
On fault tolerant ¿-processors

B y S . R . GROSS . : „

1. Introduction and motivation

In sequential computers the number of real active elements is very small in
contrast to the total number of elements. On the other hand the working speed
of these elements has nearly reached the physical limitations (with respect to the
today's technologies). Therefore a speed up is no more reasonable by improving
the conventional (von Neumann type) architectures and a natural approach to
increase the computing power seems to be the principle of parallel processing in
computer architecture. Cellular spaces might be considered as models for such
parallel computing devices. The implementation of cellular structures renders
possible by the advent of LSI-technology, too.

Since cellular spaces consist of many cells which are not necessarily totally
reliable, it is important to develop strategies for error correction and error detec-
tion. Up to now several articles concentrate on this topic, see e.g. [HANO 75],
[NIKO 75], and [WRIG 76]. Here we want to investigate this topic in /.-processors,
which differ from a cellular space as follows:

—• a state is a 2-tupel which consists of a visible (external) component and
an invisible (internal) component, a so-called qualifier (i.e. the basic cell is a
Mealy-type automaton), •

— there are several local maps, ,
— the transition-functions are centralized in a special control unit and 'shared'

by the single cells.
Thus, an L-processor may be considered to be an emulator of a cellular space.
For details see Legendi [LEGE 76].

The techniques of error correction in /.-processors are similar to those .of
NISHXO and KOBUCHI [N I K O 75] where the basic idea is that the work of;each
original cell is simulated by three cells. In this case we are able to correct single
errors prior to each state transition by a majority decision, if we assume that the
majority decision element is faultless.

2. Notations and basic definitions :

Let N denote the natural numbers, N 0 = N U {0} and Z the set'of integers. For
(/6.N the ¿-fold Cartesian product of Z is denoted by Zd,'i.e: x£Zd can be written
as x=(x 1 ,x 2 ,". . . , xd) with xt£Z (z'=l, ..., d). Especially 0= (0 ,0 , . . . , 0).
P-d)(x1, ...,xd):=xi (; = 1, ..., d) denotes the /-th projection. If X is a set, the

378 S. R. GroB

cardinality of X is denoted by |Z | and the set of subsets of X by 0 denotes
the empty set.

For x, y£Zd we define the operations x±y :=(x 1 ±.y 1 , x2±y2, •••, xd±yd).
Let X, YQZd, X?±®, I V 0. Then we define the sum and diiference by X±Y: =
: = {x±y/x6A'Ay£i'}. In the following we write x ± Y instead of {x}± Y. Let
x6Zd and r = (/ 0 \ j = 1 _ jd a matrix with i y £ Z (/', 7=1, .. . , d). Then we define
the product

(d ' d
2 x r t a , ..., 2xrtid)

and for X Q Z d , X ^ 0
X-T: = {\'T/x£X}.

Definition 2.1. Let d,rt£N. An «-tupel N=(ai, a2, ..., a„), a i€Zd (/=1, ..., n),
a ^ a • for i ^ j is called a ¿-dimensional neighbourhood index.

The (unordered) set N = {P[n)(N)/i=l, . . . ,«} is called a neighbourhood
template. In general we claim that there exists an i (l ^ i ^ n) such that a ; = 0 .
In the following we use 'neighbourhood index' and 'neighbourhood template'
synonymously.

Definition 2.2. Let k£ N0, df N. The von Neumann neighbourhood template
d

is defined by H(
k
d*: = {x/x£Zd A |x|=SFC}, where |x |= 2 M -

•=i
We write Hk instead of Nk

(d) if there is no doubt of the dimension. H1 =
= {(0, 0), (- 1 , 0), (0, 1), (1, 0), (0, - 1) } is the most frequently used von Neumann
neighbourhood template.

Definition 2.3. Let A, Q be finite nonempty sets and N={a1; . . . , a„} a d-
dimensional neighbourhood template, f : A"XQ—AXQ is called a local transition
function.

Definition 2.4. VI=(A, Q, d, N, {f(1>, ..., f(i)}) is called an L-processor, if
1) A is a finite nonempty set of (external) states,
2) Q is a finite nonempty set of (internal) states, in the following called quali-

fiers,
3) d is the dimension of the space,
4) N= (aj, . . . ,a„) is a ¿-dimensional neighbourhood index,
5) fU): AnXQ—AxQ (j= 1, . . . , /) are local transition functions,
6) There exists a (z„, q0)£AxQ, called the quiescent state of the L-processor,

with / o) (z 0 , ..., z0, q0): = (z0, q0) for 7 = 1 , . . . , /.

Definition 2.5. Let 91 be an ¿-processor. A function c: Z d—A is called an
external configuration or simply configuration. A function q: Zd-»Q is called
an internal configuration. The set of total (internal and external) configurations
is denoted by C.

. Definition 2.6. F: C—C is called a global transition function (induced by /) ,
if for all x£Zd and for all total configurations (c, q)fC the following holds:
Fc((x), qtx^ficix+aj,..., c(x+a„), q(x)).

On fault tolerant L-processors 379

Definition 2.7. The support of a total configuration is defined by sup (c, q)—
={x/x£Z l i A(C(X), g(x))?i(z0, 90)} with (z0, q0) the quiescent state. The set of all
total configurations with finite support is denoted by C.

If we use L-processors for computations we want a reliable system although
the individual cell may be unreliable. A cell is said to misoperate if its next ex-
ternal state differs from the expected one (by application of the local transition
function to the states of its neighbours). The reason for such a misoperation may
be the permanent breakdown of a cell, an occasional failure caused by noise or
something else. Therefore an ¿-processor is called a real /.-processor if some cells
may misoperate.

In order to make analysis practicable, we restrict the occurrence of misopera-
tions in the following way:

Definition 2.8. Let A' be a finite connected subset of ZD containing the origin 0.
A real /.-processor is said to misoperate with AT-separated errors if at most one
cell of each area x+A", xdZd , misoperates at each state transition.

'Connected' means connected with respect to the underlying neighbourhood
template N. In the following we denote this as AT-separated error condition (AT-se
condition).

Definition 2.9. Let ^^(A^XQu 2, Hu ..., //*>}) be an /.-processor,
M2=(A2XQ2, 2, N2, { f f * , ..., /2C>}) a .real ¿-processor and klt k2£ N. We say
3l2 simulates Utj in k2/ki -time if and only if there exist functions G and H such that
the diagram in Fig. 1 is commutative. The index K indicates that the AT-se con-
dition holds.

<P(C2)\0
Fig. 1

Simulation of L-processors

The 'realistic' global transition function FK maps C2 into the set *P(C2)\0
of subsets of C2, because a configuration may have more successors in consequence
of the real behavior.

3. Error correction in realtime with an 21-element neighbourhood template

Now we want to design a real /.-processor 3 I 2 = (A 2 X Q 2 , 2, N2, {/2
(1), /2

(,)})
which simulates a given /.-processor ^^(A^xQx, 2, Hj, {/x

(1), ..., fik)}) in real-
time, i.e. kx=k2 (see Definition 2.9).

The most elementary trick of error correction might be to implement each
cell three times and to take the majority result. Therefore we must spread out the

9 Acta Cybernetica V/3

380 S. R. GroB

2-dimensiona! space of integers by a transformation matrix . A coding
unit M= {(0, 0), (1, 0), (2, 0)} fills up the gaps. It is easy to show that T and M
guarantee a unique and total cover of Z2. G maps a cell and its neighbours into
the following region, see Fig. 2.

2Î, ©

m i t

A - a
- Q x

«t. m m Ell GOGH

m BD 0 1 m 3D mm

BE

M M

®E1

m ID (HE mm m ïïl

S - F P

Qx

Fig. 2
Function G

Each cell x£ Z2 of is mapped into the cell x • T by the transformation matrix
T. Now we add the coding unit to it. It is easy to see that, we get for each cell in
^ exactly three cells in in this way. In the following we denote x • T+M as
a block. Each cell of x • T+ M contains a copy of x.

Since we want to carry out the error correction with the majority function,
each cell in has to know to which block it belongs. This information is stored
in the qualifier of the cell by G. The set of states and the qualifier of 9t2 are defined
by A2=A1 and Q2 — Q1XFP, where F P = { 1 , 2 , 3 } is a so-called fingerprint.
The qualifier of a cell x£Z2 in 3t2 is delivered by q(x)=(ql(x), fp).

Now we can define_the functions G and H.
1) For any (c, q)€Cx and for any xÇZ2

G(c(y),ç(y)) = (c(x),(ç(x),.fp)),

where y£(x- T + M) and fp = 1 +(>! modulo 3).

On fault tolerant L-processors 381

2) Function H is locally defined by the triple (M, T, ni), where m denotes the
majority function. If for any total configuration (c, q) of 3I2 there exists a total
configuration (c', q') of with c'(x)=m(c(x- T+M)) and q'(x)=m(q1(x • T+M))
for all x€Z 2 then H(c'(y), q'(y))=(c'(x), (q'(x), fp)), where y 6 (x - r + M) and
f p = l + (j ; 1 modulo 3).

Next we must define, the neighbourhood template N2 of ?I2. Since each cell
of 3ï2 must have sufficient state information within its neighbourhood to calculate
its next state correctly we choose N2 as the 21-element template sketched in Fig. 3.
The hatched cell is the origin of the neighbourhood template.

11

Fig- 3
Neighbourhood template N2=(Ht•T+M)-M

It is easy to see that every cell of the central block of 3I2 in Fig. 2 disposes of
the whole information of the 'extended von Neumann neighbourhood template'
Hi'T+M. We choose the set K=N2, because it must be.guaranted that the
majority function has at least two correct values. The real ¿-processor 3I2 may
be constructed in such a manner that it has exactly the same number of local transi-
tion functions as the ¿-processor i.e. l:=k. For any x£Z2 the local transition
functions / 2

U) (_/— 1, .. . , k) are defined by:

(c'(x), (9l '(x), fp)) = fé»(c(x + Ns), (qi(x), fp)),

where c'(x) and q{(x) are defined by:

(c'(x), q{(x)) = / 1 « > (m (c (x - (f p - 1 , 0)) , c (x - (f p - 2 ; 0)) , c (x - (f p - 3 , 0))),
m (c (x - (f p , 0)), c (x - (f p + l , 0)), c(x —(fp+2,0))),
m (c (x - (f p - l , — 1)), c(x—(fp—2, — 1)), c(x—(fp —3, -1))) ,
m (c (x - (f p - 4 , 0)) , c(x —(fp —5,0)), c (x - (f p - 6 , 0))) ,
m (c (x - (f p - l , 1)), c(x—(fp—2,1)),c(x—(fp—3, l))) ,^(x)) .

It is possible to change from f2
u) to / ¿ J) , because the template x+N2=x+K

contains enough information. The above constructed real ¿-processor 2ta simulates
the ¿-processor in realtime.

Theorem 1. If we choose 3I2 and K as defined above, then 9l2 corrects any
A"-separated error.

Proof. The proof is delivered by considering all possibilities of single errors.
1) The state of a cell is incorrect.
In consequence of the K-se condition the states of all other cells of the extended

von Neumann neighbourhood template (see Fig. 2) are correct, i.e. the majority
function is able to correct the error.

2) The qualifier of a cell is incorrect.
Now the cell works with an incorrect state and an incorrect local transition

function in the next step in general. Subsequently the cell always announces an

9*

382 S. R. GroB

incorrect state in general, i.e. we may consider the cell as permanently broken down.
In consequence of the K-se condition all other cells of the extended von Neumann
neighbourhood template must work correctly so that they announce correct states
in the next step, i.e. the error may be corrected (see 1).

3) The majority function of a cell works incorrectly.
Since the local transition function / / j) works with incorrect arguments, in

general the cell announces an incorrect state and works with incorrect local transi-
tion functions in future. In consequence of the K-se condition all other cells of
the extended von Neumann neighbourhood template must work correctly so that
1) or 2) hold in the next step. •

4. Error correction in 5-slow with von Neumann neighbourhood template

Now we present a real ¿-processor ~(A2XQ2,2, Hy, {/¡>(1), • •., /2
(l)})

which simulates the L-processor = (A ^ x Q l , 2 , J f l , {/x
(1), ..., /¿k>}) in 5-slow,

i.e. k2=5-k1 (see Definition 2.9). We choose the transformation matrix T and
the coding unit M as above. In consequence of the von Neumann neighbourhood
template the ¿-processor works in two different steps. First the information
of the extended von Neumann neighbourhood template must be compressed into
the -neighbourhood template of each cell of 9I2 and second the cells have to
change their state. Since every cell of the central block of 3I2 in Fig- 2 must have
access to the whole information of the extended von Neumann neighbourhood
template to change its state, it is necessary to compress four times. Therefore the
set of states of 3I2 is given by A2—A\ and the set of qualifiers by 0 2 — X FP X MZ
where FP={1 , 2, 3} is a fingerprint as above and MZ a modulo-5-counter. Fig. 4
shows the state- and qualifier-register of a cell.

c i (x)—

state of left
neighbours

— own state

state of right
neighbours

MZ

FP

Qi

Fig. 4
State- and qualifier-register of a cell

The state of a cell x£Z 2 in Ul2 is delivered by c(x)=(c9(x), . . . , cl(x)) and
the qualifier by q(x)=(ql(x), fp, mz).

Now we can define the functions G and H.
1) For any (c, and for any x£Z 2

G(c(y), q(y)) = ((- , - , - , c(x), - , - , - , -) , (q(x), fp, mz)),

On fault tolerant L-processors 383

where y£(x- T+M), f p ^ l - f ^ modulo 3) and ' —' denotes any state. Besides
mz will be chosen such that it specifies that no information has arrived.

2) Again function H is locally defined by the triple (M , T, m). If for any total
configuration (c, q) of 3I2 there exists a total configuration (c', q') of with c'(x) =
=m(cs(x-T+M)) and q'(x)=m(q1(x-T+M)) for all x£Z 2 then

H(c'(y), q'(y)) = ((- , - , c'(x), - , - , - , -) , (<?'(x), fp, mz)),

where y € (x - T + M) , f p = l + (7 1 modulo 3), ' —' denotes an arbitrary, state and
mz will be chosen such that it specifies that no information has arrived.

Before a cell x£ Z2 in 3I2 can change its state, the information of the extended
von Neumann neighbourhood template must be compressed. Fig. 5 demonstrates
the cells from which x collects its information during the compression.

m
X
m I
*

x
S" £

*

Fig. 5
Compression of information. ' —' denotes an arbitrary state

Flow of compression. Each cell sends its own state to its left and right neigh-
bours, the states of its left neighbours only to its right one and the states of its
right neighbours only to its left one (see cell x) as shown by the arrows in Fig. 5.
At the beginning each cell disposes only of its own state. After one cycle a cell
disposes of its own state, the state of its left neighbour and the state of its right neigh-
bor in its state register. The remaining six components of the state register contain
arbitrary states. After four cycles each cell disposes in its state register of its own
state, the states of its four left neighbours and its four right neighbours in this way.

This is the time* where each cell in a block of the extended von Neumann neigh-
bourhood template is provided with sufficient information to compute its next
state. The compression is realized by hardware or by the following function.

Let x, y, z6Z2, y = x - (l , 0) and z = x + (l , 0). Then a function h:
-*A2XQ'2 is defined by

(M y) , c5(y), c5(x), c5(z), ..., c2(z)),
, , , , „ w - ^ (q, fp, mz©l)) , if 0 < mz© 1 < 4
hidx+HJ, (q, fp, mz)) = ((c g (y) ; j C s / y) ; c s (x) j c s (z) ; ^ c a (z)) ;

(q', fp, mz©l)) , if m z © l = 4

© denotes the add-operation modulo 5.

384 S. R. GroB

£ ? 2 = (6 I X { 0 , 1})XFPXMZ, i.e. the qualifier of ^ is extended by one bit
indicating whether 5I2 is in a phase of compression or transformation, i.e. q' differs
from q only in this bit. If mz® 1=0 holds, 9I2 is in a phase of transformation.
If we use the function h for compression the functions G and H must be modified
adequate to Q I n this case we define / 2

(t + 1 ' :=A, i.e. l:=k+1. In the following
we consider only cells of the central block of the extended von Neumann neigh-
bourhood template and their direct neighbours to define the local transition func-
tions /2

(y) (y = l , ..., k). After compression these cells.contain the following relevant
states, see Fig. 6.

Now we can define the local transition functions /2
U) 0 ' = 1, ..., k). Let x£Z 2

z

2"

21
A
A1

iff
2"
s ;
A

II
o
o
o •

•

C*(k)-

0

O

•

L

Qi

01

o
o •

9

0_ •

o
¥

a_ •

11

o. •

01

- — M Z

- F P

•Qi

Fig. 6
Relevanf states for the central block of the extended von Neumann neighbourhood template, after

compression

On fault tolerant L-processors 385

and a^CO.O), a 2 = (- l , 0) , a3=(0, 1), a 4 = (l , 0) , a 5=(0, - 1) the five elements
of the von Neumann neighbourhood template.

(C ' (X) J 9 ' (X)) = / 2
0) (C (X + ^ I) . (?i(xj, fp, mz)) or

fP(c{x+HJ, ({ft(x)}X{0, l},fp, mz))

= (- } - , c'5(x), - , —, -) , (q{(x), fp, mz© 1)) or

(- , - , - , -> c£(x), -) , ({<7i(x)}x{0TT}, fp, rnz©l)),

where ' —' denotes any state and ' © ' the add-operation modulo 5 again. {0, 1}
means that /2

(j) forms the complement of {0, 1}, if the compression is realized by
software. c'5(x) and #i(x) are defined by

(cs(x), fr'(x)) =/ 1° ')(m(cfp+2(x + a1), Cfp+stx + aj), c f p + 4(x + a,)),
^(CfP+4(x + a2), c f p + s (x + a2), c f p + 6(x+a2)) ,
" j(cfp + 2(x+a3) , c f p + 3 (x+a 3) , c f p + 4(x+a 3)) ,
m(c f p(x+a4) , c f p + 1 (x+a 4) , c f p + 2(x+a4)),
w(c f p + 2 (x + a5), c f p + 3 (x + a5), c f p + 4(x + a5)), ft(x)).

The definition is similar to that in section 3. First we apply the majority func-
tion to each component block. These results and the first part of the qualifier of
the cell are the values for the local transition function f{J), which delivers the new
state of component c5 and the new first part of the qualifier. Again it is possible
to change from / 2

0) to / p ' , because the template x + H1 contains enough information.
Up to now we did not say anything about the K-se condition which must be

modified, if the above real ¿-processor should correct errors. The modification is
necessary because additionally to the error correction there are two further problems.

1) We have a phase of compression.
2) An error correction is not possible concerning the qualifier of a cell.

In the first solution we have permitted that single cells may break down totally.
Now such cells will interrupt the information-flow during the compression. Because
of that the four right and left neighbours of these cells would hold up to four
successive incorrect states in their components, i.e. an error correction is not pos-
sible.

Fig. 7 shows the information-flow through one cell during compression, 'j ['
denotes a block. The local transition functions of cells marked by 'X' deliver an
incorrect state, because they work with at least one faulty argument. 1) shows the
faulty cells if the left cell of a block is broken down, 2) shows these cells if the central
cell of a block is broken down, and 3) shows these cells if the right cell of a block
is broken down.

Therefore the first modification of the K-se condition consists in that only
single components of a cell may be incorrect. It is easy to see that the errors must
have a distance of three, i.e. if cx is incorrect, c2 and c3 must be correct. Since the
errors of a cell will be carried off.during the compression, the condition that only
one cell of each area x+K (x£Z2) may be incorrect, cannot maintained. The
second modification of the K-se • condition runs as follows. If a cell y€(x+AT)
is incorrect all other cells of that region have to work correctly, i.e. they are only

386 S. R. GroB

I • X % X I I x X X I I ; 1)
. X X X , , X X X i , X X X , 2)

I I X x X I . X X x I I 3)

Fig. 7
Information-flow through one cell during compression

allowed to take over the errors of cell y. If the qualifier of a cell is incorrect, in
general that cell must be considered as totally broken down. Therefore we must
demand that no errors occur in the qualifier of a cell. Only under this new stronger
K-se condition the above /.-processor may correct errors.

Theorem 2. Let K be the 21-element template of Fig. 3. Then the above L-
processor W2 corrects any errors if the stronger K-se condition holds.

Since the proof is similar to that of Theorem 1, we do not carry it out here
again.

5. Conclusions and outviews

The primary objective of this paper has been to present suggestions for fault
tolerant ¿-processors. The first solution is characterized by the following features:

— A2=AX and <22 = 2 i X F P , i.e. the set of external states is not increased,
— the real /.-processor 3I2 has exactly the same number of local transition

functions as the simulated ¿-processor 91,,
— 3t2 simulates in realtime,
— 3I2 has a relatively large neighbourhood template of 21 elements.

The features of the second solution are:
— A2=A{ and Q2=QX~XFPXMZ, i.e. the set of external states of 3L2 is

enlarged, too,
— the real ¿-processor 3t2 has either the same number of local transition func-

tions as the simulated ¿-processor 31̂ (compression per hardware) or at
. most one local transition function more than 3^ (compression per software),

— 3t2 simulates in 5-slow,
— N2=HU . .

very strong K-se condition-
As shown above the second solution is not practicable for error correction,

because the simulating ¿-processor must have nearly no errors. Therefore a fault

On fault tolerant L-processors 387

tolerant L-processor with von Neumann neighbourhood template has to use some
different coding.

It is easy to modify the above solutions so that the resulting ¿-processors
may detect errors.

Acknowledgements. I am deeply grateful to my dear colleague Mr. W. O.
Hôllerer for some suggestions in formal describing /.-processors. I would also
like to thank Prof. R. Vollmar for many stimulating discussions.

Abstract

This paper treats the problem of designing L-processors with error correction capabilities.
First such notions as configuration, real L-processor, X-separated error, and simulation are de-
fined. Then a fault tolerant real L-processor is introduced which simulates a given L-processor
in real time. Next a fault tolerant real L-processor with von Neumann neighbourhood index is
presented which simulates a given L-processor in 5-sIow. In both cases the original L-processors
have a von Neumann template. Since an L-processor may be understood as a cellular space with
Mealy-type cells, this approach may be considered as a generalization of the work of Nishio and
Kobuchi.

LEHRSTUHL D FÜR INFORMATIK
TECHNISCHE UNIVERSITÄT BRAUNSCHWEIG
GAUSSTR. 1)
D—3300 BRAUNSCHWEIG

References

[G R O S 79] GROSS, S . R . , Fehlererkennung und -körrektur in zellularen Automaten, Diplomarbeit,
Braunschweig, 1979.

[H A N O 7 5] HARAO, M . , S . NOGUCHI, Fault tolerant cellular automata, J. Comput. System Sei,.
v. 11, 1975, pp. 171—185.

[L E G E 76] LEGENDI, T., Cellprocessors in computer architecture, Computational Linguistics and
Computer Languages, v. 11, 1976, pp. 147—167.

[L E G E 77] LEGENDI, T., Programming of cellular processors, Informatik-Berichte, Nr. 7703, Braun-
schweig, 1977, pp. 53—66.

[N I K O 75] NISHIO, H . , Y . KOBUCHI, Fault tolerant cellular spaces, J. Comput. System Sei., v. 11,
1975, pp. 150—170.

[V O L L 7 9] VOLLMAR, R., Algorithmen in Zellularautomaten, Teubner Verlag, Stuttgart, Bd. 48, 1 9 7 9 .
[WRIG 7 6] WRIGHT, L . E . , Cellular automata with nonworking cells, Ph. D . diss., Rensselaer

Polytechnic Institute, Troy, New York, 1976.

(Received April 10,1981)

