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1. Introduction 

The investigation of the connections between completely different languages 
or between theories formulated within these languages is a problem of growing 
importance in System Science, in Theoretical Linguistics and in many branches 
of Computer Science. E.g. this problem has arisen in high level program speci-
fication (see e.g. BURSTALL—GOGUEN [6, 7] and DOMOLKI [9]) in abstract data 
type research (see e.g. HUPBACH [13]) and in computer system modelling (see e.g. 
RATTRAY—Rus [17]). 

In order to establish a connection between two languages first a connection 
i.e. a method of translation between their syntax might be looked for. Another 
possibility is connected with the interpretation of one syntax into another by intro-. 
ducing appropriate mathematical tools (see e.g. M O N K [15] and BLUM—ESTES [5]). 
However usually there are a lot of possibilities of interpretation. As to handle 
them together, i.e. to investigate the possible connections in a complex way, the 
so called theory morphisms have been introduced (see e.g. AGN [3], BURSTALL— 
GOGUEN [6] and WINKOWSKI [19]). It turned out that category theory provides 
an adequate frame for the required complex analysis. However it would be quite 
useful to characterize the category corresponding to language hierarchy by the use 
of a well developed "culture" like universal algebra. Here we show that this 
characterization is possible by the use of the culture of cylindric algebras. 

Throughout the paper it is supposed that the reader is familiar with basic 
notions of universal algebra and category theory. 

2. Locally finite dimensional cylindric algebras 

Cylindric algebras provide a tool to handle classical first order logic properly 
in algebraical way. They are in the same relationship to first order logic as Boolean 
algebras are to propositional logic. Here we present the basic notions and pro-
perties of the theory of these algebras relevant to our aim. 

Definition 2.1. A similarity type t is a pair of functions (tF, tR) such that 
Rg tF<^a> and Rg i R ^co\{0} , D o / F n D o / R = 0 . The elements of Doip and Doij, 
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are called function and relation symbols, respectively. Here D o / and R g / stand 
for the domain and range of the function / respectively. • 

Note that a similarity type could be defined in such a way that it contains only 
relation symbols because functions are but special relations (cf. A G N [4]). 

Let t be an arbitrary similarity type with tR—&. The class of all /-type algebras 
will be denoted by Alg (/). The class of all /-type algebras forms a category denoted 
by Alg( / ) in the usual way i.e. the class of objects is Ob (Alg ( / ) )=Alg (/) and 
the class of morphisms consist of all the homomorphisms. Further on, the boldface 
version of a notion corresponding to a class of algebras refers to the corresponding 
category. 

Let us fix and ordinal a and the following similarity type la={( + , 2}', ( • , 2), 
< - , 1>,<0,0>,<1,0>}U{<C,-,0>: i « x } U {<</;,-, 0): /, A}, which for the sake of 
convenience is denoted by ; 

la = {< + , 2), < •, 2), < - , 1), <0, 0), <1, 0), <c(, 0), 0): /, 

Now we define a special subclass of Alg ( /J as follows. 

Definition 2.2. An /.-type algebra 91=(A, + a , - a i , 0* l a , c f , dy) l>y<« is 
said to be a cylindric algebra of dimension a iff it satisfies the conditions below. 
(For the sake of convenience we omit the supercript 21 speaking about the concret 
operations of a model 91, i.e. where it does not lead to ambiguity we simply write 
91=(A, + , - , - , 0, 1, ch (¿¡j\J<a.) 

(i) (A, + , - , — , 0, 1) is a Boolean algebra, 
(ii) c ; 0 = 0 , 

( i i i ) CiX-X — X, 
(iv) CjO-C.X) = CiX-Cty 
( v ) CiCjX = CjCiX, 

(vi) 
(vn) if i?±j, n then dj^Ciidji-din), 

(viii) if i ^ j then ci(diJ-x)-ci(dij- -x)=Q for any /', y'<a. • 

Further on the Gothic capital letters refer to algebras while the corresponding 
Roman capital letters do to their universe. 

Let CAa denote the class of all cylindric algebras of dimension a. The homo-
morphisms on CAa are defined as usually, i.e. such that they preserve all operations 
of the cylindric algebras. The intuition for CA„ theory comes f rom cylindric set 
algebras a systematic exposition of which is H M T A N [12].. 

N O T A T I O N . SbK={X: X<gK) for any class K. 

Definition 2.3. Let 5l£Alg(/a). The function An: ¿ ^ S b a , which renders 
to any a£A the following set Ama={i£a: cf a^a) is said to be the dimension-
sensitivity function. • 

Definition 2.4. The following class of 4-type algebras L F a = Alg (/a): 
for any afA, \Ama\<a>} is said to b " th ; class of locally finite dimensional al-
gebras. • 
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Proposition 2.1. Let % 23€Alg (/„), a£A and let / : 21—S be a homomorph-
ism. Then 

Proof. Let i(LAf(a), i.e. C ; / ( a ) ^ / ( a ) . Since / is a homomorphism this is 
possible only in the case i.e. when i£Aa. • 

Now let us define the locally finite dimensional cylindric algebras as follows. 

Definition 2.5. L f a = C A „ n L F a . • 

Now we turn to the relationships between first order logic and cylindric 
algebras. 

First we recall some well-known notions of first order logic. 
Let t be an arbitrary similarity type and a be an arbitrary ordinal. A /-type 

first order language of a variables with equality is a triple (F®, M„ [=) where Ff 
is the set of all /-type formulas containing variable symbols belonging to the set 

i£a} of variables of cardinality |a|, M, denotes the class of all i-type models; 
|= Q M t X F ? is the validity relation. It is supposed that the symbol = of equality 
relation is interpreted in each model as identity. 

I f , A x Q F ? and <p(zFf then Ax\=q> means that cp is a semantical con-
sequence of Ax. 

To each F" there corresponds an /„-type algebra the so called formula algebra 
g?=<F (

a , + , - , - , 0, 1, c„ da', i, oc) where for any <p, i ¡ / £ F f , i, 
cp + xj/ stands for <pVij/, 
(p-\j/ s t a n d s f o r <phtj/, 
— <f> stands for 
0 stands for lx=x, 
1 stands for x=x, 
Ci(p stands for 3x;<p and 

stands for xi=Xj. 

Definition 2.6. A pair T=(Ax, F?), where A x ^ F f is said to be a theory 
in a variables. • 

Note that a theory provides a sublanguage of { F f , Mt, |=) , namely, the triple 
<F(*, Mod (Ax), |=>, where Mod (Ax)={9I<i M (: 2l|=Ax}. 

Let T={Ax, F f ) be a theory and let F* be the semantic equivalence 
w.r.t. T defined as follows: For any cp, {¡j^Ff, (p = T\j/ iff Ax\=(p—ij/. Further 
on for any <p£Ff let <p/=T denote the corresponding equivalence class, i.e. 
<pl = T±{xl,iFf. (p = T^}-

Definition 2.7. The equivalence classes (p/ = T F f ) are said to be concepts 
of the corresponding theory- T. The set of concepts of a theory T is CT=F,X/=T, 
where F,/ = T means the factorization of the set of formulas into such classes any 
two elements of which are semantically' equivalent w.r.t. T. • 

Note that the classes of C r contain both open and closed formulas. (A formula 
is closed if each variable symbol occurs bound in it.) With respect to the open 
formulas it is important to remark-that interpreting them in a model the variable 
symbols .occurring free should be. handled as. constants. (See Examples below.) 
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On the base of the set of concepts of a theory T we define another 4-type algebra. 

Definition 2.8. The concept algebra of a theory T is defined as follows. G r = 
= g?/ = r , hence ( £ r = ( C r , + , 0, 1 ,ch du: i, y<a ) . • 

To see that this definition is correct one has to check that = T is a congruence 
relation on the algebra gf. 

Let us illustrate the notion of concept algebra by the following 

EXAMPLES, a) Let T0=(Ax0, F,\) be a theory, where t0=($, {{7?, 1)>}} and 
Ax0={(3x/?(x)—Vx/?(x))}. Then the corresponding concept algebra is as follows. 
(About the graphical representation of algebras see AGN [4].) 

b) Let T1 = <Ax1, F*) be a theory where ^ = <0, {(A, !>}) and Axx = 
= {3x~M(*)}- Then the corresponding concept algebra is as follows, where 

Let Ca be the class of concept algebras with a variables, i.e. C 3 = {G r: T= 
={Ax, F f ) , Ax ^ F', t is an arbitrary similarity type}. 

Note that concept algebras £ r are denoted in Definition 1 2 . 2 2 of M O N K [15] 

by SDif (where L is a first order language and f is a set of sentences in L). 
No we turn to the investigation of the connection of the classes Ca and Lfa . 

Proposition 2.2. Let £<AX,̂ > €Ca. Then d<Ax,Fp €Lf a . 

Proof. Any formula <p€ F* contains finitely many variables, the set of which, 
say, is Var (p. Let x ^ V a r (p for some then (p = T3xkcp. Thus AcpG 
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Q {i: x ;ÇVar cp} so it is finite. It is easy to verify that (£(AXiFt> satisfies conditions 
(i)—(viii) of Definition 2.2. • . . ' 

Let Ca be defined to be the full subcategory of Alg ( / J such that Ob C„ = Ca' 
Now we turn to the investigation of the role of the category Cx w.r.t. other 

subcategories of Alg ( /J . First we recall (see M A C LANE [14]) 

Definition 2.9. Let A1 and A2 be two arbitrary categories. A functor F from 
Aj into A2 is defined to be a pair F=(Fob, FMor) of functions F 0 b : Ob Ax—Ob A2 
and FMor: M o r A ^ M o r A a such that (i)—(iii) below hold: 

(i>If / i H o m (A, B) in Aj then F M o r ( / ) £ Horn (F0b(A), F0B(B)) in A2; 
(ii) ^Mor (fog) — ^Mor (f)oFMor(g) for• all fg£MorAii 

(iii) F M o r ( I d J - I d P o b ( ^ ) for any At Ob A,. 
Here I d x : A— A is the identity morphism corresponding to A. Note that 

instead of F o b and FMor we often write only F. 
For a category A the identity functor MA sends À to A and / to / for all 

/ l e O b A a n d / Ç M o r A. 
The categories A, and A2 are equivalent iff there is a functor F: AJ->-A2, to 

which there is a backward functor G: A2—A t and there are two natural iso-
morphisms 9: FoG-^ld^ and v: G"oF-^-IdAi. 

The categories Ay and A2 are isomorphic iff there are functors F: A-t -»An and 
C=A 2 —Aj such that G o F = I d A i and FoG = IdAz. • 

Theorem 2.3. Let a s c o be an arbitrary infinite ordinal. The categories Lfa 
and Ca- are equivalent. 

This theorem immediately follows from the following 

Theorem 2.4. Let aSco. There are two full and faithful one-one functors 
F: Ca — Lfa and G : Lfa—Ca and two natural isomorphisms 9: F o G — I d ^ and 
v: GoF—.ldc, such that the functions F, G, 0 and v are definable (in a parameter 
free way) in ZFC set theory by formulas which are absolute (in set theoretical 
sense) and moreover these functions are primitive recursive (in the sense of DEVLIN 
[8] p. 29 ) . 

Proof. I. First we define the functors. 
1. Let S I Ç O B L F A . From 12 .18 , 12 .25 and 12 .28 of M O N K [15], see also The-

orem 5.2 of A G N [1] and Proposition 1. in [16], it follows that there is a theory 
Tm, i.e. a similarity type /al together with the corresponding set of formulas F?^ 
and a set Ax a of axioms such that Moreover from the proof of 12.28 
of M O N K [15] it follows that there is a function Fob- Ob Lfa—Ob Ca such that 

(i) for any 2 l 6 0 b L f a F O b ( 2 0 = G r a i ; 
(ii) there exists a function 9: Ob L f ^ - M o r Lfa such that 0(2l) = ls (F0b(2l), 21) 

for any 2t£Ob Lfa. Here Is (21, 23) dénotes the set of isomorphisms from 2t 
onto 93. 

(iii) the functions F 0 b and 9 are definable in ZFC, i.e. there are set theoretic 
formulas cp(x, y) and ij/(x,y) siich that 

ZFC\-Çïx<i0bUJ(3 \ y(p(x, y)A3l yils(x, y)) 
and 

ZFC|-(Vx6 ObLfJ Vy, z(((p(x, y)Aij/(x, z)) — ObCaAz£ Is (x, >•)))• 
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Above we assumed that Ob Lfa and Ob Ca are also definable in ZFC, i.e. the 
expression "_y€ObCa" and "j>€ObLfa" are formulas of one free variable y in 
ZFC. We omit the proof that this assumption is justified. Similarly "z£ls (x, y)" 
is also a formula of ZFC of free variables x, y and z. 

Moreover the formulas <p(x,y) and ij/(x,y) are absolute (in set theoretical 
sense). 

(iv) The functions F 0 b and 9 are primitive recursive in the sense of DEVLIN 
[8], i.e. they can be generated by the schemata (i)—(vii) of [8], p. 29. (And, even 
more we believe that these functions are rudimentary.) 

Let / € M o r L f a , namely let /6Horn (91, 93) for some 91, 93GOb Lf a . We 
define F M o r ( / ) = [0(©)]~1 o/o9(91). Then clearly F M o r ( / ) 6 H o m (F0 b(9i), F 0 b(93))c 
Q Mor Ca. 

It is not difficult to verify that this function preserves composition and iden-
tity. Thus the pair F={F0b, FMor) is a functor. Since the function 9 is definable 
by an absolute formula of ZFC so is FMof and thus so is the functor F as well. 

Now we show that the functor F is one-one. 
a) Let 91 and 93 be two different elements of Ob Lf a . Recall that at the beginn-

ing of the proof to every 9f€Ob Lf^ a theory T<a was associated in a fixed way 
such that Tm should be the theory constructed from 91 in the proof of 12.28 [15]. 
We also recall that for any 3 IeObLf a F(9I) = C T a . 

(i) First we suppose that 91 ̂ S because A ^ B . In this case using the con-
struction provided by M O N K in the proof of 1 2 . 2 8 [15] we get different F,M, FtfB, 
i.e. J y i F , , . Hence C T u * C T a . 

(ii) Let A=B. Since 9 l ^ S there is at least one operation symbol h say 
of n arguments and there are ax> ..., a„£A such that hm(ax, . . . , an)=a0 but 
h® (ax , ..., a„) ji a0. Therefore Axai # AX<B . 

Hence Cr,,, ̂  C r s . Thus F0b is one-one. 
b) Since FQb is one-one it is sufficient to prove that FMoi is one-one on 

Horn (91, 93) for each % 93€Ob Lfa. 
Let / o g £ H o m (91, S ) be two elements of M o r L f a such that f ^ g . By the 

definition of FMor obviously FMot(f)^FMot(g). Thus F 0 b and FMor are one-one 
functions and F is so as well. 

2. Now let us define the functor G: Ca—Lf„. From Proposition 2.2 it follows 
that for G we can choose the identical embedding, i.e. let G={G0b, GMor) be such 
that for any 9 t € O b C a and / € M o r C,, G 0 b (9I)=9I and G M o r ( / ) = / . Clearly 
the functor G is definable by an absolute set theoretic formula and it is one-one, 
full and faithful. 

From the above observations we have the following 

Lemma 2.4.1. For any 9l£Ob U a and f f Mor Lf, 

GoF(9I) = F(9I), G o F ( / ) = F ( / ) 

and for any 9 l e O b C a and / 6 Mor CA 

FoG(9I) = F(9I), FoG(f)=F(f). 
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II. Now we turn to the construction of the appropriate natural isomorphisms. 
1. First we show that the function 0: Ob Lf^—Mor Lfx defined in 1.1 (ii) 

of this proof is a natural transformation from GoF to Id u „ which we denote 
following M A C LANE [14] by 9: GoF^\du<x-

We would need a diagram of type 

GoF(f) 
G o F(2l) -Go F (95) 

0(91) 0(23) 

I d L f o ( / ) 
I d ( 9 I ) - I d L f (S) 

By Lemma 2.4.1 instead of the above diagram it is enough to consider the 
following one: 

F(f) 
F(2l) »F(23) 

0(©) 

This diagram exists, so by Lemma 2.4.1 the diagram (*)"does exist as well. 

By the definition of FMoT we have: FMor(/) = ^(®)]" 1 o/of(2I)- Now it is 
easy to establish that the diagram commutes. 

0(23)oF(/) = 0 (©) o [0 (©)]-1 o f o 9 (21) = /o0(2I). 

So 0: GoF-»IdLfa is a natural transformation. Since for each 2l£Ob Lf a , 
0(21)6Is (GoF(2I),°IdLf„(2l)) we have that 0 is a natural isomorphism. 

2. Now we define v: F o G - - I d c . Let v^=9\Ca. That is v: Ob C a - M o r Lf„ 
such that for any 216 Ob Ca, v(2l)=0(2I). Then for any 2C<E0b Ca, v(2t)€ls 
(FoG(2t), Idc„(2l)). Let 21, 93€Ob C and / £ Horn (2t, 93). Consider the following 
diagram 

FoG(f) . 
Fo G( 21) • FoG(S) 

v(2I) v(23) 

I d c . ( / ) 
Idc.(2I) - Idc, (®) 
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By Lemma 2.4.1 instead of the above diagram it is enough to consider the 
following one 

F ( / ) ' 
F(9i) • F ( » ) 

v(9Q v(S) 

In II. 1 we have already seen that this diagram commutes. Thus v: Fo(?--IdC o i 
is a natural isomorphism. 

III. The definiability of F, G, 9, v by absolutè set theoretic parameter free 
formulas follows from this property of F o b and 9 established in 1.1 (iii) and from 
the construction of F, G, 9, v by using F 0 b and 9. 

The primitive recursiveness of the functions F 0 b , FMor, G0b, GMor, 9, v can be 
established analogously. • 

The above theorem raises the question about the isomorphism of the categories 
under consideration. We show that isomorphism does occur, indeed. 

Theorem 2.5. Let asco. The categories Lfa and Cx are isomorphic, i.e. 
Lfa = C a . 

Proof. To prove the statement we construct an isomorphism H\ Lfa—Ca , 
which is a one-one and onto functor, both on objects and on morphisms. For 
the construction of H first we define a covering of the category Lfa and then we 
define H on this covering such that the image of H covers the category C a . 

By Theorem 2.4 we have a one-one endofunctor F: C^—Lf^ and a natural 
isomorphism 9: F - - I d L f o , which sends F into IdLfl,-

(Note that here we usé the fact provided by Lemma 2.4.1 that G: Lf^—C^ 
is an identity functor.) 

First we construct the covering of Ob Lfa by induction as follows. 
Take F 0 = O b Lfa . 
We need the following notation. Let A be an arbitrary category and R be 

a functor on A. Then for any subclass Ob A the R image of S is defined as 
follows 

- Take .Ko=ObC a . (It is evident that^ K0QL0.) 

Furthermore lei 

LX=F* L0 (Clearly L, i K0.) 

K1=F*Ka (Since Kg G La we have Kx <g LX.) 
Let us suppose that the classes Ln and K„ have already been defined up to 

some n. 
Then let 

Ln+i==F* L„ and Kn + 1±F*Kn. 
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Thus the classes L„ and K„ have been defined for any n£co by induction. 
They are illustrated by Fig 1. 
' ^ F o ^ T n y ^ e t f let Wn=Kn\Ln+1 and let (J Wn. 

nZa 

Moreover let (note that D= (J (Ln\Knj). 
n£ia 

On Fig. 1. the white area corresponds to W and the dark one to D. 
It follows from the construction that Ob Lfa is covered by the disjoint union 

of D and W, i.e. ObUa = D\JW. 
Now we construct a covering to Ca by giving a function HQb=Ob Lf„ >->-«-Ob C„ 

as follows. 
For any 21<EZ> let /70b(2l)J=F(2f) and for any 236 W let i / o b ( i 8 ) = S , 

i.e. H0b = {F0b\D)\Jld\W. Clearly H0b: Ob L f a O b Cx is one-one and onto 
Ob Cx since Ob LfX=L 0 and Ob CX=K0 that is HQb: L0>-*K0. Note that H0b= 
= F0biDUGst\W. 

Now we define the mapping HM o t : Mor Lf,, >->— Mor Ca. We distinguish four 
cases: 

1. Let 21, 93 £ W and / £ Horn (21, SB). Then we define # M o r ( / ) = / . 
2. Let 21, 93€D and /6Horn (21, 23). Then we define HMoi(f)=F(f). 
3. Let 2 I€A ®€ W and / 6 Horn (21, 93). 
Since 6: F - - I d L f a is a natural isomorphism we have F(93)>-^—<B=7/(23). 

Then //(2I) = F ( 2 T ) - ^ - F ( 9 3 ) # ( 9 3 ) . We define HMot(f)=0(%)oF(f). It 
is evident that J / ( / ) £ H o m (//(21), if(93)). 

4. Let A 8 € W and /€Horn (23,21). For this case we define HMoT(f)£= 
J F X / ) O [ 0 ( 9 3 ) ] - 1 . By the above cases 1 — 4 the mapping HMor: Mor L f a - M o r Cx 
is defined. Since by Theorem 2.4 the functor F is full, faithful and one-one, it is 

5 Acta Cybernetica V/3 
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easy to [verify that the mapping //M o r is onto and one-one such that for any 
% 93<EOb Lf, and /6Horn («1, 95) we have i / M o r ( / ) £ H o m (#0 b(9i) , H 0 b (®j) . 
For illustration to ffMoT see Fig. 2. 

Fig. 2 

Let H={HQb, НШг). For the verification that H is a functor, properties 
(i)—(iii) displayed in Definition 2.9 should be established. The properties (i) and 
(iii) are satisfied by definition. Let / £ Horn (91, S ) and g£Hom (93, (£). To verify 
property (ii) the following cases should be checked. 

a) 9I,S,«S:€A 

b) 91, 

c) 91, ®<ЕД <Z£W, 

d) 91,®<ЕЖ, 

e) 91 € Д 

f ) 9KW, » , G € A 

g) 2 i , £ 6 A 

h) 91 ® € A 

i) <&GV 
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and 
j) ®,<£€fV, 916.0. 

From the above cases we check the most difficult ones, namely g) and j) 

g) 91 , S € D , S&ew. 

By using the corresponding definitions we have the following diagram 

© 

/ 
2t 

//(G) - F((£) m ) 

H(g) = F(g) o [0(B)]-
0(S) 

/ / (©) = 93 <F(©) 

F(g) 

H ( f ) - 0 ( © ) o F ( / ) 

//(91) = .F(9l) 

TO 

F(9Í) 

By using the fact that F is a functor, from the above diagram we have 

H(g)oH(f) = f (g )o [0 (23) ] " 1 oO(S)oF( / ) = 

= F(g) o IdF ( S ) o F(J) = F(g) o F ( f ) = F(g o f ) . 

Hence, by definition, we get 

F(gof) = H(gof) since 9 l ,(££D. 

j) 9 l € A S , 

By using the corresponding definitions we have the following diagram 

e 

© 

/ 
91 

0(<E) 
/ / ( £ ) = í F(<£) 

H(g) = g 
0(S) 

//(©) = © — <F(S) 

F(g) 

H ( f ) = 0 ( S ) o F ( / ) 

//(91) = F(9I) F(9l) 

j* 
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By using the fact that 0 is a natural transformation and that F is a functor 
we get from the above diagram 

H{g)oH(f) = goO(iB)oF(f) = 
- 0(G) o F(g) o F(J) = 0(G) o F(g o f ) 

which, by definition, is H(gof), since 91 £D and W. 
Thus H is a functor and by its construction, H is one-one and onto and thus 

H establishes an isomorphic connection between the categories Lfa and Ca. • 

Some questions w.r.t. the functor H arise. Namely, we have the following 

OPEN PROBLEMS: 

— Is there an absolute isomorphism M: Lfa>-*->-CI? 
— Is the functor H constructed in the above proof definable by a quantifier 

free formula in ZFC? 
— Is the functor H primitive recursive in the sense of DEVLIN [8]? 
— Is there any isomorphism I : Lfa>—>-Ca which is rudimentary in the sense 

o f DEVLIN [8]? 

3. Category of theories 

Let a be an ordinal. Definition 2.6 provides the notion of theories of a. vari-
ables. However without supposing further conditions two theories and T2 can 
have e.g. different sets Axx and Ax2 but one of these sets might be derivated from 
the other one by the use of an appropriate calculus, i.e. by the use of pure syntac-
tical transformations. I.e. despite of their differences in their presentations the 
theories are equivalent. To avoid such cases we slightly modify Definition 2.6. 

Definition 3.1. Let a be a fixed ordinal. Let t be an arbitrary similarity type 
a n d A x C f " . Take Ax*^={<p: Ax|=<p}. 

The pair (Ax*, Ft
x) is said to be a saturated theory of a variables. • 

Further on when speaking about a theory we have a saturated one in mind. 
In the case of saturated theories we often identify a theory T=(Ax, F*) with 

the set Ax of axioms. 
Now we define how a theory can be interpreted in an other one. 

Definition 3.2. Let r i = ( A x 1 , F*) and T2=(Ax2, F*) be theories in a 
variables. Let m: F£ —F®. 

The triple (Tx, m, T2) is said to be an interpretation going from Tx into T2 
iff the following conditions hold: 

a) m(xi=xj)=xi=xj for every i, y'<a; 
b) m{<pA\l/)=m(q>)Am(ij/), m(~[q>)=lm(<p); 

m(3xi(p) = 3xim((p) for all (p,\j/£F?v z'<a; 
c) A.x2\=m((p) for all (p£F,® such that AxjNcp. 

We shall often say that m is an interpretation but in these cases we actually 
mean (7 \ , m, T2). By saying that (7 \ , m, T2) is an interpretation we mean that 
(T1, m, T2) is an interpretation of the theory Tx in the theory T2. • 
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Let m, n be two interpretations of 7\ in T2. 
The interpretations {Ti, m, To), (Ty, n, T^) are defined to be semantically 

equivalent, in symbols m=n, iff the following condition holds: 

AX2 N (in (cp) — n((p)) for all (pfF'¡[. 

Let {T1,m, T2) be an interpretation. We define the equivalence class mj = 
of m or more precisely (Tx,m, T2) j= to be: = {(7i> T2)' n=m and n is 
an interpretation of Tx in T2}. 

Now we are ready to define the connection between two theories Tx and T2. 

Definition 3.3. Let Tx and T2 be two theories of a variables. 
By a theory morphism p: TX-*T2 going from Tx into T2 we understand an 

equivalence class of interpretations of Tx in T2, i.e. n is a theory morphism /¡: — T2 
iff n=mj= for some interpretation (Tt, in, T2). • 

Definition 3.4. (i) THa is defined, to be the quadruple TH^ ¿=<Ob TH a , Mor TH^, 
0, Id), where the mappings o : Mor TH a XMor THa—Mor THa and Id: Ob T H a -
- M o r THa are defined in (ii)—(iii) below and Ob T H 2 4 { F : T is a saturated 
theory in a variables}, Mor THa={(T'1 , T2): n is a theory morphism //: T1 — T2 

and T,, T2€Ob THa}. 
(ii) Let n: Tt-*T2 and v: T2-+T3 be two theory morphisms. We define the 

composition vofi: Tj — T3 to be the unique theory morphism for which there exists 
mCp and n£ v such that vo/x=(nom) / = , where the function (nom): F^ -<-
is defined by (nom)((p)=n{m(<p)) for all (p€.Ft\. 

(iii) Let T=(Ax, F?\ be a theory. The identity function IdF« is defined to 
be IdF*={(cp, q>): cpf F?}. 

The identity morphism I d r on T is defined to be Id7- = (Id i.«)/= . • 

Proposition 3.1. TIL is a category. 

Proof. The statement follows from the two properties bellow: 
a) the composition defined in (ii) of Definition 3.4 is associative, i.e. let 

Px'. Tx — T2,\i2. T2 — T3 and fi3: be theory morphisms and let for 
/€{1,2, 3}. By associativity of composition of ordinary mappings m3om2omx£ 
fn3o(ji2opj) and m:iom2om1f(j.b}oproving /i3o ^.¿o nl = (m.,om2om{)J ~ = 
= (fi3 o/xjopi, 

b) the identity morphism is I d r defined by (iii) of Definition 3.4. Let /t: Tx — T2, 
then for some m o IdT l (<p) = (id T i(cp))=mUp)=IdT 2 m(cp), for any < p £ F f , 
1.e. / zo Id r i =Id r 2 o^= / i . • 

The main properties of the category THj are investigated in AGN [4]. Here 
we show how the category of theories can be characterized algebraically. 

Theorem 3.2. The categories Cx and THa are isomorphic. 

Proof. First we define a functor F: THa-«-Cit. 
a) We define the object part F0b: Ob T H , + O b Ca of F as follows. Let 

7"= (Ax, Ff )eOb T H j be arbitrary. Recall that in Definition 2.8 the concept al-
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gebra (£T of the theory T was defined to be 5 , / = t that is &T
='&T/{((P> <FI): Ax |= 

I=(<P~~4>)}- We define F{T)=F0b(T)=^r for every F 6 0 b THa. By this the 
function F 0 b : Ob T H a - O b Ca is defined. 

b) Let //: ^ - ^ M o r T E ^ . 
We define F M o r (p)=((x , j>)6C r iXCT a : there exist a <p£x and an m£n such 

that m((p)dy}. 
It is not hard to check that FMor(ji): GT l—£T s is a function, and, by Defini-

tion 2.9, it follows that FM„0i)6Hom (G r i , Gra)==Hom (F(7\), F (F 2 ) )SMor C a , 
i.e. FMot(ji) is a homomorphism. 

c) We have defined a function FMor: Mor THa—Mor C a . Let F = ( F 0 b , FMoi). 
Now we prove that F is a functor. FMoI satisfies the following properties: 

(i) for any r € Ob THa, FMor ( IdT )=IdC T , 
(ii) let nx: TX-~T2 and n2: T2-*T3. Then F M o r ( jx 2 o^)(cp) = FMoT(mon)j = Tj(q>) = 

=n(m(<p))/ = n = FMor02)(m(<p)l = T2) = FMor<>2) oFMor for any (piFf. Here 
mZfix and n€(i2-

Thus the pair of functions F—(F0b, FMor) is a functor F: THa—Ca . 

Next we prove that F0b: Ob THa >—» Ob Ca is a set theoretic isomorphism, 
that is F 0 b is one-one and onto. 

(i) Let Ti=(Axi, F,a)£Ob THa for /€{1,2}. Assume Tx j^T2. 
Case 1. t ^ h - Then F(Ti )^F(T 2 ) since U C T l = F , ^ F f 2 = UC T i . 
Case 2. tx = t2. Then A x ^ A x , . Recall that by the definition of TH,, we 

have Ax—Ax* for «€{1,2}. Thus 1 = A x £ = A x x ^ A x 2 = A x £ = 1 F(-T*>. 
Cases 1—2 prove F(T^)^F(T2) and hence F 0 b : Ob TH,, Ob CA is proved 

to be one-one. 
(ii) Let 216 Ob Ca be arbitrary. By the definition of CA then there exists 

a theory T=(Ax, F?) such that = Let T*=(Ax*,F?). Clearly T*£Ob TH a 

and F ( r * ) = e r * = G r = 2 I . 
We proved that R g F 0 b = O b C i and hence F 0 b : Ob T H ^ ^ O b C,, is proved 

to be a set theoretic isomorphism. 
Next we prove that FMor is a set theoretic isomorphism on the Hom-sets. 
Let T^^AXj, F " ) 6 0 b TH a for /6 {1,2}. 
(i) Let FI: TX — T2 and v: TX-T2 be different, i.e. N^V. Then ([3M£N)QNEV ) 

(3<jo^Ffj) Ax2^=(m(^)—n(<p)). Let these m,n,(p be fixed. Then 

F(jx) (<p/ =T)=m (cp)/ (<p)/ = n= Fin) ((p/ = T2). 

Thus FMor is one-one. 
(ii) Let / 6 Horn (F(T'1), F(T2)) be an arbitrary homomorphism from the 

algebra CT l into the algebra (£Ta. Let At ^ F* be the set of all atomic formulas 
in F£ not involving equality, i.e. At={jR(jf t l , . . . , x,J: i?€Do (x and tx(R)=n 
and ix, ..., i„£oi}. Note that (x t=xj)$. At for any i" j£a. 

For every /6(1,2} we define the homomorphism nat;: as follows 
natj (<p)=<p/=Tj for each (p£F?r 

Let c: F?J = Tt—F£ be a choice function that is na t 2 oc=Idc T a . Let n = 
¿ ( c o / o n a t ^ A t . Then n: At—Ff2 is such that nat2on=(/onat1)^At. 
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Since At freely generates the algebra there is a unique homomorphic ex-
tension m: of n to the algebra 3rtl, i.e. m\At—n. The diagram 

commutes since /onat1 tAt=nat2on=nat2o«jtAt and At generates 
Assume A x ^ i p . Then /(natj((p))—\F<-T2>=na.t2(m(<p)) and hence »1(9)6 Axf = 

=nat2(l®'2)=nat2 (x0=x0). 
This proves that (T l t m, T2) is an interpretation and hence m/=: 7\->-

- T 2 6 M o r T H a . 
By the definition of FMor we have F(m/=)=f We have proved that 

Rg FMor=Mor C a . Then by the above considerations F: THa >—-«-Ca is an isomorph-
ism proving T H a ^ C a . • 

From Theorems 2.5 and 3.2 we have the following representation theorem. 

Theorem 3.3. The categories Lf„ and THa are isomorphic. • 

By the representation theorem (Theorem 3.3) we can investigate the category 
THa through the investigation of the properties of the category Lfa, since TH^ = Lfa. 

Before using this possibility we recall some well known notions. 
By a small category we understand a category C = ( O b C, Mor C) such that 

Mor C is a set. 

Definition 3.5. Let K be an arbitrary category. By a diagram in the category 
K we undestand a functor D: C—K, where C is a small category. 
, The category C is called the index category of the diagram D. 

Definition 3.6. Let K be an arbitrary category and let D: I—K be a diagram. 
Let I=<7, M). 

(i) A cone over D is a system (H, (ht: ¿6/)) such that HfOb K and for each 
/6/, h{: # - 2 > ( 0 6 M o r K and for every f f M if / : i - j in I then D(f)oh,=hj 
in K. 

(ii) The limit of D in K is a cone {G, (gt: if I)) over D such that for every cone 
{H,{ht: if I)) over D there is a unique morphism ¡i: H—G such that for any 
i£l, htOfi=gi. 

(iii) The colimit of D is defined exactly as above but all the arrows are reversed. 
Thus a colimit is a cocone <(gt: if I), G) with g{: D(i)—G etc. 

Definition 3.7. A category K is said to be complete and cocomplete if for 
every diagram D in K both the limit and the colimit of D exist in K. 

Theorem 3.4. The category THa is complete and cocomplete if a^cu. 

Proof. Since TH a ^Lf a by Theorem 3.3 it is enough to prove that Lfa is com-
plete and cocomplete. Let R e a = H S P Lf,,, that is Re a QAlg( / J is the smallest 
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variety containing Lf a . Let Rea be the full subcategory of Alg (4) with Ob Re a =Re a . 
Then Lfx is a full subcategory of Rea. It is well known that any variety is complete 
and cocomplete, see e.g. Proposition III.5.11 of TSALENKO—SHULGEIFER [18]. 
Let D: I-Lfx be a diagram in Lf a . Let (9Í, {h-t: / 6 7 » be the limit of D in Rea. 
It is easy to prove (see e.g. Corollary 2.1.6 of HMT [11]) that the greatest Lfa-
subalgebra © of 91 exists, that is 9 I 3 S € L f a and for every (££Lfa such that £ g 9 l 
then In other words 93 is the greatest member ot LfaDS9I, where S9I 
is the set of all subalgebras of 9Í and © ^ 91 denotes that © is a subalgebra of 91. 
It is easy to check that <©, (h^B: /£ / ) ) is the limit of D in Lf a . 

Let (h¡: /£/, 91) be the colimit of D in Rea . We prove that it is also the co-
limit of D in Lf^. To this end it is enough to prove that 916 Lfa. Let X= 
= U {Rg ht: z'6/}. Then XQA,X generates 91 and (Vj^-JOl Aj>|<a) since y is 
the homomorphic image of some z67)(i')6Lfa. Then 9i6Lfa by Theorem 2.1.5 
in HMT [11]. • 

We proved that Lfx is complete and cocomplete, moreover, we proved that 
Lfa is cocomplete in Rea , that is the colimits of diagrams D: I—Lfa when computed 
in Rea coincide with those when computed in Lf a . As a contrast we recall the follow-
ing from GERGELY [10]. Lfa is not cocomplete in Alg (/„), moreover, Lfa is not 
cocomplete in Boa as B o a g Alg (/J was defined in HMT [11], neither is it co-
complete in the variety I Crsa as defined in HMT AN [12] as these are proved in 
GERGELY [10]. I Crs a =HSP C r s a 3 L f a was proved in NÉMETI [16]. 

4. Conclusion 

Here analysing the connection between the categories THa and CAX only the 
theories were represented by cylindric algebras. However having a theory TQF? 
not only the representation of T but that of the models 916 Mod T of the theory 
T, or that of the subclasses KQ Mod T of the models can be done by the use of 
C A ' s . E.g. in NÉMETI [16], classes of models were represented by the use of the 
tools introduced in AGN [2] but from the point of view of the categories presently 
introduced only the objects were considered. Thus, for the entire investigation,' 
morphisms should be considered as well. This investigation will be done elsewhere. 

On the whole the present paper emphasizes the usefulness of certain universal 
algebraic tools to handle the category of all theories of a variables. 

Thus all results concerning the subclass Lfx of lx-type algebras can be used 
directly to investigate language hierarchies. 

This provides the possibility to represent and analyse' formal semantics of 
language hierarchies by the use of a very important subclass of 4-type cylindric 
algebras the so called locally independently-finite cylindric algebras, introduced 
in-AGN [1]. These algebras were later called regular in HMTAN [12]. At the same 
time the established connection provides quite a concrete content to the notion of 
Lfa which was introduced in HMT [11]. 

Theorem 3.3 provides an opposite possibility as well, namely, to establish 
some new results about Lfa by using the tools of Category Theory. 
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