Algebraic representation of language hierarchies

By T. GERGELY

1. Introduction

The investigation of the connections between completely different languages
or between theories formulated within these languages is a problem of growing
importance in System Science, in Theoretical Linguistics and in many branches
of Computer Science. E.g. this problem has arisen in high level program speci-
fication (see e.g. BURSTALL—GOGUEN [6, 7] and DOMOLKI [9]) in abstract data
type research (see e.g. HUPBACH [13]) and in computer systern modelling (see e.g.
RATTRAY—RUS [17]).

In order to establish a connection between 'two languages first a connection
ie. a method of translation between their syntax might be looked for. Another
possibility is connected with the initerpretation of one syntax into another by intro-.
- ducing appropriate mathematical tools (see e.g. MONK [15] and BLumM—ESTES [5]).
" However usually there are a lot of possibilities of interpretation. As to handle

them together, i.e. to investigate the possible connections in a complex way, the
so called theory morphisms have been introduced (see e.g. AGN [3], BURSTALL—
GOGUEN [6] and WINKOwsKI [19]). It turned out that category theory provides
an adequate frame for the required complex analysis. However it would be quite
useful to characterize the category corresponding to language hierarchy by the use
-of a well developed “‘culture” like universal algebra. Here we show that this
characterization is possible by the use of the culture of cylindric algebras. '
Throughout the paper it is supposed that the reader is familiar with basic

notions of universal algebra and category theory.

2. Locally finite dimensional cylindric algebras

Cylindric algebras provide a tool to handle classical first order logic properly
in algebraical way. They are in the same relationship to first order logic as Boolean
algebras are to propositional logic. Here we present the basic notions and pro-
perties of the theory of these algebras relevant to our aim.

Definition 2.1. A similarity type ¢ is a pair of functions (tz, tz) such that
Rg#:Sw and Rg 1S\ {0}, DotzNDotg=H. The elements of Doty and Doty



308 T. Gergely

are called function and relation symbols, respectively. .Here Dof and Rgf stand
for the domain and range of the function f respectively. 0O

Note that a similarity type could be defined in such a way that it contains only
relation symbols because functions are but special relations (cf. AGN [4]).

Let ¢ be an arbitrary similarity type with tz=0. The class of all t-type algebras
will be denoted by Alg (¢). The class of all ¢-type algebras forms a category denoted
by Alg () in the usual way ie. the class of objects is Ob (Alg (¢))=Alg (r) and
the class of morphisms consist of all the homomorphisms. Further on, the boldface
version of a notion corresponding to a class of algebras refers to the corresponding
category.

Let us fix and ordinal o« and the following similarity type L,={(+,2), {+,2),

{—, 1),{0,0),1, O)}U{(c,,O) i<a}U{{d;;,0): i, j<a}, which for the sake of
‘convenience is denoted by-

= {(+,2),{+,2),{—, 1)(0,0),(1,0), (c,,O) (d;, 0):1, j<a}.
Now we define a special subclass of Alg (/) as follows.

Definition 2.2. An / -type algebra U=({4, +%, .%, —% 0% 1% o, d,-‘f->,-,j<a is
said to be a cylindric algebra of dimension « iff it satisfies the conditions below.
(For the sake of convenience we omit the supercript 2 speaking about the concret
operations of a model U, i.e. where it does not lead to amb1gu1ty we simply write
=4, +, +, =, 0,1, ¢c;, dij)i, j<ar)

) (4, +, , —» 0, 1) is a Boolean algebra,
@) ¢;0=0,
(iil) ¢;x-x=x,
(IV) Ci(X ° Ciy) =6XxX- Gy
W) ¢cjx=cjeix,
(VI) dii: 19
(vii) if i=j, n then d;,=ci(d;; - d,),
(viii) if is%j then ¢;(d;j-x)+c;(d;;» —x)=0 for any i, j<a. - O -

Further on the Gothic capital letters refer to algebras while the corresponding

Roman capital letters do to their universe.

Let CA, denote the class of all cylmdric algebras of dimension a. The homo-
morphisms on CA, are defined as usually, i.e. such that they preserve all operations
“of the cylindric algebras. The intuition for CA, theory comes from cylindric set
algebras a systematic exposition of which is HMTAN [12]..

NoTATION. Sb KL{X: XSK} for any class K.

Definition 2.3. Let AcAlg (/). The function A%: A—Sba, which renders

to any a€A the following set A”a—{zéa Pee a;éa} is said to be the dimension-
Sensitivity function. [

Definition 2.4. The following class of [, -type algebras LF,= {‘lIEAlg @):
for any acA, |[A%a|<w} is said to b: the class of locally finite dzmenszonal al-
gebras. O A
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Proposition 2.1. Let U, B€Alg(l,), ac4 and let f: A~B be a homomorph-
ism. Then A4%f(a)< 4%a.

Proof. Let icAf(a), ie. ¢ f (a)¢f (a). Since fis a homomorphlsm this is
possible only in the case c¢;a>a, ie. when i€da. O

Now let us define the locally finite dimensional cylindric algebras as follows.

Definition 2.5. Lf,~CA,NLF,. 0O

Now we turn to the relationships between first order logic and cylindric
algebras.

First we recall some well-known notions of first order logic.

Let ¢ be an arbitrary similarity type and o be an arbitrary ordinal. A z-type
first order language of o variables with equality is a triple (F7*, M,, |=) where F}
is the set of all t-type formulas containing variable symbols belonging to the set
{x;: i€a} of variables of cardinality |a|, M, denotes the class of all r-type models;
=S M, X F? is the validity relation. It is supposed that the symbol = of equality
relation is interpreted in each model as identity.

If, AXC F# and ¢@€F? then Ax |=¢ means that (p is a semantical con-
sequence of Ax.

To each F? there corresponds an /,-type algebra the so called formula algebra

=(Ff, +, +, — 0,1, ¢;,dy: i, j<o) where for any ¢, Y€ FF, i, j<a

o+y stands for oV,
Q- stands for oY,

- stands for  #lo;

0 -stands for Ix=x,

1 stands for X=X,
e stands for Ix;¢ and
di; stands for X;=X;

Definition 2.6. A pair  T=(Ax, F¥), where AxCF? is said to be a theory
in o variables. [J

Note that a theory provides a sublanguage of (F,‘", M,, 1=), namely,-the triple
(F#, Mod (Ax), I=), where Mod (Ax)<{c M,: Al=Ax}.

Let T=(Ax, F) be a theory and let = ;& F{*X F} be the semantic equivalence
w.r.t. T defined as follows: For any ¢, y€F?, o=y iff Ax|=¢<«y. Further
on for any @¢F? let ¢/=; denote the corresponding equivalence class, .i.e.

o/ = LYEF: o=y}

Definition 2.7. The equivalerice classes ¢/=r (p€ Ff) are said to be concepts
of the corresponding theory..T. The sct of concepts of a theory Tis CT._F */=r,
where F,/=r means the factorization of the set of formulas into such classes any
two elements of which are semantlcally equivalent w.r.t. T. O°

Note that the classes of C; contain both open and closed formulas (A formula
is closed- if each variable symbol occurs bound in it.) With respect to the” open
formulas it is important to- remark -that interpreting them in a model the variable
symbols .occurring free should be.handled as constants. (See Examples below.)



310 ’ T. Gergely

On the base of the set of concepts of a theory T we define another / -type algebra.

Definition 2.8. The concept algebra of a theory T is defined as follows €, =
=34 =y, hence Cr=(Cy, +, -, —,0,1,¢;,d;;: i, j<a). O

To see that this definition is correct one has to check that = is a congruence
relation on the algebra §j.
Let us illustrate the notion of concept algebra by the followmg

ExampLEs. a) Let T,=(Ax,, Fl) be a theory, where #,={(0, {(R 1) and
Ax,= {(3xR(,\)—>VxR(x))} Then the corresponding concept algebra is as follows.
(About the graphical representation of algebras see AGN [4].)

CoG =dpo
R(X)/ =10, )0
c@
b) Let T,=(Ax,, F:) be a theory where h=®, {4,1)}) and Ax,=
={3x714(x)}. Then the corresponding concept algebra is as follows, where '

Co C’l R(x)/=

a="14X) = r,,
b="13xA() =1,
¢c=(13IxAX)VAX) =1,
d=Ax) =r,,

e=3xA(x)) =7, and
f=(14x)V3xAX)/ =¢. O -

il

6‘0@

Let C, be the class of concept algebras with o variables, i.e. cl {€p: T=
=(Ax, F“) AxC F?, 1t is an arbitrary similarity type}.
Note that concept algebras €, are denoted in Definition 12.22 of Monk [15]

by MF (where L is a first order language and I is a set of sentences in L). .
No we turn to the investigation of the connection of the classes C, and Lf,.

Proposition 2.2. Let Caxr:) €C,. Then &ax r2€LAf,.

Proof. Any formula ¢¢ F? contains finitely many variables, the set of which,
say,is Var ¢. Let x;€Var ¢ for some k<o, then @=;3x,¢. Thus AeC
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C {i: x;€Var ¢} so it is finite. It is easy to verlfy that €<Ax ry satisfies conditions
@)— (vm) of Definition 2.2. :

Let C, be defined to be the full subcategory of Alg( ) such that Ob C,=C,’
Now we turn to the investigation of the role of the category C w.r.t. other
subcategories - of Alg (/). First we recall (see Mac LANE [14)

Definition 2.9. Let A, and A, be two arbitrary categories. A functor F from
A, into A2 is defined to be a pair F=(Fyy, Fyo,) of functions Fo,: Ob A;—~Ob A,
and Fy,.: Mor A;—~Mor A, such that (i)—(iii) below hold:

() If fcHom (4, B) in A, then Fy, (/)€Hom (Fp,(A), FOb(B)) in Ag;

(11) FMor(fog) FMor(f)OFMor(g) fOT all f gEMOI' Al’

@it) Fy,,(Id A) Idg,, (4) for any A€Ob A,

Here Id,: A—A is the identity morphism corresponding to 4. Note that
instead of Fy, and Fy,, we often write only F.

For a category A the identity functor Id, sends A to A and f to f for all
A€Ob A and feMor A.

The categorles A, and A, are equwalenz iff there is a functor F: A, —~A,, to
which there is a backward functor G: A,—~A; and there are two natural iso-
morphisms 6: FoG -=~Id,, and v: GoF+Id,,.

The categories A, and’ A, are isomorphic iff there are functors F: A;—~A, and
G=A,—~A, such that GoF= Ids, and FoG=Id,,. O

Theorem 2.3. Let a=w be an arbitrary infinite ordinal. The categories Lf,
and C, are equivalent. :
This theorem immediately follows from the following

" Theorem 2.4, Let a=w. There are two full and faithful one-one functors
F: C,~Lf, and G: Lf,—~C, and two natural isomorphisms 0: FoG—Id; and
v: GoF—~Id¢, such that the functions F, G, 0 and v are definable (in a parameter
free way) in ZFC set theory by formuias which are absolute (in set theoretical”
sense) and moreover these functions are pr1m1t1ve recursive (in the sense of DEvLIN

(8] p. 29).

Proof I. First we define the functors.

. Let AcObLf,. From12.18, 12.25 and 12.28 of MoNK [15], see also The-
orem 5.2 of AGN [l] and Proposition 1_in [16], it follows that there is a theory
Ty, i.e. a sinilarity type zo together with the corresponding set of formulas F,
and ‘a set Axg of axioms such that A=C;,. Moreover from the proof of 12.28
of MoNk [15] it follows that there is a function Fo,: Ob Lf —~Ob C, such that

(1) for any WcObLf, Fo,(W=Cry;

(ii) there exists a function 0::0b Lf,~Mor Lf, such that 0(2)=Is (Fp,(), Q[)
for any A<Ob Lf,. Here Is (2, B) dénotes the set of isomorphisms from 2
onto B.

(ii1) the functions Fg, and 0 are definable in ZFC i.e. there are set theoretic
formulas ¢ (x, y) and ¥(x, y) such that

ZFCH(Yx€ 0bLE) (3! yo(x, ATy (x, 1))
and o

ZFCH(Yx€ ObLE,) Vy; z((9 (x, ) AY(x, 2)) = (y€ ObC,Az€ Ts (x, y))).
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Above we assumed that Ob Lf, and Ob C, are also definable in ZFC, i.e. the
expression “y€Ob C,” and “ycObLf,” are¢ formulas of one free variable y in
ZFC. We omit the proof that this assumption is justified. Similarly “z€Is (x, y)”
is also a formula of ZFC of free variables x, y and z.

Moreover the formulas ¢(x, y) and Y (x, y) are absolute (in set theoretical
sense).

(iv) The functions Fg, and 6 are primitive recursive in the sense of DEVLIN
[8], i.e. they can be generated by the schemata (i}—(vii) of [8], p. 29. (And, even
more we believe that these functions are rudimentary.)

Let fEMor Lf,, namely let f€Hom' (U, B) for some U, BcObLE,. We
define F,,,( f)_ [6(B)] tofol(A). Then clearly Fy,, (f)€ Hom (FOb(QI) Fou(B)) S
€ Mor C,.

It is not difficult to verify that this function preserves composition and iden-
tity. Thus the pair F=(Fqy, Fyory 18 @ functor. Since the function 6 is definable
by an absolute formula of ZFC so is Fy,. and thus so is the functor F as well.

Now we show that the functor Fis one-one. -

a) Let U and B be two different elements of Ob Lf,. Recall that at the beginn-
ing of the proof to every WE€Ob Lf, a theory Ty was associated in a fixed way
such that Ty should be the theory constructed from U in the proof of 12.28 [15].
We also recall that for any WAcOb Lf, F(A)=Cr,-

(i) First we suppose that A=V because AB. In this case using the con-
struction provided by MonK in the proof of 12.28 [15] we get different F,, Fi,
1e. Fiy# Fiy. Hence Cry#Crg.

(ii) Let A=B. Since U=B there is at least one operation symbol A say
of n arguments and there are a,...,q,€A4 such that A%(a,, .., a)=a, but
h®(a,, ..., a,)#a,. Therefore Axg¢Ax$

Hence CTQ‘#CT&; Thus Fo, is one-one.

b) Since F,, is one-one it is sufficient to prove that FMor is one-one on
Hom (U, B) for each A, BcOb LA,.

Let fogcHom (A, B) be two elements of Mor Lf, such that f>g. By the
definition of Fy,, obviously Fy,, (f)# Fyo:(g). Thus Fy, and Fy,, are one-one
‘functions and F is so as well.

2. Now let us define the functor G: C,—~Lf,. From Proposition 2.2 it follows
that for G we can choose the identical embedding, i.e. let G=(Goy, Gy, be such
that for any A€Ob C, and feMor C,, Go, (W)= and Gy, (f)=f Clearly
the functor G is definable by an absolute set theoretic formula and it is one-one,
full and faithful. :

From the above observations we have the following
Lemma 2.4.1. For any A€Ob Lf, and f¢Mor Lf,

GoF(W)=F(A), GoF(f)=F(f)
and for any U€Ob C, and feMorC,

FoG(@)=F(), FoG(f)=F(/). "
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II. Now we turn to the construction of the appropriate natural isomorphisms.

1. First we show that the function 6: Ob Lf,~Mor Lf, defined in I.1 (ii)
of this proof is a natural transformation from GoF to Idy which we denote
following MAc LANE [14] by 0: GoF-~Idyy,.

We would need a diagram of type

GoF(f)
G o F(A)————— > G o F(B)
@y 0(B) (%)
Idy, (f)
. Idyy () —————Idyy, (m)

By Lemma 2.4.1 instead of the above diagram it is enough to consider the
- following one:

F(f)
F() F(B)
o) 0(B)
f
9 B

This diagram exists, so by Lemma 2.4.1 the diagram (%) does exist as well.

By the definition of Fy,, we have: Fy  (f)=[0(B)] tofoc0(A). Now it is
easy to establish that the diagram commutes.

9(B) o F(f) = 0(B) o[0(B)] 20 f00(2A) = fof(A).

So 8: GoF —»Idu is a natural transformation. Since for each UEOb Lf,,
0()cls (Go F(), Id” (2)) we have that 0 is a natural isomorphism.

2. Now we define v: FoG+~Idc,. Let v=0rC¢. That is v: Ob C,—~Mor Lf,
such that for any A€Ob C,, v(A)=0(A). Then for any UcOb C,, v(Wels
(FoG (), Idc, (W)). Let A, SBGOb C and f€Hom (%, B). Consider the following
diagram

FoG(f)

FoG(A) . FoG(B)
v(20) v(B).

Ide, (f)
Ide, (2)————— Idc, (B)
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By Lemma 2.4.1 instead of the above diagram it is enough to consider the
followmg one

E(f)
F(20) F(B)
v() v(B)
f !
€A B

In II.1 we have already seen that this diagram commutes. Thus v: FoG =~Idc,
"is a natural isomorphism.

II1. The definiability of F, G, 0,v by absolute set theoretic parameter free
formulas follows from this property of Fg, and estabhshed in I.1 (iii)) and from
the construction of F, G, 8, v by .using Fy, and 0.

The primitive recursiveness of the functions Fop, Fyors Gobs Gmors 0, ¥ can be
established analogously. [

The above theorem raises the question about the isomorphism of the categories
under consideration. We show that isomorphism does occur, indeed.

Theorem 2.5. Let az=w. The categories Lf, and C, are isomorphic, i.e.
Lf,=C,.

Proof. To prove the statement we construct an isomorphism H: Lf,—~C,,
which is a one-one and onto functor, both on objects and on morphisms. For
the construction of H first we define a covering of the category Lf, and then we
define H on this covering such that the image of H covers the category C,.

By Theorem 2.4 we have a one-one endofunctor F: C,—~Lf, and a natural

-isomorphism 8: F+>Idy; , whichsends Finto Idyg,_.

(Note that here we use the fact provided bv Lemma 2.4.1 that G Lf,—~C,
is an identity functor.)-

First we construct the covering of Ob Lf, by induction as follows.

Take L,<Ob Lf,. : : :

We need the following notation. Let A be an arbitrary category and R be
a functor on A. Then for any subclass SSOb A the R image of S is defined as
follows

R*S L {Rop(W): UE ST

Take K,<O0bC,. (It is evident that K,SL,.)
Furthermore let '

LAF*L, (Clearly L, € K,.)
K, LF*K, (Since Ky S L, we have K; S L,.)

Let us suppose that the classes L, and K, have already been defined up to

some n.
Then let

Ly EFL, and K, LFFK,.
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Thus the classes L, and K, have been defined for any n€w by induction.
They are lllustrated by F1g 1.

““For an any ncw let’ W,,_K,,\L,,+1 and let Wi U w,.

nEw

Fig. 1

Moreover let DL LN\W (note that D= U (L\K,)):

On Fig. 1. the white area corresponds to W and the dark one to D.

It follows from the construction that Ob Lf, is covered by the disjoint union
of Dand W,ie. Ob Lf,=DUW.

Now we construct a covering to C, by giving a function Ho,=0b Lf, > Ob C
as follows.

For any AED let Hoy(WEF(A) and for any BEW let H,, (B)—B,
ie. Hopy=(FoutD)UIdW. Clearly Hy,: Ob Lf,>>>Ob C, is one-one and onto
Ob C, since Ob Lf,=L, and Ob C,=K, that is Hy,: Ly>>>K,. Note that Hgy,=
=Fopt DUGGpt W.

Now we define the mapping Hy,,: Mor Lf, >~ Mor C,. We distinguish four
cases:

1. Let A, BcW and fcHom (U, B). Then we define Hy,, (f)<=f.

2. Let A, BeD and feHom (A, B). Then we define Hyyo, (f)F(f).

3. Let AeD, BeW and fecHom (U, B).

Since §: F=~Idys_ is a natural isomorphism we have F(B)>2®..8=H (B).
Then H(W)=F() L2 F(®) LD H(®). We define Hyo(/)L0(B)oF(f). It
is evident that H(f)<Hom (H(2), H(B)).

4. Let UED, BcW and fcHom (B, A). For this case we define Hy, (f)
F(f)o[0(B)]~*. By the above cases 1—4 the mapping Hy,: Mor Lf,~Mor C,
is defined. Since by Theorem 2.4 the functor F is full, faithful and one-one, it is

5 Acta Cybernetica V/3
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easy to pverify that the mapping Hy, is onto and one-one such that for any
A, BcOb Lf, and feHom (U, B) we have Hy,, ()€ Hom (Hop(A), Hop(B)).
For illustration to Hy,, see Fig. 2.

Lf,

Fig. 2

Let H&(Hoy,, Hyo)- For the verification that H is a functor, properties
(i)—(iii) displayed in Definition 2.9 should be established. The properties (i) and
(iii) are satisfied by definition. Let fcHom (A, B) and g€¢Hom (B, €). To verify
property (ii) the following cases should be checked.

a) U B, CeD,

b) A B, CcH,
c) U BcD, CcW,
d) U, Bew, CeD,
e) UeD, B,CcW,
f) Uew, B,0cD,
g) U, Cch, BeW,
h) U, CeW, BWeD,
1) B,8eD, Uew
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and A
D B,8cW, UeD.
From the above cases we check the most difficult ones, namely g) and j)
g U, EcD, Bew.

By using the corresponding definitions we have the following diagram

€ H(®) = F€) —— F(C)
g H(g) =F(g)o [6(B)]* ‘ F(g)
| ~ 0(%B)
B H®B) =B ~e—0o < F(B)
5 H(f) = 0(B) o F(f) | FG)
A ‘ HOD = FQ) =—— F()

By using the fact that F is a functor, from the above diagram we have
H(g)oH(f) = F(g)°[9(23)]"1°9(%)?F(f) =
= F(g) olds(sy o F(f) = F(g)o F(f) = F(gof). :
Hence, by definition, we get
F(gof) = H(gof) since U, EcD.
j) UeD, B,Cew.

By using the correspohding definitions we have the following diagram

6(C)
c _ H@G)=C- < F(G)
g .
H@ig) =g F(g)
0(B) A
B H(B) = B ««—< F(B)
f H(f) = 6(B) o F(f) F(f)

A HQ) = FA) === F(A)

5
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By using the fact that 6 is a natural transformation and that F is a functor
we get from the above diagram -

H(g)oH(f) = g°9(’B)°F(f)
=0(@)oF(g)oF(f) =06(®)o F(gof)
which, by definition, is H(gof), since W€D and CeW.

Thus H is a functor and by its construction, H is one-one and onto and thus
H establishes an isomorphic connection between the categories Lf, and C,. O

Some questions w.r.t. the functor H arise. Namely, we have the following

OPEN PROBLEMS

— Is there an absolute isomorphism M: Lf,>»~C,?
— Is the functor H constructed in the above proof definable by a quantifier
free formula in ZFC? _
" — Is the functor H primitive recursive in the sense of DevLIN [8]?
— Is there any isomorphism I: Lf,>»-C, which is rudimentary in the sense
of DEvLIN [8]?

3. Category of theories

Let o be an ordinal. Definition 2.6 provides the notion of theories of « vari-
ables. However without supposing further conditions two theories T; and T, can
have e.g. different sets Ax; and Ax, but one of these sets might be derivated from
the other one by the use of an appropriate calculus, i.e. by the use of pure syntac-
tical transformations. Le. despite of their differences in their presentations the
theories are equivalent. To avoid such cases we slightly modify Definition 2.6.

Definition 3.1. Let o be a fixed ordinal. Let ¢ be an arbitrary 51m11ar1ty type
and AxC FF. Take Ax*_{(p Ax|=0p}.
The pair (Ax*, F?) is said to be a saturated theory of o variables. [J

Further on when speaking about a theory we have a saturated one in mind.

In the case of saturated theories we often identify a theory T=(Ax, F?) with
the set Ax of axioms.

Now we define how a theory can be interpreted in an other one.

Definition 3.2. Let T,=(Ax,, F}) and T2=<Ax2, F2y be theories in «
variables. Let m: F:—~F¢. :

The triple {(Ty,m, T;) is said to be an interpretation going from 7T into T,
iff the following conditions hold:

a) m(x;=x;)=x;=x; for every i, j<a;

b) m(eAY)=m(p)Am(@p), m(Tp)="Tm(p);

m(3x;0)=3x;m(p) for all ¢, Yy€Fy, i<a;
c) Ax;l=m(p) for all @cF; such that Ax|=¢.

~ We shall often say that m is an interpretation but in these cases we actually
mean (Ty, m, T,). By saying that (T;, m, T,) is an interpretation we mean that
(Ty, m, T;) is an interpretation of the theory T in the theory T,. 0O
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Let m, n be two interpretations of 73 in T,.

The interpretations (T, m, Tp), (T, n, Tp) are defined to be semantlcal[y
equivalent, in symbols m=n, iff the following condition holds:

Axs k= (m(@) = n(p)) for all g€ Fy,

Let (T, m, T,y be an interpretation. We define the equivalence class m/=
of m or more precisely (Ty,m, T,) /= to be: m/z:d{(Tl, n, Ty): n=m and n is
an interpretation of T, in Ty}.

Now we are ready to define the connection between two theories T; and T,.

Definition 3.3. Let T; and T, be two theories of o variables.

By a theory morphism p: Ty—~T, going from 7; into T, we understand an
equivalence class of interpretations of 7; in T, i.e. u is a theory morphism u: 77 - 7,
iff p=m/= for some interpretation (T}, m, T,). [

Definition 3.4. (i) TH, is defined. to be the quadruple TH,-(Ob TH,, Mor TH,,
o, Id), where the mappings o: Mor TH, X Mor TH,—~Mor THa and Id: Ob TH,—~
—~Mor TH, are defined in (11)——(111) below and Ob TH,L{T: T is a saturated
theory in « variables}, Mor TH, ——{(TI, U, Ty pis a theory morphism y: 17T,
and T,, T,€0b TH,}.

(i) Let p: T;>T, and v: T,~T; be two theory morphisms. We define the
composition vou: T;—T; to be the unique theory morphism for which there exists
mCu and n€v such that vou=(nom) /= where the functlon (nom): F}—F
is defined by (nom)((p) n(m(y)) - for all q)e

(iii) Let (Ax, F* be a theory. The 1dent1ty function Id Pz is defined to

be Id u:{((p, % (pEF”}
The identity morphism IdT on T'is defined to be IdT=(IdFac)/ =. [

Proposmon 3.1. TH, is a category.

Proof. The statement follows from the two properties bellow:

a) the composition defined in (i) of Definition 3.4 is associative, ie. let
o T1~>Ty, uy: Ty—~T5 and py: Ty—T, be theory morphisms and let m;€p; for
i€{l1, 2,3}. By associativity of composition of ordinary mappings mgomyom,€
Eﬂso(ﬂzoﬂl) and mgomgom,€(uzopp)op; Proving  psopsopy =(myomyomy)/= =
= (U30 ) Oty ;

b) the identity morphism is Id; defined by (iii) of Definition 3.4. Let u: T~ T,
then for some mép, moldr, (p)=m(ldr, (¢))=m(p)=Ids, m(p), for any (pEF,"‘,
ie. poldy =Idp,op=u. 0O

- The main properties of the category TH, are investigated in AGN [4]. Here
we show how the category of theories can be characterized algebraically. '

Theorem 3.2. The categories C, and TH, are isomorphic.

Proof. First we define a functor F: TH,~C,. ' '
a) We define the object part Fg,: Ob TH,—Ob C, of F as follows. Let
T=(Ax, F})¢Ob TH, be arbitrary, Recall that in Definition 2.8 the concept al-
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gebra € of the theory T was defined to be §,/=r that is C;=§F3/ {0, ¥): Ax|=
|=(p—y)}. We define F(T)LFy,(T)L€, for every TcObTH,. By this the
function Fg,: Ob TH,—~Ob C, is defined.

b) Let u: T,—~T.6Mor TH,.

We define FMO,(y)d={(x, y)€Cr, X Cr,: there exist a @€x and an mé€u such
that m(@)€y}.

It is not hard to check that Fy, (1): €, —~Cr, is a function, and, by Defini-
tion 2.9, it follows that Fy, (u)¢ Hom (€, Gn) > Hom (F(TY, F(Tz))CMor C,,
i.e. Fyo, () is a homomorphism.

¢) We have defined a function F,,: Mor TH,~Mor C,. Let F&(Fop, Fyor)-
Now we prove that F is a functor. Fy,, satisfies the following properties:

(i) for any T€Ob TH,, Fy, (Idr)=1dg,,

(ii) let p,: Ty —~T, and p,: T,~T;. Then FMor (120 1) (@)= Fypor (mon)/ =1 (@) =

_n(m ((P))/— T FMor(.u )(m (@)/ To) FMor (/12)0 Mor(,ul) fOI‘ any (PGFa Here
meEy, and neEyu,.
Thus the pair of functions F=(Foy, Fy,,) is a functor F: TH,—~C,.

Next we prove that Fy,: Ob TH,>-~Ob C, is a set theoretic isomorphism,
that is Fg, is one-one and onto.

() Let T,=(Ax,;, F)cObTH, for 16{1 2}. Assume Ty#T,.-

Case 1. t;#t,. Then F(T)# F(T3) since UCr,=Fi#Fi=UCry,.

Case 2. ,=t,. Then Ax;#Ax,. Recall that by the deﬁmtlon of TH, we
have Ax;=Ax} for i€{l,2}. Thus 1FT)=Ax}=Ax,#AX,=Axj=1FTs), .

Cases 1—2 prove F(T)# F(T,) and hence Fg,: Ob TH,>++Ob C, is proved
to be one-one.

(ii)) Let A<Ob C, be arbitrary. By the definition of .C, then there exists
atheory T=(Ax, FY) such that A=Cr. Let T*=(Ax*, F}). Clearly T*cOb TH,

and F(T")=Cr,=C;=U,

We proved that Rg FOb—Ob C, and hence FOb Ob TH, >+~ Ob.C, is proved
to be a set theoretic 1somorphlsm

Next we prove that Fy,. is a set theoretic isomorphism on the Hom- sets.

Let T,=(Ax; F;y¢ObTH, for i€{l,2}.

@) Let u: T1—>T2 and v: T,—~T, be different, i.e. psv. Then (3m€y)(3n€v)
@€ FY) Axy=(m(p)«—n(9p)). Let these m,n, ¢ be fixed. Then

F)(o/ = 1)=m(9)/ = r.,#n(9)] = 1,=F(W)(¢/= 1,).

Thus Fy,, Is one-one.
(i) Let feHom (F(Ty), F(Ty) be an arbitrary homomorphism from the
algebra €, into the algebra €. Let AtS F; be the set of all atomic formulas

in F7; not involving equality, i.e. At——{R(x, > % ): REDo ¢, and #,(R)=n
and i, ..., i,€a}. Note that (x;=x;)¢At for any i, jEa.

For every i€ {1, 2} we define the homomorphism nat;: & > &= I, as follows
nat; ((p)_(p/_n for each @€ F;,.

Let c: F/=r,~F. be a choice function that is nat20c=IdcT‘. Let n<

& (cofonat,)tAt. Then n: At—F,, is such that nat,on=(fonat,)tAt.
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Since At freely generates the algebra . there is a unique homomorphic ex-
tension m:  —~F. of n to the algebra &, , i.e. mAt=n. The diagram

m

8‘11_’ 312

nat, nat,

S

c, Cr,

commutes since. fonat,tAt=nat,on=nat,omAt and At generates ,,.
Assume Ax,|=¢. Then f(nat,(p))=1F (Tr) nat,(m(¢)) and hence m(p)E Axt=

=nat, (1%) =nat, (xo=X,)-
This proves that (Tl, m, Ty)y is an mterpretatlon and hence m/=: T;~
—~T,€Mor TH, . . :
By the definition of Fy,. we have F(m/=)=f We have proved that
Rg Fyor=Mor C,. Then by the above considerations F: TH, >—»» C, is an isomorph-
ism proving TH,%C,. O :

From Theorems 2.5 and 3.2 we have the following representation theorem.
Theorem 3.3. The categories Lf, and TH, are isomorphic. |

By the representatlon theorem (Theorem 3.3) we can mvest1gate the category
TH, through the investigation of the properties of the category Lf,, since TH, =~ Lf, .

Before using this possibility we recall some well known notions.

By a small category we understand a category C=(Ob C, Mor C) such that
Mor Cis a-set.

Definition 3.5. Let K be an arbitrary category. By a diagram in the category
"~ K we undestand a functor D: C—~K, where C is a small category.
. The category C is called the index category of the diagram D.

Definition 3.6. Let K be an arbitrary category and let D: I-K be a diagram.
Let I=(I, M).

(i) A cone over D is a system (H, (hi i€l))y such that HcObK and for each
icl, hy: H~D(i)¢MorK and for every feM 1f fii—j in I then D(f)oh=h,
in K.

(ii) The limit of Din K is a cone (G (g;: i€I)) over D such that for every cone
(H (h;: icI)) over D there is a unique morphism p: H—G such that for any
IE » hloﬂ gi

(iii) The colimit of D is defined exactly as above but all the arrows are reversed.
Thus a colimit is a cocone ((g;: i€I), G) w1th g D(l)—>G etc.

_ Definition 3.7. A category K is said to be complete and cocomplete if for
every diagram D in K both the limit and the colimit of D exist in K.

Theorem 3.4. The category TH, is complete and cocomplete if Az,

Proof. Since TH,=~Lf, by Theorem 3.3 it is enough to prove that Lf, is com-
plete and cocomplete. Let Re,~HSPLf,, that is Re,CAlg(l) is the smallest



322 T. Gergely

variety containing Lf,. Let Re, be the full subcategory of Alg (/,) with Ob Re,=Re,.
Then Lf, is a full subcategory of Re,. It is well known that any variety is complete
and cocomplete, see e.g. Proposition III1.5.11 of TSALENKO—SHULGEIFER [18].
Let D: I-Lf, be a diagram in Lf,. Let (U, {k;: i€I)) be the limit of D in Re,.
It is easy to prove (see e.g. Corollary 2.1.6 of HMT [11]) that the greatest Lf,-
subalgebra B of U exists, that is U2BcLf, and for every CcLf, such that €S A
then €< B. In other words B is the greatest member ot Lf,MNSA, where SAUA
is the set of all subalgebras of A and B S A denotes that B is a subalgebra of A.
- It is easy to check that (B, (htB: i€l)) is the limit of D in Lf,.

Let (h;: i€I, A) be the colimit of D in Re,. We prove that it is also the co-
limit of D in Lf,. To this end it is enough to prove that WcLf,. Let X=
=U{Rgh;: icI}. Then XS A, X generates A and (Vy€X)|ay|<w since y is
the homomorphic image of some z€D(i)€¢Lf,. Then WcLf, by Theorem 2.1.5
in HMT [11]. O

We proved- that Lf, is complete and cocomplete, moreover, we proved that
Lf, is cocomplete in Re,, that is the colimits of diagrams D: I-Lf, when computed
in Re, coincide with those when computed in Lf,. As a contrast we recall the follow-
ing from GERGELY [10]. Lf, is not cocomplete in Alg (/,), moreover, Lf, is not
cocomplete in Bo, as Bo,S Alg (/,) was defined in HMT [11], neither is it co-
complete in the variety I Crs, as defined in HMTAN [12] as these are proved in
GEeRGELY [10]. I Crs,=HSP Crs,2Lf, was proved in NEMETI [16].

4. Conclusion

Here analysing the connection between the categories TH, and CA, only the
theories were represented by cylindric algebras. However having a theory TC Fy
not only the representation of 7 but that of the models UcMod T of the theory
T, or that of the subclasses KSMod T of the models can be done by the use of
CA’s. E.g. in NiMETI [16], classes of models were represented by the use of the
tools introduced in AGN [2] but from the point of view of the categories presently
introduced only the objects were considered. Thus, for the entire investigation,”
morphisms should be considered as well. This investigation will be done elsewhere.

On the whole the present paper emphasizes the usefulness of certain universal
algebraic tools to handle the category of all theories of « variables.

Thus all results concerning the subclass Lf, of /,-type algebras can be used
directly to investigate language hierarchies. .

This provides the possibility to represent and analyse formal semantics of
language hierarchies by the use of a very important subclass of /-type cylindric
algebras the so called locally independently-finite cylindric algebras, introduced
in- AGN [1]. These algebras were later called regular in HMTAN [12]. At the same
time the established connection provides quite a concrete content to the notion of
Lf, which was introduced in HMT [11].

Theorem 3.3 provides an opposite possibility as well, namely, to establish
some new results about Lf, by using the tools of Category Theory.

RESEARCH INSTITUTE FOR
APPLIED COMPUTER SCIENCE
CSALOGANY U. 30—32.

BUDAPEST, HUNGARY
H—1536



Algebraic representation of language hierarchies 323

References

[11 AGN, (ANDRrEKA, H., GERGELY, T., NEMETI, 1.): Toward a general theory of logics, Part 1,
KFKI—73—67, Budapest, 1973.

[2] AGN: On universal algebraic construction of logics, Studia Logica, v. 36, 1977, pp. 9—47.

{31 AGN: Model theoretic semantics for many purpose languages and language hlerarchles Pro-
ceedings of COLING’80, Tokyo, 1980.

[4] AGN: Investigation in the language hierarchies, SZAMKI-Working paper, Budapest, 1981.

[5]1 BLum, E. K., D. R. ESTES, A generalization of the homomorphism concept, Algebra Universalis, -
v. 7, 1977, pp. 143—161. ’

[6] BursTALL, R. M., J. A. GOGUEN, Putting theories together to make specifications, Proceedings
of 5th IJCAI, Massachusets, 1977, pp. 1045—1058.

[7] BurstaLL, R.M., J.A. GogGuen, The semantics of CLEAR, a specification language,
D. BioRNER, ed., Abstract software specifications, Lecture Notes in Computer Science, v. 86,
Springer-Verlag, 1980, pp. 292—332. -

{81 DevLIN, K. J., Aspects of constructibility, Lecture Notes in Mathematics, v. 354, Springer-
Verlag, Berlin, 1973.

[9] DéMOLKT, B., An example of hierarchical program specification, D. BIgrNER, ed., Abstract
software speczﬁcanons Lecture Notes in Computer Science, v. 86, Springer-Verlag, 1980 pp.
333—353.

[10] GerGELY, T., Mono-coreflexivity of cy]mdnc algebras, SZAMKI-Working paper, Budapest
1981.

[11] HMT (HeNKIN, L., MoNK, J. D., TArsKl, A.): Cylindric algebras, Part 1, North Holland,
Amsterdam, 1971.

. [12] HMTAN (HenkiN, L., Monk, J. D., Tarskl, A., ANDREKA, H,, Neémeti, 1.): Cylindric set
algebras, Lecture Notes in Mathematics, v. 883, Springer-Verlag, 1981.

[13] HupBacH, U. L., Abstract implementation of abstract data type, P. DEMBINSK, ed., Mathe-
matical foundations of computer science, Lecture Notes in Computer Science, v. 88, Springer-
Verlag, 1980.

[14] Mac Lang, S., Categortes for the working mathematicians, Springer-Verlag, N. Y., 1971.

[15] Monk, J. D., Mathemattcal logic, Springer-Verlag, New-York, 1976.

[16] NEmEeTI, 1., Connections between cylindric algebras and initial algebra semantics of CF lan-
guages, DOMOLKI, B., GERGELY, T. eds., Mathematical logic in computer science, North-Holland,
1981, pp. 561—606.

[17] RarTRAY, C. M. 1., T. Rus, Task-hierarchy, a mathematical device for computer system
modelling, Proceeding of First International Symposium on Mathematical Modelling, Missouri,

- 1977, pp. 1—15.

[18] TsaLENKO, M. S., E. G. SHULGEIFER, Osnovy teorii kategorii, Nauka, Moskva, 1974.

[19] Winkowskl, J., Towards an understanding of computer simulation, Fund. Inform., v. 1, 1978,
pp. 277—289.

( Received April 27, 1981)



