On the role of blocking in rewriting systems
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Introduction

A rewriting system G generates a set of sentential froms sent G (see, e.g., [9]).
If G is “pure” (see. e.g., [5]), i.e. it does not use nonterminals, then sent G forms
also the language of G, denoted L(G). In this sense every sentential form of G is
successful. If G is not pure, i.e. it uses nonterminals, then the language of G consists
of only those sentential forms that do not contain nonterminal symbols. In this case
a sentential form is (potentially) successful if it can be rewritten (perhaps in a number
of steps) into an element of L(G). '

Thus, naturally, sent G gets divided into “blocking’ and “nonblocking’’ (hence
successful) sentential forms.

The possibility of having blocking sentential forms in a grammar is often use-
ful. In a particular derivation of a word w, G may “guess” a property of a senten-
. tial form currently rewritten and if the guess was incorrect G will take care of the
fact that the derivation is dead-ended. This is a typi.al way of programming a lan-
guage through a context- sensitive grammar (see, e.g., [9]). Also the synchronization
mechanism in E(T)OL systems (see for example [7] and [8]) is a typical example of
the use of a blocking mechanism.

In this paper we investigate the role that this blocking mechanism plays in re-
writing systems. In particular, we do this for the grammars of the Chomsky hierarchy
(Section II), EOL systems (Section II) and ETOL systems (Section 1V).

I. Preliminaries and basic definitions

We assume the reader to be familiar with the rudiments of formal language
theory as, e.g., in the scope of [7] and [9]. In order to fix our notation we recall some
basic notions now.

For a word x, |x| denotes its length and alph x denotes the set of letters occur-

ring in x. For a language K, alph K= U alph x. The empty word is denoted by A.

Let X2, and Z be alphabets such that 2,C X. Then the homomorphism
Pres; ;, from I* into Z} is defined as follows. If a¢ZX,, then Presy ;, a=a
and if a€ 2\ X, then Prﬁ 5,5, a=A. To avoid cumbersome notation we often
write Presy instead of Presy 5 , whenever X is understood from the context.
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The mappmg mir from Z* into X* is defined by: 1f w=xy, with xe2* and
y€Z, then mir w=y mir x; mir A=4.

Definition I.1. (i) A grammar is an ordered quadruple G=,Z,P,09),
where V is a finite non-empty alphabet, the rotal alphabet of G, ZCV is the ter-
minal alphabet of G,V\Z is the nonterminal alphabet of G, SeV\Z is the
axiom of G and P is a finite subset of V*(P\2Z)W*XV*; the elements of P are
called the productions of G and for (a, f)eP we write a—pf.

(i) A word veV* directly derives a word weV* according to G, denoted
v=>w if there are x, y, a, ﬂEV* such that v=xay, w=xBy and oz—»ﬁ 1S a pro-

ductlon of G. We write x=>x for every x¢V* and for nz=1, x=>y if for some
G

G
n—1 + * =m

t
zeV¥, x:z=>y We write x=y (x=y, x=y, respectively) if x:>y for some
G G G

mteger t>0 (=0, t=m, respectlvely) If no confusion is p0551ble we use, =,
* n =n n =n
=, =, =, = rather than :> => =, :> =,
G
(ii1) The set of sentennal froms of G, denoted sent G, is defined by sent G=

——{WEV* S=>w}

(iv) The language of G, denoted L(G) is defined by L(G)= {wE I*: S:>w}_
=sent G 2*.

Definition 1.2. Let G=(, X, P, S) be a grammar.
(1) G istermed regular, if a—fcP implies acV\ 2 and e Z(V\Z) or fcZ.
(ii) G is termed context-free, if a—BcP implies acV\ 2 and BeV+.
(ii) G is termed context-sensitive (monotonic) if a—fc¢P implies |cx]<|[3|
The families of languages generated by regular, context-free, context-sensitive
and arbitrary grammars will be denoted by ¥ (Reg), Z(CF), #(CS) and ¥ (RE)
respectively.

Definition 1.3. (i) An ETOL system is an ordered quadruple H=(V, X, 2, w),
where V, ¥ and F\ T are as in the definition of a grammar, w<V * is the axiom
of H and & is a finite non-empty set of tables P,, ..., P,,n=1. A table P;, 1=
=i=n, is a finite subset of ¥V XV'*, such that for each acV there exists a. BeV*
with (o, f)€P;. An element («, B) of P;, | =i=n, is called a-production and is usu-
ally written as a—f -a—f is called an a-production and the fact that a—pf belongs
to P;,1=i=n, respectively to £, is often abbreviated as o—f, respectively

a—»b’

(i) A word veV* dlrectly derives a word ueV™* according to H, denoted

v=u, if v=o,... 00, a,cV for 1=i=k, u=p,...5;, picV* for 1=i=k, and
H - :

P,

0
there exists a je{l, ..., n} such that o;—f;, for all ic{l, ..., n}. We write x=x
P; H
n n—1
for every xeV* and for n=l,x=y if for some zeV* x=z=>y. We write
H H H
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+ * =m t
x=y(x=>y, x=y, respectively) if x=p for some integer ¢=0(r=0,1=m,
H H H H

+ * n =n
respectively). If no confusion is possible we use =, =, =, =, = rather than
+ * n =n

(iii) The set of sentential forms of H, denoted sent H, is defined by sent H=
={veV*: co:> v}.

(iv) The language of H, denoted L(H) is defined by L(H)={veZ*: w=> v}=
=sent HN Z*.

* Definition 1.4. Let H=(, X, #,0) be an ETOL system, with 2=
={Py, ..., P,}.
(1) If 2 consists of one table only, say Z={P}, then -H is termed an EOL
system and denoted H=(V, Z, P, w).
(i) If, for every oc—»B B6V+, then H is termed a propagating ETOL system,

denoted EPTOL system
(i) If for all ie{l, ..., n}, a—»ﬂ and oc—»y implies f=y, then H is termed -

a deterministic ETOL system, denoted EDTOL system.

(iv) If =V, then H is termed a TOL system.

From the above definition it follows that we consider OL, POL, DOL, PDOL,
TOL, PTOL, DTOL, PDTOL, EOL, EPOL, EDOL, EPDOL, ETOL, EPTOL,
EDTOL and EPDTOL systems. The family of languages generated by X systems,
where X stands for one of the above mentioned abbreviations, will be denoted
by £ (X).

Let H be an ETOL system. If the sequence D=(x,, X, ..., X,) 1S such that

x;=X;4+1, 0=i<n, then each occurrence of a letter in every word from x,, ..., x,_
- .

has a unique contribution to x,. If A4 is an occurrence of a letter in x;, 0=i<n,
then we use ctrp, , 4 to denote this contribution.

Two languages L, and L,, are considered to be equal if L,U{A}=L,U{4}.
We consider two families of languages, %, and .Z,, to be equal if they differ at most
by {A}. Two language generating devices G and H are said to be equivalent if
L(G)=L(H).

Definition 1.5. Let H=(V, X, P, w) be an EOL system. If there exists a
subset ®S¥\Z such that for all «cZU®, oz—»B implies fe®*, then H is

called a syachronized EOL system, abbreviated sEOL system. @ is called the set of
synchronization symbols of H.
The following result is well known, see, e.g., [3].

Lemma I.1. For every EOL system, there exists an equivalent SEOL system.
The following is the central notion of this paper.

Definition 1.6. (i) A grammar G={, X, P, S) is nonblockzng if for every

word veésent G there exists a word wueZ* such that u:>u
G

1*
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(i) An ETOL system H=(V, X, ?,w) is nonblocking if for every word

*
vesent H there exists a word w¢ZX2*, such that v=uw.
H
REMARK. Note that if G is a nonblocking grammar or a nonblocking ETOL

+
system, then either L(G)\{4}#8 or S=A and L(G)={A}.
G

The families of languages generated by nonblocking regular, nonblocking
context-free, nonblocking context-sensitive, nonblocking arbitrary grammars or by
nonblocking X systems (where X stands for ETOL or one of its subclasses) will te
denoted by #(nbReg), £ (nbCF), £ (nbCS), £ (nbRE) and Z(nbX), respectively.

Lemma 1.2. If Xe{Reg, CF, CS, RE} or X stands for ETOL or one of its
subclasses, then £ (nbX)C 2L (X).

II. The Chomsky hierarchy

In this section we impose the nonblocking condition on regular, context-free,
context-sensitive and arbitrary grammars.

We start by recalling a well known fact concerning the first two types of gram-
mars. )

Lemma II.1. For every context-free (regular) grammar genefating a non-empty
language, there exists an equivalent nonblocking context-free (regular) grammar.

Proof. Since for every context-free (regular) grammar, there exists an equiva-
lent context-free (regular) grammar in which every nonterminal is useful (see, e.g.,
[9], otherwise the generated language is empty) the lemma holds. O3

Thus we get the following result.

Theorem IL1. (i) .#(nbReg)=.%(Reg).
(i) & (nbCF)=2(CF).

For context-sensitive grammars generating non-empty languages we have a
similar situation. However, the proof is much more involved. For this reason we give
only an intuitive description of the proof. For a formal, detailed proof, we refer the
interested reader to the Appendix.

Lemma 1.2, For every context-sensitive grammar, generating a non-empty
language there exists an equivalent nonblocking context-sensitive grammar.

Proof. Let KC X* be a non-empty language, generated by a context-sensitive
grammar. We distinguish two cases.

(i) K is finite. Then, obviously, the context-sensitive grammar (XU{S}, Z,
P, S) with P={S—x:xeK} is nonblocking and generates K.

(i) K is infinite. Let X'={[a, b,c,d]):a,b,c,deZ}U{[a,b,c]: a, b, ce Z}U
U{[a, b]: a, b Z}U{[a): ac Z}; let h be the homomorphism from Z’* into Z* de-
fined by Ah(la,b, ¢, d))=abcd, h([a, b, c))=abc, h([a, b])=ab and Ah({a])=a. Let
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K’ ={lay, as, a3, a]...[a4—3> Qipmzs Qgu_1, gn): =2, @y...05, € K}U
{la,, az, a5, ay].. (4,3, Qan—2, Qaq_1, Aga)[Aan 1] NE2, ay...04 41 €K}U
{lay, as, a3, a4).. [A4n—35 Ban—2> Cano1s Can)[Bant1s Qani2l: BZ2, 01,04y 42€KFU

{[a1, a3, a3, @4)...[Q4, 3, Gan_2> Qsn—1s B4n)[Bans1> Qtny2s Qgnas]:
n=2,a,...85,.3€K}.

Clearly K’ is context-sensitive, say it is generated by a context-sensitive grammar
G'=WV’', 2, P, S"). Moreover I(K)=K\{x€K:|x|<8}. Now we can construct
a nonblocking context-sensitive grammar G=(V, Z, P, §) generating K. It works
as follows.

() S»x is in P for x¢K with |x|<8.

(2) P'CP.

(3) S directly derives S’ surrounded by markers. Hence K’ can be derived,
surrounded by these markers. A successful derivation in G terminates by rewriting
elements of X’ into elements of X (after it was checked by markers that a current sen-
tential form consists of letters from X”) and making the markers disappear. (The
deletion of markers and rewriting symbols of X’ into symbols of X is paired together
s0 that the monotonicity of the productions is guaranteed).

(4) From the above it follows that KC L(G).

(5) At any stage in the derivation process of a word from K’ (modulo markers)
a “dead” symbol N can be introduced. Then all symbols (except the leftmost and
rightmost marker) in the current sentential form can (and will) eventually be re-
placed by N; to the right of the rightmost marker (which now also changes into N)
the axiom S’ of G’, surrounded by markers, will be introduced again. This process
may be repeated an arbitrary number of times. '

(6) If from S’ a word w of K’ is derived, then termination can take place if w
is long enough (K’ is infinite!) to “absorb” all dead symbols and markers, when the
symbols of X’ are rewritten into symbols of X. Again, during this termination proc-
ess, there still is a possibility to change all symbols of the current sentential forms
into N’s and to place §’, surrounded by markers to the right of this string. In this
case the derivation process ‘‘switches™ again into state (5).

(7) Now (5) and (6) imply that L(G)ZS K, G is nonblocking and monotonic.
This together with (4) implies -the result. [J °

Corollary II.1. For every arbitrary grammar, generating a non-empty language,
there exists an equivalent nonblocking grammar.
Thus we have the following result.

Theorem IL.2. (i) £ (nbCS)=2Z(CS).

(ii) £ mbRE)=2(RE).

Although it follows from Lemma II.2 that for any context-sensitive grammar,
generating a non-empty language, there exists an equivalent nonblocking context-
sensitive grammar, the proof of this fact was not effective; it is well known that it
is not effectively decidable whether or not the language generated by a context-
sensitive grammar is finite (see, e.g., [9]). Moreover, there is no algorithm which,
given an arbitrary context-sensitive grammar G (generating a non-empty language)
yields an equivalent nonblocking context-sensitive grammar. We also show that
it is undecidable whether or not an arbitrary context-sensitive grammar G itself is
nonblocking.
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We prove the above two statements using Post’s Correspondence Problem (see,
e.g., [9)).

Definition I1.1. An instance of Post’s Correspondence Problem over an alpha-
bet X is a pair (4, B), where A={a,, ..., 0}, B={B,, ..., B}, n=1 with ;€ X+ and
picx+, for 1=i=n. (4, B) is said to have a solution if there exists a non-empty
finite sequence of indices {i,, ..., i}, i;€{1, ..., n} for 1 =j=k, such that a;...0; =
= ﬂil een ﬂik .

Theorem IL.3. There is no algorithm to decide whether or not an arbitrary

instance of Post’s Correspondence Problem over a two letter alphabet has a so-
lution.

Theorem II.4. There is no algorithm that given an arbitrary context-sensitive
grammar generating a non-empty language constructs an equivalent nonblocking
context-sensitive grammar.

Proof. Let (A, B) be an arbitrary instance of Post’s Correspondence Problem,
A={ay, ..., 0,} and B={B,, ..., B}, with n=1, o;c{a, b}* and Bic{a, b}*, for
1=i=n. The context-sensitive grammar G is defined as follows. G=(V, {c, d}, P, S),
where V={S,Z, a,b, A?, A?, ﬁa, 117,,, Ma, A?,,, Q,N,c,d} and P is given in (1)
through (9).

(1) S—c. .

(2) S—»co;Zmir Bic, for 1=i=n, and Z—-,Z mirf;, for 1=i=n.

(3) Z—~Ma.

(4 aM—»Ma for ae{a, b,d}, and cM—»cM

&) Moc—»cM for a€fa, b}, and Md—»dQ

©) MB—»[?M,, for Be{a,b,d), and M,c—~M,c, for ae{a b}.

(7) aM,~Mec, for o€ {a, b}.

(8) BM,—~Nc, for a, Bef{a, b} and o=p.

(9) Qa—~Nc, for ac{a,b} and Qc—cc.

It is rather easy to see that L(G)={c} if (4, B) has no solution and that L(G)

is infinite otherwise.
Assume that we could effectively construct an equlvalent nonblocking grammar

G=W’, {c,d), P’, S") for G. Let ny=min {jw|: S=>w and |w|=2}. Obviously

we can effectively decide whether or not #, exists because G’ is monotonic. Since G’
is nonblocking, if n, exists then L(G")=L(G) contains a word of length at least two
- and so (4, B) has a solution. If n, does not exist, then L(G")=L(G)={c} and hence
(4, B) has no solution.

Hence if the algorithm in question exists then Post’s Correspondence Problem
is decidable; this contradicts Theorem 11.3. O

Theorem II.5. Tt is undecidable whether or not an arbitrary context-sensitive
grammar generating a non-empty language is nonblocking.

Proof. Let (A, B) be as in the proof of Theorem 11.4. Let H=(V, {c,d}, P, S)
be the context-sensitive grammar which is defined as follows. ¥ and S are as in the
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grammar G=(V, {¢, d}, P, S) defined in the proof of Theorem IL.4. P is defined
by (1) through (8) as stated there and additionally by:

(9) Qu—aQ and aQc-—>Nce for ac{a, b} and

(10) aN—Nc, for wacia, b}, dN—~Nd and cN-—cc.
Hence L(H)#9 {ccL(H)) and H is nonblocking if and only if (4, B) has no so-
lution.

Thus, if we would have an effectlve decision procedure for the nonblocking
property of context-sensitive grammars, then Post’s Correspondence Problem would
be decidable. This contradicts Theorem I1I1.3. [

We conclude this section with the following observations.

For an arbitrary grammar generating a non-empty language, there exists an
effective procedure to construct an equivalent nonblocking grammar. This is a conse-
quence of the possibility of using length-decreasing productions for the markers
and the dead symbols (as used in the proof of Lemma I1.2). Hence we do not need
arbitrarily large words to “‘absorb™ all those garbage symbols. Consequently, it
is not needed anymore to distinguish between the case of a finite and the case of an
infinite language (which made the proof of Lemma I1.2 ineffective).

It is well known that it is not decidable whether an arbitrary context-sensitive
grammar generates the empty language (see, e.g. [9]). Consequently it is not decid-
able whether or not an arbitrary context-sensitive grammar has an equivalent non-
blocking context-sensitive grammar. Note that in the case of context-free grammars
these questions are decidable: finiteness and emptiness are decidable for those gram-
mars.

III. Systems without tables

We will now investigate the effect that the nonblocking condition has on the
language generating power of E(P)(D)OL systems.

First we compare EOL and nbEOL systems.
It turns out that the nonblockmg restriction is a real restriction. This result should
be compared with the results of the previous section.

Lemma HI.1. & (EPOL)\,? (nbEOL) 0.

Proof. We will prove that K= {a®}U {a*": n=0}¢ % (EPOL)\ % (nbEOL).
(i) Let G be the EPOL system which is defined by

= ({5, 4, N, a}, {a}, {S~a® S—~4, A~AA, A~a,a—~N, N~N}, 5).

Obviously L(G)=K. Thus Ke¢ ¥ (EPOL).

(ii) The fact that K¢ Z(nbEOL) is proved by a contradiction. Assume that
- Ke#(nbEOL). Then there exists a nbEOL system H=(V, Z, P, w) such that
L(H)=K or L(H)=KU{A}.

Since H is nonblockmg for every veK, v=>v "ea* holds. Since H is an EOL
system, it must be that v:>v ‘ea* holds for all veK.
In particular a3=>a for some k¢e{0,3}U{2": n=0}.
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(1) Assume that a";A. Hence a;A. Then for each a€V such that
a;xea“’ it holds that aiA where ¢ equals the cardinality of V. Choose r such
that 2"=max ({j: ozétsaf aEV}U{O 3). Thus a¥*'¢L(H) and by the choice
of r we may write w=>x1ax2=>ylzy2—a2'“ such that oceV XIX2€V » hye€at,

a=>z and 1=|z|<2". On the other hand we have w=>x1ax2=>y1y2€a+ and
201 _2r=2"< |y, ¥o| <2"*'; a contradiction.
+

t
(2) Assume that a®*=a’ Hence there exists a ¢ such that a=sa. Consider
the ™ speed up H of H, L(H)=L(H). (See, e.g., [7]). Hence H must have a produc-

tion @—a. This implies L(H)c¥(CF) (see. e.g., [7]); a contradiction.
+ +
(3) Assume that a;=a?". If n=1, then a=A which yields a contradiction

+ +
as in (1). Hence n=2. This implies that a=a’ for some i=>1. Hence a3=a%¢
¢ KU{A}; a contradiction. [J

It follows from the above that there are EOL languages that are not nbEOL
languages. However the following theorem demonstrates that there is only a “small
difference” between nbEOL and EOL languages.

Theorem III.1. Let K¢ #(EOL) and let § be a symbol, §¢alph K. Then
KU§* ¢ # (nbEPOL).

Proof. Let K and § be as in the statement of the theorem. Let G=(V, Z, P, S)
be an sEPOL system such that §¢V, SeV\ 2 and L(G)=K. Moreover assume
without loss of generality that N is the synchronization symbol of G,a—~N for

P
each a€V, and a—N is the only a-production for a€ ZU{N}. Then let G=
=(V,Z, P, S) te the EPOL system which is defined as follows.
(1) W={[p]: peP}, WNWU{§)H=0, and V=VUWU{§}.
(i) Z=2zU{§).
(1ii) }_’={cx—>[p]:p=oc;»x}U{[p]—»x:p=a:x}U{a—>§:aEV}U{§—>N,§—>NN}.

(1) We first show that L(G)=KU§*. Let x€L(G) and let D: S=x,=
G

_ e
=X,=...=Xx,=x€X% be a derivation in G.If xcX*, then clearly n is even
¢ G @
and all productions used in D belong to {x-[p]: p=a—x}U{[p]—>x: p=a—x}.

P P

G
§calph x, n must be odd and consequently (the form of P implies that) xc§*.

Thus L(G)S KU§*. Since each derivation step in G can be simulated in two steps
in G,KSL(G). Moreover S=>§=>N2=>§2=>N3 ..., yields §* S L(G). Thus
¢ a
KU§*SL(G). Hence L(G)= KU§+ N
(2) Next we show that G is nonblocking. Let xesent G. A close inspection of
P yields that either x¢V*+ or xe(WUED*. If xe(WU{§)* then x=>yEV+

Hence D': S=x,=x,=...=>x,=x is a derivation in G and thus xeK. If
G G G
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=2 — ) —
If xeV* and |x|=k then x=§. Thus x=zc§* for all xesent G. Hence G
G G

is nonblocking.

We now turn to the comparison of the language families Z(EXOL),
Z(nbEXOL), £(XOL) where X denotes e¢ither P, D, PD or the empty word. We
need the following lemmas.

Lemma N1.2. (i) £(EDOL)C . (nbEOL), and
(ii) £(EPDOL)C % (nbEPOL).

Proof. (i) Our first observation is that every EDOL system generating an in-
finite language can be considered as an ntEOL system. Every finite non-empty
language K with alph K=2X can be generated by a nbEOL system, namely G=

=({S}UZ, Z, {S—x: xeK}U {a—»a:ac X}, S).
The two observations from the above conclude the proof of (i).
(i) Analogous to (i). O

Lemma IIL3. #(DOL)\.Z (nbEPOL)>0.

Proof. We will prove that K={ab}U {a®"bc: n=1}¢ £ (DOL)\.Z (nbEPOL).

() Let G be the DOL system which is defined by G=({a, b, ¢}, {a, b, c},
{a—~a? b—bc, c—~A}, ab). Obviously L(G)=K. Thus K¢#(DOL).

(i) The fact that K¢ . (nbEPOL) is proved by a contradiction. Assume that
Ke #(nbEPOL). Then K=L(H) for an nbEPOL system H=(V, Z, P, w).

Since H is nonblocking, for each veK, u-_—>v "¢K. Thus azbc:xEK for a positive
H
integer ¢. Since H is propagating, |x|=4. Moreover X cannot equal a®bc because th]S

would imply that K is context-free. Thus azbc:az"bc for an n=2. Clearly a=>y
H H

implies yeca™*, thus a:>a" for an i=0. b::»a"b (b:>a" respectively), k=0 is
H H H

t t
impossible because then ab=-a'*+*b (ab=a'** respectively) which contradicts the
H H

1 t
fact that L(H)=K. Hence we must have a=d' i>1 and b=b. But then
H H

ab;a"b which again contradicts the fact that L(H)=K. Thus K¢.#(nbEPOL).
Th[én (i) and (i1) yield the lemma. O
Lemma 11L4. £ (POL)\.#(EDOL) 0.
Proof. Let K={a": n=1}. Itis proved in [6] that K¢ (POL)\ ¥ (EDOL). [J
Lemma 1IL5. % (EPDOL)\.% (nbEDOL) 9.

Proof. We will prove that K={a?b? b'(ac)?}¢ £ (EPDOL)\¥ (nbEDOL).
(i) Let G be the EPDOL system which is defined by G=({4, a, b, ¢}, {a, b, ¢},
{4—~A,a~b* b—~ac, c~ A}, a*h?). Obviously L(G)=K. Thus KeZ(EPDOL). -
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(i1) The fact that K¢ £ (nbEDOL) is proved by a contradiction. Assume that
KeZ(bEDOL). Then K=L(H) for an nbEDOL system H=(V, X, P, w).

t
Since H is deterministic there exists a positive integer 7 such that either a2b2=5b*.
H

t t t
«(6c)? or b'(ac)>=a*b% The latter implies b= A and (ac)®>=a?b? which is clearly
H H H

t
impossible. Hence azb2=>b4(ac)2. There are three cases to consider.
H

(a) a:>A Then however b"=>b“(ac)2 which contradicts the fact that H is
H H

deterministic.
t t
(b) a=b. Then however b*=b%*(ac)* which contradicts the fact that-H is
H H
deterministic

. t
() a:b2 Then b2=>(ac)2 The fact that H 1s deterministic vields b=dac.
: H
Observe that

* * t
(HIL.1)... a=>x implies |x|=1, and b=>x implies |x|=1. Clearly a?b>=b*.
H H : H

t t
- (ac)?=(ac)* (b%x, 2= (b2 x)* ((ac)® x. 2=z for some X, x,€V*
H H .
Now the form of z and (IIL1) yield that
*
(I11.2)... for all words v such that z=uv, [v|=12. Since the longest word of
H

L(H)=K has length 8, (II1.2) contradicts thé fact that H is nonblocking. Having
established a contradiction for all possible cases, we get that K¢.%(nbEDOL)
which concludes the proof of (ii).

Hence the lemma holds. O

Lemma [IL6. % (nbEPDOL)\ % (OL) 0.

Proof. We will prove that K= {a®"b: n=0}U {a®"**c: n=0}e £(nbEPDOL)\_
¥ (OL).
(i) Let G be the nbEPDOL system which is defined by G=({4, B, C, a, b, ¢},

{a, b, c}, {4—~c, B~C, C—»b,a—»aa, b—~A4, c—~B} ,ab). Obviously L(G)=K. Thus

Ke& (nbEPDOL)

(if) The fact that K¢ ¥ (OL) is proved by a contradiction. Assume that K¢
€ (OL). Then K=L(H) for a OL system H=(V,V, P, w). Without loss of
generality we can assume that V= {a, b, c}.

(ii.1) Clearly a~>,\ implies x¢€a*, b—»x implies an*bba ¢; and c—»x

implies xea*hUa*c (otherw1se L(H) would contain words not telonging to K ).
(1.2) The set P contains only one a-production. For assume to the contrary
that there exist two different a-productions in P, say a—4' and a—a’,i=>j. Let

b-—x be an arbitrary b-production of P. Then for all n=0, a® b=>a*"ix and
‘ H
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a® " b=a®"i-itix, Thus for all n=0,4*"'x and a®"~+i/x belong to L(H)

H
which (for n large enough) contradicts the fact that L(H)=K.

(ii.3) The only a-production of P cannot be a—A otherwise L(H) would be
finite, a contradiction.

(ii.4) Analogously to (ii.2) we can prove that P contains only one b-pro-
duction and one c-production.

Now (ii.1) through (ii.4) yield that H must be a PDOL system.

Hence ab=a c=>a32b There are four cases to consider.
H

(@) a=a and b=>a3 ¢. Then however a32b=>a35c, a contradiction.
H

(b) a=a* and b:>a~c Then however (z32b:>a‘*6 ; a contradiction.
H H

(¢) a=a® and b:>ac Then however a3°b:>a97c, a contrad1ct10n
H

(d) a=a* and b:»c Then a'c=a®b, a:>a" and the fact that H is deter-
H H

H
ministic yield c:a’eb Then however alzsc:amb a contradiction.

Having estabhshed a contradiction for‘all possible cases, we get K¢ .Z(OL).
Then (i) and (ii) yield the lemma. O .

We are now ready to state the main result of the section. As expected, if X
denotes either P, D, PD or the empty word, we have that £ (XOL)c £ (nbEXOL)C
c Z(EXOL).

Theorem 11I.2. The following diagram holds: _
Z(EOL) = Z(EPOL)

4
Z(nbEOL)
) ZL(EDOL)
£ (nbEDOL) . & (nbEPOL)
: %(EPDOL)
Z(nbEPDOL) * :
Z(OL)
Z£(DOL) £ (POL)
Z(PDOL)

where, if there is a directed chain of edges in the diagram leading from a class X
to a class Y then XCY; otherwise X and Y are incomparable but not disjoint.

Proof. 1t is well known that ¥ (EOL)=%(EPOL) (see, e.g., [7]). Inclusions
follow from the definitions and Lemma II1.2; strict inclusions and incomparabilities
follow from Lemma III.1 and Lemmas IIL.3 through HI.6. O
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1V. Systems with tables

In the case of E(P)TOL systems the nonblocking restriction turns out to be no
restriction with respect to the language generating power. This contrasts the results
of the previous section.

Theorem 1V.1. £ (nbEPTOL)=¥(nbETOL)=¢(EPTOL)=<(ETOL).

Proof. We shall show that Z(ETOL)E #(nbEPTOL). The theorem then
follows from the definitions. Let K¢.%(ETOL). Then (see [6]) there exists a PTOL
system G=(V,V, {P;, P, ..., P,},w), k=] and a A-free homomorphism h:
V*—Z* such that #(L(G))=K. Without loss of generality assume that VN Z=
=0. For I=isk let Q;=PU{a—a:acZ}. Let Q={a—h(e): acV}U{a—a:
a€Z}. Finally define the EPTOL system G by G=(FUZ, 2, {Q,, O, -.., O,
0}, w). Clearly G is nonblocking and L(G)=K. Thus K¢ (nbEPTOL). Hence
#(ETOL)S £ (nbEPTOL). O

Even in the case of E(P)DTOL systems the nonblocking condition has no con-
sequences for the generating power of those systems. We first prove the following -
lemma.

Lemma IV.1. #(EPDTOL)C & (nbEPDTOL).

Proof. Let G=(V, X, 2, S) be an EPDTOL system where #={P,, P,, ...,
.., Py}, k=1, Without loss of generality assume that S¢V\Z, L(G)»#@ and
alph L(G)=Z. Let V={a: o€V}, VNV=0 and let h be the homomorphism on

V* defined by h(x)=a for a€V. For each @=XCV let wy be a fixed word such
that alph wy=2X and each letter occurs precisely once in wy. Furthermore let Gy=

=V, Z, 2, h(wy)) be the ETOL system which is defined as follows. V'=V U7,
and #'={P’: Pc?} where for P¢2?, P'=PU{h(e)~x:a—~x}. Then SUC(G)=

={0=XCV: L(Gx)=9}, in other words for a weV *, @;ESUC(G) if and only
if there exists a w’€ X* such that w;w’. For X¢SUC(G) we define next X=I
={i: P;eP, wy=1y, alph yeSUC(G) gr alph y£.Z}. Now we will construct an
nbEPDTOL sl)}isten_l——H such that L_(Ez_L(H). We proceed aé follows.
P={sS}Uz xesgc«;) {le, X];: acalph X, ienext X}, PN(V\({S}UZ2))=0. For

i€next {S}, define Oy, ;={S~[S, {S}1}U{a—~a: ae P\{S}}. For XeSUC(G),
wx=y, alph y=Y¢SUC(G) and jenext Y define ’
P; -

QX.i,i={[a’ X]i_’[ﬁla Y]j[ﬁ?: Y]j"'[ﬂma Y]j: an: a;ﬂlﬁ2"'ﬁma mél’ ﬂIEV
for 1=l=m}U{a—a:ac P\{IB, X];: BeX}}.
For Xc¢SUC(G), wy=y, alph yS X define
P, T

Qx.icin={lo, X];—~2: aeX, oz—;z}U{a—»a: ae PN\{[B, X)i: BeX}}.

i
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Let P={Q;, ;: icnext {S}}U{Qx,J XeSUC(G), wx=>y alph y=YeSUC(G)
and jenext y}U{Qx, i rin: X€SUC(G), wy=>y, alph YC E}
P,

Finally let H be the EPDTOL system defined by H=(V, %, #, S). First we
show that L(H)=L(G). For XeSUC(G) and ienext X the homomorphism
hyx ; on V* is defined by hy (a)=[a, X]; if acl; furthermore the homomorphism
g on V* is defined by g()=a if ae{S}UZX and g([e, X])=0o if Xe¢SUC(G),

a€X and icnext X. Let x¢L(G), thus S= x0:>x1=>x2=> =x,=x,nz=l, i, ...,
p.

<osig€{l, ..., k}. Then obviously, if for 0<l<n ‘we denote alph x=X,
S = hxo,il(xo) = hy, (o) =>... = hx,,_,,i,,(xn—l) = Xp = X.
Qin,i, QX ,iy,i Ox, _g.in_1sin QX,_q,infin

Consequently x¢L(H). Hence L(G)SL(H).
Conversely let xc¢ L(H) and let D: S=x=x,=>X,=...=X,=Xx be a shortest
H H H

derivation of x in H. Thus, if for 0=/=n we denote ;_Ithg(x,):X,,
D:S=xy =2 x; =2 xp=.. = Xp-1 = X, = X,
Qn,i, X,,ip,i, X, _prin_nsiney 92X, - 1yin_1, fin
n=2 and i, ...,i{,_1€{l, ..., k}. Consequently
S = Xo = g (%) = = g(x,- 1)P=> glx,) = x
i ig Inog e

and thus x€L(G). Hence L(H)Z L(G).

We end the proof of the lemma by showing that H is nonblocking. Let xesent H.
Then there are three possible cases: x=S8 or x€Xt or x=/hy (v), veV +, X¢
¢SUC(G) and ienext X. Since L(H)=L(G)=0 it suffices to consider sentential
forms of the third kind. Thus x=hy ;(v), veV'*, X¢SUC(G) and icnext X.

*
Hence there exist v* and v” such that v=v'=v”€¢ Z+. Then inspecting the proof
P, G

*®
of L(G)SL(H) one can easily see that x=/hy ;(v)=v” which shows that H is
. i
nonblocking. O
As a corollary we obtain the answer to an open problem stated in [6].

Definition IV.1. A language L is contained in #Z(NPDTOL) if and only if
there exists a PDTOL system H and a non-erasing homomorphism / such that
L=h(L(H)).

Corollary 1V.1. Z(NPDTOL)=2(EPDTOL).
Proof. We will use the notation from the proof of Lemma IV.1. Fix a ueX+
+ + .
such that S=u, and for each X¢SUC(G) let Dy: wy=uycZ+ be a fixed deri-

G G
vation. Then define the A-free homomorphism % on V* as follows: (S)=us,
h(a, X])=ctrp, o if XeSUC(G), acalph X and icnext X, and h()=oa if
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acZX. Let H’ be the PDTOL system defined by H =, 17 2, S). Clearly L(G)=
=h(L(H"). Hence Z(EPDTOL)S #(NPDTOL). Since also % (NPDTOL)S
S Z(EPDTOL) (see {6]), the corollary holds. {1

For the deterministic case we obtain a result analogous to the statement of
Theorem IV.1.

Theorem IV.2. #(nbEPDTOL)=2(nbEDTOL)=%(EPDTOL)=%(EDTOL).

Proof. From the definitions we get £ (nbEPDTOL)E .Y (nbEDTOL)C
C Z(EDTOL). It is well known- (see, e.g., [1]) that Z(EDTOL)=%(EPDTOL).
From Lemma IV.1 we get Z(EPDTOL)S #(nbEPDTOL). Combining the above
results, the theorem immediately follows. [J

Let X and Y denote P, D, PD or the empty word. Then Theorem IV.1 and
Theorem 1IV.2 show that ZL(mbEXTOL)=2(EXTOL). Thus comparing
Z (MmbEXTOL) and £ (YTOL) is the same as comparing Z(EXTOL) and £(YTOL).
For completeness only we present here the diagram in the case of tabled L systems.
The proof is given using well known results from the literature.

Theorem IV.3. The following diagram holds:

Z(ETOL) = £(nbETOL) =
= $(EPTOL) = #(nbEPTOL)

Y(EDTOL) = £(nbEDTOL) =
= Z(EPDTOL) = £(nbEPDTOL)

where, if there is a directed chain of edges in the diagram leading from a class X
to a class Y then XcY; otherwise X and Y are incomparable but not disjoint.

Proof. Inclusions follow from the definitions, equalities follow from Theorem -
IV.1 and Theorem IV.2. Strict inclusions and incomparabilities follow from the fol-
lowing three observations.

(i) {pa?": n=0}U}bc¥": n=0}e¢ £ (DTOL)\Z (PTOL) (see, e.g., [3]).

(i) {we{a, b}*: |w|=2" for some n=0}¢ £ (PTOLN\ Z (EDTOL) (see e.g., [7])

(iif) All finite languages are in & (EDTOL) and there are finite languages which
are not TOL languages (see, e.g., [3]). O

Since emptiness is a decidable property for ETOL systems (see, e.g., [7]) and
since all constructions used in this section are effective, it follows that for every sys-
tem, considered in this section, generating a non-empty language, there exists ef-
fectively an equivalent nonblocking system. This contrasts Theorem II.4. Moreover
it turns out that nonblocking is a decidable property for ETOL systems. This result
should be compared with Theorem IL.S.
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Theorem 1V.4. Let G be an ETOL system. Then it is decidable whether or not
G is nonblocking.

Proof. Let G=(V, X, ?, w) be an ETOL system. Let V={&: acV}, VNV =0
and let /i be the homomorphism on ¥V * defined by h(x)=a for acV. For each
0AXCV let wy be a fixed word such that alph wx=X and each letter occurs

precrsely once in wy. Furthermore let Gy=(V", X, P, h(wy)) be the ETOL system
which is defined as follows. V’'=V UV, and = {P’: PcP} where for Pe2,
P'=PU{h(®)>x:a—~x}. Let &f={Gy:sent GN{xeX*: alphx=X}=0}. Ob-

P
viously G is nonblocking if and only if &0 and for each He¢sd, L(H)#®. The
decidability of the latter question follows from the closure properties of Z(ETOL),
the effectiveness of the construction of &/ and the decidability of the emptmess prob-
lem for ETOL systems. Hence the theorem holds. O

Discussion

In this paper we have mvestlgated the effect that the nonblocking restriction
has on the language generating power of various classes of rewriting systems. Since
the blocking facility forms a typical “programming tool” in generating a language,
we believe that our results shed some light on the nature of the generation of languages
by grammars.

The research started in this paper can be continued in several directions.

(1) The class of languages generated by the “nonblocking subclass™ of a class
X of rewriting systems should be often investigated on its own (whenever the non-
blocking restriction influences the language generating power of the class X). Such
a typical candidate to investigate is % (nbEOL); for example the closure properties
and the combinatorial properties of languages in this class. Also the decidability
status of the question ‘“Does an arbitrary EOL system generate a language in
£ (bEOL)?” forms an interesting open problem

(2) The role of the nonblocking restriction in classes of rewriting systems dlf-
ferent from those investigated in this paper should also be investigated.

(3) Clearly the way that we have formally defined the nonblocking of a rewriting
system is only one of several possibilities. Other possibilities should also be investi-
gated.

(4) A nonblocking condition can be also defined for various types of automata,
for example one could require that for every state of an automaton there exists a
computation that leads from this state to an accepting state. (Conditions of this
type are often considered in the theory of Petri-nets (see, ¢.g., [2]), where they are
referred to as “liveness conditions”.) The effect of nonblocking on the generative
"power of various classes of automata should be investigated.
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Appendix

Here we give the full proof of Lemma 11.2.
For every context-sensitive grammar, generating a non-empty language there
exists an equivalent nonblocking context-sensitive grammar.

Proof. Let KC Z* be a non-empty language generated by a context-sensitive
grammar.

1) If K is finite, then let G=(ZU{S}, Z, P, S) be the context-sensitive grammar
with P={S—+x:x€cK}. Obviously; G is a nonblocking context-sensitive grammar
and L(G)=K.

2) If X is infinite, we proceed as follows. Let X'={[a, b, ¢, d]: a, b, ¢, de Z}U
Ulla, b, c}: a, b, cc Z}U{[a, b): a, be Z}U{[a): ac Z} with Z'NZ=0.

Let K'={[a,,a:, a3, a,)...[sn—3, Gyp—3, apn—1, Q4n): 1=2, a;€ X, for 1 =i=4n, and
a,ay...a, EKYU{[ay, ay, a5, a}) . [Ggn—3, Qan—s, Qan—15 Qall@an41]: =2, a;€ 2, for 1 =i=
=d4n+1, and a1a,...04, 1 €KYU{[a1, 02, a3,45) ... [@an—35 Fan_2, Tan-15 Bn)[Ban 41, Ban 2]
in=2,a,€2, for 1=i=4n+2, and @,a;...04,:6K}U{[ay, a,, as, a,]...
o [Aan—3s Qan—2> Aan-1> Ap){@an+1> Aansa> Ganis): =2, a;€ X, for 1=i=4n+3, and
28y 84y 36K

Let / be the homomorphism from X* into 2* defined by h({ay, a,, a;, a,])=
=a,a,a30,, h([a, a5, a;))=a,a:a,, h((ay, a;))=a,a, and h(a]D=a,, for qg;cZ,
1=i=4. Clearly h(K')=K\{x€K:|x|<8} and hence K’'c¢Z(CS). (See, e.g.,
[4]) Let G'=(V"’, 2’, P’, §’) be a context-sensitive grammar, such that (F"\ 2)N
NXZ=0 and L(G’)=K’. Without loss of generality we assume that no termmals
occur in the left-hand side of any production of P’.

The context-sensitive grammar G=(V, X, P, S) 1s deﬁned as follows V=

=VUV’U3, where V={S,L,R,Ly, R, N, Ny, N, B, B, My, My, M,, M,, My,

My, My, My, Xy, X;} and VN(V'UZ)=0.
P consists of the following productions.

(1) S—x,_if x€K and |x|<8.
(2) S—LM,S'R.
(3) All productions from P’.
4 Moa—»aMo, if aeX’.
(5) M(,—>B N
(6) [ay, a5, a5, a)M, R ”’Moa1aza3a4,
[a,, az, a5, a4][as]MoR"Moalazasa405,
[a;, a5, a5, a)las, a(,]M0 ~M, ot Asasa.a5a, and
[al, dg, 43, alla;, ag, a7]11_/.70R—>M0a102a3a4a5a6a,, for a;e 2, 1=i=17.
(1) aB~BN, if acV’UZU{N, L;, N, My, My},
(8) LE~N,F and N B—N,B.,_
(9) [a,, as, a5, as][as, a5, a3, as]Mo"[ala as, a3, a4]Moa aga;ag for a;cZ,
1=i=8.
(10} L(ay, a, a,, a4]M0—»a1a2a3a4, for aq;eX, 1=i=4.
(11) B«—~NB, if acV’'U{N},

4
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(12) BR—~NL,M,S’R, and BR,—~NL,M,S'R,.

(13) Mlcx—»onl, if aeZ’.

(14) Ml—»B

(15) M,R,~M,R,.

(16) a by~ Mo, if acZ’.

(17) L, M, ~NM,.

(18) NMy—~M,N.

(19) N M,—~N, M,.

(20) Na—aN, if acZ.

21) N[al, as, a,, a4]—»a1a2a3a4, for a; EZ 1=i=4.

(22) N[al, ag,as]—»BN N[al, az]»BN N[al]eBN and NRI—»BNRI, for

g€, 1=i=3.

(23) Mza»aMz, if aeZ.

(24) Mz[al, a,, a;, a4]—»a1a2a3a4M3, for a; EZ 1_154

(25) Malay, as, as)~BN, M[a,, a;)~BN, M,ja,)~BN and M,R,~BNR,, for

a X, 1=i=3.

(26) A’Ia[an as, d3, a4]—>M3[al, ag, 4, a4], for a;€ Z I=i=4.

(27) M,[a,, ay, @)~ BN, Msla,, a;)~ BN, My[a,]~BN and M,R—~BNR,, for

a€el, 1=i=3,

(28) a0, if a€ .

(29) N, M,~XX,.

(30) X, Xpa—aX,X,, if acZ.

(3) XiXzlay, a;, a3, allas, as, a;, as]"alazaaa4X1X2[as, as, a7, ag], for a;€2,

1=i=8.

(32) Xy X,lay, ay, a;, a)as, ag, a;1 Ry ~a,0,a5a,a5a,a;,

X1 X,[ay, ay, a3, ay][as, ag) Ry ~a,a,a3a,a;a,,
XiXelay, a5, a3, as)[as) Ry —~a,a:a;5a,a5 and
X1X;lay, as, a5, a,) R, —~a,a,a5a,, for a;c 2, 1=i=7.

First we show that L(G)S K. Starting from the axiom S only productions
from (1) and (2) can be applied, resulting either in a word x€K, |x]<8, orin a word
of sent G of type 4, i.e. of the form LxM,yR, with x¢X* and xyesent G

" The productions, applicable to words of sent G which are of type 4 belong to
(3), (4), (5) and (6). If a production from (3) or (4) is applied to a word of type 4,
the resulting word again is of type A.

If a production from (5) is __applied to a word of sent G of type 4, we get a word
of type B, i.e. of the form LxByR, with xye(V"U{N}*. If a production from (6)
is applied to a word of type 4, the resulting word is of type C, i.e. of the form LxA?o Vs
with xeZ'*, yeZ*, h(x)yeK and |h(x)y|=8.

The productions, applicable to words of type B come from (3), (7) or (8). Appli-
cation of productions from (3) and (7) to a word of type B again yields a word of
type B, whereas application of productions from (8) yields a word of type D, i.e.
of the form N, N*BxR or N N*BxR,, xe(V'U{N}*.

The productions, applicable to words of type C belong to (9) or (10). Applica-
tion of a production from (9) to a word of type C yields a word of the same type,
-whereas application of a production from (10) yields a word of K.

2 Acta Cybernetica V/4
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The productions, applicable to words of type D belong to (3), (11) or (12). The
application of a production from (3) or (11) to a word of type D results in a word
of the same type; the application of a production from (12) yields a word of type E,
i.e. of the form N, N*L,xM,yR,, x¢Z’*, xyesent G’

The productions, applicable to a word of type E come from (3), (13), (14) or (15).
Application of a production from (3) or (13) to a word of type F yields a word of
the same type. Application of a productlon from (14) to a word of type E yields

a word of type F, i.e. of the form NLxBle with xye(V’"U{L;, N})*. Application

ofa productlon from (15) to a word of type E yields a word of type G, i.e. of the form
NNt leMlle with xye X'+, h(xy)EK and |h(xy)|=8.

' The productions, appllcable to a word of type F come from (3), (7) or (8), and

if applied, yield words of type F, type F and type D respectively.

The productions, applicable to a word of type G, belong to (16) or (17), and,
if applied, yield respectively words of type G and type H, ie. of the form
N N*M,({NYUX)*2’*R,, and furthermore if a word has this form, then also
h(Presyyy w)=w'€K with .|w’|=8.

The productions, applicable to a word of type H belong to (18),-(19), (20), (21)
or (22) and then yield words of type H, type I, type H, type H or type J respectively,
where type I and type J are defined as follows.

A word w is of type I if weN, Z*M,({N}U 2)*2*R, and h(Pressns, w)=
=w'eK, with |w'|=8. - R

A word is of type J if it is of the form N, N*M,xBN * R, with xe(ZU{N, N}*,
or N Z*M,yBN*+R,, with ye(SU{N, N))*, or N Z*BN*R,.

The productions, applicable to words of type I belong to (20), (21), (22), (23),
(24) or (25) and then yield words of type I, type I, type J, type I, type L or type J
respectively, where type L is defined as follows.

A word is of type L if it is of the form N, xM, yR,, with xe Z*, ye '+, xh(y)eK
and |xh(y)|=8.

The productions, applicable ‘to words of type J telong to (7), (8), (18), (19),
(20) or (23) and then yield either a word of type J or type D. :

The productions, applicable to words of type L come from (26) or (27) and then
yield words of type M or J respectively, where type M is defined as follows. A word
is of type M if it is of the form N_xM,yR, with xeZ* yeZX’'+, xh(y)eK and
|xh(y)|=8.

The only productlons applicable to a word of type M come from (28) through
(32) and they<_l_ead in a deterministic way to xA(y) if the word, they were applied-
to, was NpxM;yR,.

The above reasoning shows that L(G)S K.

That KS L(G) can be seen as follows.

If x¢K and |[x|[<8, then S=x and hence x¢L(G).
G

If x¢K and [x|=8, say x=a,...q,,a,cZ for 1=i=k and k=8, then
— * —_ — * — *
S=>LM,S'R=>LM,yR, with yeK’ and h(y)=x and LM,yR=>LyM,R=
G G G G

* - ¥
=LyM,R=x. Thus x€¢L(G). We conclude K& L(G).
G G
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We end the proof by showing that G is nonblocking. To this aim we have to
*

show that for each wesent G, there exists a weL(G) such that w=w. From the
G

proof that L(G)Z K it should be clear that it suffices to prove that each word of
sent (G) which is of type 4 through M can lead to a terminal word. For words of
types C and M this was already proved in the above. Inspecting the productions of
G, we make the following observations. Let wesent G.

*
If wis of type 4, then w=w" for a w’ of type B.
G

%
If w is of type B, then w=w’ for a w" of type D.
G

*

If w is of type E, then w=w’ for a w’ of type F.
G
*

If wis of type F, then w=w" for a w’ of type D. '

G
*

If wis of type G, then w=w" for a w’ of type H.

G
*

If w is of type H, then w=w" for a w’ of type I
— G

*
If wis of type I, then w=w" for « w of type J or L.
G

*
If wis of type J, then w=w’" for a w’ of type D.
G

* .
If wis of type L, then w=w" for a w’ of type J or M.
G

Hence for each wesent G of type 4, B, D through M, there exists a w’¢sent G

- %
such that w=w" and w’ is either of type D or of type M.
Since each word of sent G of type M can derive a word of K, it remains to show
that each word of sent G of type D can derive a terminal word.
This is seen as follows. Let wesent G and w is of type D. Then

’ * — . . . . . . . .
w=Ny N'L;M,S’R, for some i>0. Since K is infinite, KX’ is also infinite. Hence there
G

is a word x=a,...q, with a;¢Z’, 1=j=k, such that x€K’ and k=i+4. Then
o * ) - * . —- * . — *
N.N'L,M,S’Ry = N N'Ly,M,xR, = N N'L,xM,R, = N N'L,xM,R, =
G G G G
* L e * . * B :
= NLNlLlMlx.R1=> NLN1+1M2xR1 = NLM2N1+1a1a2...ai+1ai+2ai+3...akR1
G G : G :
* * .
? NLMZh(al-"a'i+1)ai+2ai+3"'ale:(;’ NLM3h(ay...0;41)8;420;45... a3 Ry

* * ’

< vl —
= Nph(a;...a;4)Mya;420;45...0, Ry = N h(ay...a;,9)Msa;.5...a, R,
G G

2%
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* - * — )

_—: Noh(ay...a;,9)Mza;,5...a, Ry ? N, M h(a,...a;,5)0;,5...a, R,

* * *

= XiXoh(ay...a;49)0;45...0, Ry =G> h(ay...a; . ) X1 Xa;,5...a, R, =G> h(a,...ay).

Since a,...4,€K’, h(a,...a)¢K and hence w derives a word of K.
Thus G is a nonblocking context-sensitive grammar such that L(G)=K. Hence
the lemma holds. O
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Abstract

A rewriting system G is called nonblocking if every sentential form of it can be rewritten into
a word of the language of G; otherwise G is called blocking. The blocking facility is often used in
generating languages by rewriting systems (for example in context-sensitive grammars and EOL
systems). This paper initiates the formal investigation of the role that the nonblocking restriction
has on the language generating power of various classes of rewriting systems. We investigate gram-
mars of the Chomsky hierarchy as well as context independent L systems with and without tables.
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