homomorphic image of the subautomaton generated by (1, a;)
in I,_, XA({x}, go) From this, S1m11arly as above, we get a required decomposi-
tion of L.

Now suppose that k=1. Then one can prove that a,.,,_,¢(a,_;, x,—;) and
thus m=1. Consider the oy-product I,_; X A({x}, ¢), where @,(x)=x and

« x)_{x,,_i if t=n—-1—um for'some u=0,1,.., ,
P X =y ., if t=n—um—v forsome 2=v=m and uw=0,1,...

for all 1=t<n. Let a=a,;,_; If n=um+2 for- some u=0,1,... -and
a=0yypm—p if n=14+um+v for some 2=v=m, u=0,1,.... It is not difficult to
see that I, is a homomorphic image of the subautomaton generated by (1, a) in
I,_,XA({x}, ). This yields a required decomposition of I,.

It remained to decompose the automata Q,. Since condition (2) (i) is satisfied
by 2 and only this condition was used in the previous decomposition of Q, (see
the observation made in the proof) the automaton Q, can be realized homomorph-
ically by an o,-product of automata from X for any n=3.

Now let us suppose that X satisfies condition (3). Since conditions (3) (i)
and (2) (ii) coincide, by the proof of the decomposition of automata I, in the case
X satisfies (2),. we have that the automaton I, can be realized hbmomorphically
‘by an ay-product of automata from 2 for any n=2. Let r=3 be arbitrary and
-consider the automaton Q,. Since X satisfies (3) (i) there exists an automaton
B in. £ which has n different states b, (=1, ..., n) and input signs x, (1=t<n)
such that b,x,=b,,, if 1=t<n—1 and b,_,x,_;=b,. Take the «,-product
ln XB({X, y}a (P)7 where (pl(x)=x" and

« x)_{x, if 1=t<n-2,
Pe\bX) =, otherwise,
if 1=t<n-2,
1 otherwise,

X,
@s(t, y) = {x:_
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for all 1=t=n. It can be easily seen that Q, is a homomorphic image of the sub-
automaton generated by (1, b)) in L, XB({x, y}, ). Therefore, we have a required
decomposition of Q,. This ends the first step of the proof of the sufficiency.

To prove that arbitrary nilpotent automaton can be realized homomorphically
by an a,-product of automata from {Q,: m=3}, by Theorem 2 and Lemma 2, it
is enough to show that the automaton R, can be realized homomorphically by an
ao-product of automata from {Q,: m=3} for any n=3.

Let n=3 be arbitrary. In order to decompose R, consider the automata
R (1sj<n) given by RO =({xy, ..., x,_1}, {1, ..., n}, 0 J’) where

N _ min(¢41,n) if s3#j,
0" (8 %) {min(t+j, n if s=j,

for any 1=t=n and x,£{x;, ..., X,_1}- Take the direct product ]] R(” and let

"W denote its subautomaton generated by (1, ..., 1). Observe that a,_a1 holds
if 1=i=n—1 for any state (@, ..., a,_;) of the subautomaton W. Therefore, if

n—1 .
a,=k holds for some- 1=s=n—1 and 1=k=n then a4+ 2 (4,—a;)=k. Now
i=2
define the mapping p: W-{1,...,n} in the following way: ’

n—1
u(ay, ..., a,-y) = min [a1+ 2 (a;—ay), n].
i=2

\

By the observation above, it is not difficult to prove that the mapping x is a homo- -
morphism of W onto R,.

Now let 1=j<n be arbitrary. For the decomposition of RY’ consider the
automaton RU)=({x,, ..., x,—1}, {1, ..., n}, 0¥} for all k& (1 Sk<n—1) where

min (t4s,n) if ¢t=k and j=s,
min (z+1, n) otherwise,

396 x) =

for any 1=t=n and x,£{x, .'..,x,,_;}. Take the direct product n]] RY) and

k=
denote by U its subautomaton generated by (1, ..., 1). Observe that for any ‘state
(ay, ..., a,_)€U 0=g;—a,_;=j—1 holds provided I1=i=n—1 and ag=r
(t=r, ...,n—2) if a,_,=r for some r, where 1=r<n—1. Now define the mapping
u: U~A{1, ..., n} in the following way:

n—g
ulay, ..., a,~;) = min (a,,_1+ 2 (a;—a,_y), n].
i=1

By the observation above, it can be seen that the mapping u is a homomorphism
of U onto RY).

Now let 1=k=n—1 be arbitrary. If j=1 or n—2=k then RY) can be em-
bedded isomorphically into an «y-product of Q, with a single factor. Let us suppose
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‘that 1<j and 1=k<n—2. For the decomposition of RY} consider the «y-product
A= '—{Zuz Q;({x1s s Xu—1}> @), Where
x if s3],

' fy if ay=k+2,
y lf s :j9 (02((11, xs) - {

x otherwise,

%@9={

. y if a1<a2'<...< a;,.
. iy -0y A3y Xg) = :
@iv1(ay; -, @iy X5 {x otherwise,

for any x,€{xy, ..., X1}y 2=i=n—k—2, a€{l,..., t+k+1} (I=t=n—-k-2). -
Let v=n—k—1 and take the following sets of states of A:

4 = {(ay, ..,a): a, = k+2 and g, = a;pq (i=1,..,0-1},

Ay = {(a1 -.na,): ay =k+2 and (35) 2=s=v and a; < a;;, if i=5-1 and
4, =a;,, if s=i<v),

Ay = {(ay, ..,a,): ay=k+2and (Is) (I1=s<vand a;<a;y; f 1 =i=s-1

and a; =a,—1 if s <i=0v)}
It can be shown, .by a sort computation, that B=({x,,...,x,_1}, U 4,

s ) is a subautomaton of A. Now define the mapping u:
(191 A')x(xl""’xn-l} ’ - i=1
] :

{1, ..., n} in the following way:

max a; if (ap,...,a,)64;,UA,,
min{a,+j—1,n) if (a,...,a,)EA4;.
It is not difficult to prove that the mapping x is a homomorphism of B onto RY).
This ends the proof of Theorem 4. _

The following Theorem holds for a;-products with i=1.

Theorem 5. A system X of automata is homomorphically complete for the
class of all nilpotent automata with respect to the arproduct (i=1) if and only
if one of the following two conditions is satisfied by X:

(1) X contains an automaton which has a state b and input signs xy, ..., X, ¥
such that bx;...x,=b and bx;by,

' (2) (i) for any natural number n=3 there exists an automaton in X which
has r different states b, (¢=1, ...,n) and input signs x, (1=t<n) such that
bx,=b,y, if 1=t<n—1 and b, ,x,_,=b,,

(2) (i) for any n=3 there exist m=1 and an automaton in X such that
it has n4+m—1 different states a, (t=1,...,n+m—1) and input signs x,
(I1stsn+m-1) for which ax,=a,,; (1=t<n+m-1) and a,4p 1X%4pn-1=
=a, hold. ‘

Proof. The necessity can be proved in a similar way as in the proof of Theorem
4, (One need consider the homomorphic realization of Q,.)
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In order to verify the sufficiency assume that X satisfies (1) by A=(X, 4, §).
From the proof of Theorem 4 it follows that every nilpotent automaton can be
realized homomorphically by an o,-product of automata from {A}U{I,: m=2}.
Therefore, using the fact that the «,-product of «,-products is an o, -product, it
is enough to show that the automaton I, can be realized homomorphically by an
a,-power of A for any n=2. Indeed, let n=2 be arbitrary. Write b,=b and
b, =bx, (t=1, ..., k—1). Without loss of generality we may assume that the
states by, ..., b, are pairwise different. We distinguish three cases.

First suppose that {b,y, b, ..} {b,, ..., b }=0. Then take the a,-power
A" ({x}, @), where @,(u, X)=y, .

y if {uy, . u JNby, .., b} =0,
Oy, ooy, x) =4x; if {ug; . JuJ0{by, .., b}~ 0 and u, = by,
arbltrary input sign from X otherwise,

for any state (uy,..., 4, 1)€A" ! and 2=¢=n—1. Define the state (ay, ..., @,_;)
of the «;-product in the following way:

b;.y if a,=b; for some 1<j=k,
ar=bi, ary = {bk if a= b1

where =1, ...,n—2. Let U denote the subautomaton of A"1({x}, (p) which is
generated by (al, .ov5 G,_1). It is not difficult to see that I, is a homomorphic image
of U and thus, we got a required decomposition of I,,.

Now assume that {b,y, b, 3% ...} {by, ..., by}=0 and b, y4¢ {b,, ..., b}. De-
note by s>1 the least natural number for which b,y°c{b,, ..., b;}. There exists
such an 5. Take the a;-power A"-1({x}, @), where :

y if u1€{b1.V1,-- b, y*-1},
@1(uy, x) = x; if u,=b; for some |l=j= k
arbitrary input sign from X otherwise,

(v if welby,...biy™,
|y if w,=b, and u,_,€{byy, by ...},
@ty .o tig, X) ={x; if u,=b; for some 1 <j=k,
x, if w,=b; and wu,_,¢{b,y, by ...},
‘ _ arbitrary input sign from X otherwise, -
for any (i, ..., ,_)€A"Y, 2=t=n—1. Define the state (a,, s @,_)EA™Y in
the following way: . i
‘a; =by*Y ...,a,_,= by, a;=b, and

_{b,-_l if a,=b;, for some 1<j=k
U=\, if g, = by,
" where s=t<n—1. Denote by U the subautomaton generated by (a,, ..., a,_,).

Tt can be seen easily that I is a homomorphlc 1mage of U, which yields.a requlred
decomposition of I,.
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Finally, assume that b, yE{bl, ..., by}, Then k=2 and b,y=b; for some
i#2, 1=i=k. Let D={b,, ..., b;_,} if i#1 and D={b,, ..., b} if i=1. Con-
sider the o -power A*~1({x}, ), where

|y if u, = b,
@1 (uy, x) =x; if u,=0>b; forsome 2=j=k,
' arbitrary input sign from X otherwise,

y if u,=b, and {uy,...,u,_;}ND =9,
x; if u,=b; for some 2=j=k,

x; if w,=b; and {uy,...,u_1}ND #= 0,

_ arbitrary input sign from X otherwise,

for any (uq, ..., U, 1)€A"1, 2=t=n—1. Let b, denote that element of D which
has the greatest index. Define the state (ay, ..., @,_1)€4"~? in the following way:

(Pt(u17 cees Uy, x) =

a=b,, az=>b,4,..,a,=b; and

a _{bj_l if a,=b; forsome 1<j=k,
17 b, if a, = by,

where r=t<n—1. Denote by U the subautomaton generated by (a,, ..., a,_;)-

1t is not difficult to prove that I, is a homomorphic image of U and thus we have
a required decomposition of ‘I,.

N It remained to prove the suﬂic1ency of condition (2). But this can be seen
easily, using Theorem 4 and the fact that the og-product of ocl-products is an
oy -product. This ends the proof of Theorem 5.
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