An algebraic definition of attributed transformations
By M. BARTHA

1. Magmoids and rational theories

The concept of magmoid was introduced in [1]. A magmoid M=({M,scS},
-, ®,e,¢e), is amany sorted algebra with sorting set S, the set of all pairs of non-
negative integers. Further on we shall write M? instead of M, g4 . Binary operatlons

-and ® are called composition and tensor product, respectively. The following axioms

must be valid in M:

() «: MEXMZ—~MP is associative.

(i) ®: M“I’:XM”2 M,‘,"“'2 is associative. .

(iii) (@, -b) ® (a,- 2) (a1®a2) (by®by) for all composable pairs {a, b;),
(ay, by .
i (iv) ec Mi, e,e M, and if e, denotes ¢®...®e (n=1), then for each p=0,

T times

g=0,aeM}: e,-a=a-e,=aQe,=¢,Qa=a.

An element acM} will often be denoted by a:p—q if M is understood.

Let Z=[JZ, be a finite ranked alphabet, and define the structure T(X)=

n=0
- =({T(2)E p,q=0}, -, ®, e, e,) as follows:
For arbitrary p=0 and ¢=0, T(2)!={(g; t, ..., t,)| for each 1<t<p,
is a finite X-tree over the variables X1, . ,xq} {q; )ET(E)O will be denoted by 0,.

Gty sty s uy, oy gy = sy, o ug), o Uy, o, 4],

where [...] denotes the composition of trees;

<q1’ tl! e p1>®<q2, Uy ooy up2> = <41+42, tla Ters tpl, ui, Ty u;;2>’

where uf =u;[x, 11, -5 Xg4q.]s €=(1; X1), €,=0.

We shall omit the component g of {q; fy, ..., tpy if it is understood. Moreover,
we leave {...) if p=1. Itis known that T(2) is a magmoid. T(2) is a submagmoid of
T(2) such that t={g; ty, ..., t,y¢ T(Z)? if and only if the sequence of variables
labelmg the leaves of 1, .. ,t,,, read from left to the right, is exactly x, ..., x,.
T(2) is the free magmoid generated by Z, that is, every ranked alphabet map
h: £-M" into a magmoid M has a unique homomorphic extension h: T(Z)—~M.
. (Viewing ¢€ZX, as (n;0(xy, ..., x,YeT(2)}).
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Another important magmoid is 6, in which 62 is the set of all mappings of
[p}={1, ..., p} into [g]. Composition is that of mappings, and for 9;e03, i=1, 2

() if Jjelpd,

1® 2(.]) 92(_]'_p1)+ql if P <J = DPe.

e and e, are the unique elements of 6} and 609, respectively. e, will be denoted by id,
if n=1. The elements of  are usually called torsions or base moprhisms.

A magmoid is called projective if it contains a submagmoid isomorphic to 6
and every a: p—q is uniquely determined by its “projections”, i.e. by the sequence
(n,, a|1515p) i, denotes the 1somorph1c image of the map #,:[1]—-[p] that
picks out the mteger i of [p]. T(Z) is projective, and it is the free pro;ectlve magmoid
generated by X. PpT(Z) will denote the magmoid in which (PrT(2))?={g; 4,, ..

Ap)| for each i¢[p], A; is a finite set of Z-trees over the variables x, ..., x, }
(For the mterprltatlon of the operations see [2].) PrT(Z) is also projective. I_et M
be a projective magmoid, .4, ..., a,€ M}. ‘ay, ...,a,% will denote the unique

element of M} whose sequence of prOJectlons is (al, ..., @,). This source-tupling
can be viewed as a derived operation in M, and it can be extended as follows. Let
@,:p1—~q,d;: ps—~q. Then <a,a,%= 4:7‘::1 a, ..., “ly, M, g, ..., TH2 A3 .

Rational theories were introduced in [3], based on the concept of algebraic
theory. However, the only difference between nondegenerate algebraic theories and
projective magmoids is that in algebraic theories source-tupling is a basic operation
(and tensor product is a derived one). So, if we introduce rational theories by means
of projective magmoids, we get a definition equivalent to the original one excluding
the trivial degenerate rational theory. -

A-rational theory is alsoa many sorted algebra R= ({R%|p, q=0}, -, ®, e, ¢, T),
where apart from *, R is a projective magmoid, the sets R? are partxally ordered,
and *:RP, —~R? is a-new operation. For f:p—p+gq, f+ “is the least fixpoint of
/, and some further conditions must hold concerning the ordering and the opera-
tions, that we do not list here.

Add a new symbol | wi‘h rank 0 to X, to get the ranked alphabet %, . There
exists a rational theory T..(2X) for which T-(2)f={g; t1, .-, 1,)| for each
i€[p],t is a possibly infinite X', -tree over the variables x,, ..., x } For the inter-
pretation of the operatlons see [3]. It 1s known that R(X), the free rational theory
generated by Z, is the smallest subtheory of T..(Z) that contains T(Z) as a submag-
moid. .

Let ¢=0, X,={x;, ..., X}, X,: Z—»(EUX)* such that for each o¢¢Z,,
length (xq(a))—n “An mﬁmte tree t€R(Z)? is called local of type y, if the follow-
ing holds. If an interior node of ¢ is labeled by o€ ZX,, then its direct descendants are
labeled by y,(0). If so, we will denote ¢ by (w, x,), where w=root (1) (ZUX)".
Rec (2) will denote the smallest rational theory in PT(ZX) that contains Py T(Z)
as a submagmoid.
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2. The magmoid R(k, /)

Definition 2.1. Let R be a rational theory, k=1,/=0 integers.

Rk, )=({R(k,D|p, g=0}, -, ®,e,e) to be the following structure:
(@) Rk, Dy = REBILE;
(i) if acR(k,1)f, beR(k, 1)}, then
ab=«p P vk £a- 300 b Ypgr P Y,

where .
ur(=p" if m is understood)=id, ®0,¢0",.,,

Vi (=v, if n is understood)=0,®id,c0™, .,
3

— ykep+l k+1)r
par = Vg q®vl(-p ) )

— k+1).g+1 1.
l1bp,q,r - 0k-p® < vl£~r+ )2+ r’ ”k-%+(k+l)-r b4 ®Ol-p'

See also Fig. 1.

(i) if aeR(k,1)Er, beR(k, [)P2, then

q1°

411

Define

a®b =<« ”lq1l®”lqz > lq1l®v 2% -(a®b)- « y{‘g; ®/‘1P2’ 1pi®v FH S

- (i) e=1dk+,, €o=0y.

(We shall never add any distinctive mark to the sign of the operations when working
in different magmoids in the same time, because only one interpretation is reason-

able anywhere in the context.)

k-g /-1)
Ipart
kep l-glk-glli-r
lpll,(],l':
ker l-q
Fig. 1 .

Theorem 2.2. R(k,!) is a magmoid.

Proof. All the requirements can be proved by the same method, so we only show

the associativity of composition. Let
Q=4 Gy erer Gps Ays ey Ar.g F ER(K, D2,
b =<4 by, s Bigs By ooy Byy 3 €R(K, DY,
€= € € ovs Chors Co» ooes Cpg > ER(K, DY

M
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We must prove that (a-b)-c=a-(b-c). Both sides of this equation can be considered
as a polynomial in R over the variables g;, a;, ..., ¢;, ¢;. Since R is arbitrary, we have
to show that these polynomials are identical. Let X be the smallest finite ranked al-
phabet satisfying the following conditions: :
(i) for arbitrary i€[k-p] and j€[l-q], Ai, A;€ Xy q01.ps
(i) for arbitrary i€[k-q] and je¢[l-r), B;, B;€ Z; ..,
(iit) for arbitrary i¢[k-r] and je[l.s], C;, C;€ Xy i,

Change the small letters to capital ones in (1), to obtain the elements A, B, C of
R(Z). Clearly, it is enough to show that (4-B).-C=4-(B-C) holds in R(Z)(k, ).
However, it is easy to check that (4-B)-C=A.(B-C)=(w, x,), where n=k.s+/.p
and

w = </_11’ AR Ak'ps éla tees Cl~s>1

Zn(éi) = Zn(/—i/) = <§1, seey ék-qs Xk-s+1s <=+ -xk~s+l-p>’
Zn(gi) = XII(BJ) = <gl9 ’gk'n Zl, ey Zl-q>,
Xn(.c_i) = ln(é_;) = <x1’ LA ] xk~s9 319 ey El-r>

for any appropriate choise of the integers { and j.

Let &: R—R’ be a homomorphism between rational theories. Clearly, £ defines
a homomorphism &(k,1): R(k,!1)—-R'(k,1), and so the operator (k, /) becomes a
functor.

v

3. Attributed transformations

Definition 3.1. An attributed transducer is a 6-tuple UA=(Z, R, k, [, h, S),
where

(i) Z is a finite ranked alphabet, S¢ZX;

(ii) R is a rational theory, k=1,/=0 are integers;

(i) h: Zg—R(k, /) is a ranked alphabet map, where Xs=2XU{S} with S
having rank 1, and A(S)=a ®0, for some ac Ri*!. We say that A(S) is a synthesizer.

tq: T(Z)—R}, the transformation induced by 2, is the following function:
ta(t)=a, where mi-h(S(t))=a®0,. It is clear that 1y4(f) is uniquely determined
by this imlicit form. (As it is usual, we denoted the unique homomorphic extension
of h also by A.)

Definition 3.2. An attributed tree transducer is a 6-tuple U=(Z, 4, k, /, , S),
where X, k, ! and S areas in the previous definition, 4 is a finite ranked alphabet,
h: Zg—~PrT(4) is such that h((Zy),)SPrT(AEELT and A(S)eP:T(4)i+. To
define the transformation 74, consider the attributed transducer B={(Z, Rec (4),
k,1,h, S). B is correct, since PrT(4d)SRec(4) and h(S) is a synthesizer. Now

ta = {{t, w)te T(D, ucts(t)).

A is called deterministic if for arbitrary n=0 and o€ (Zs), all the components of
h(o) contain at most one element.

1
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Example 3.3. Let k=/=2,
= Z'OLJ 217 20: {a}’ le{f}’ A:AOUA15 AOZ{E}’ Al:{f; g}’
h(f):<4;f(x1),f(x2), g(x3), g(x4)>, /1(§)=<2; X1, xz): h(S):<4§ X1, 4, xz, a>-

(Braces enclosing singletons, are omitted.) Then W=(ZX, 4, %,/ h, S) is a deter-
ministic attributed tree transducer, and it is easy to see that for all =0

() = (45 (), £1(x), 8(Xa), (X))
Hence, A(f"(a@))=(2; f"g"(x,), f"g"(x»)), and
v = {(f"@), f"g"1"g"(@)n=0).

Definition 3.2 might be interpreted as follows. Let t¢T(X)!, a a node in ¢
having some label o¢X,. A component of A(s) descrites how to compute the value
of a synthesized attribute of « (the first k£ components), or an inherited attribute of
an immediate descendant of « (the last /-»n components) as a function (polynomial)
of the synthesized attributes of the immediate descendants (the variables x, ..., x;.,)
and the inherited attributes of « itself (the variables x, 411, .., Xi.o+1)- The role of
the synthesizer 4(S) is to produce the final result of the computatlon

It will be convenient to identify the nodes of a tree reT(Z)} with the set
nds (1) SN*X(ZUX,), and the leaves of ¢ with lvs () SN*X X, as follows:

() if t=x,, then nds @O =lvs ()={4, x1)};

(i) if t=t,- (1dp_1®a(x1, wo X)®id,_,) with £,eT(2)}, g=1, pelg], n=0,

oeX, then nds(f)= UV,, where

Vi={w, J)[je[p—l] and (w,x;yelvs (1)},

Vo={(w, x;)|j=p+n and (w, x;_,1)€lvs (1)},

Va={(Wj, X, ;_j€[n] and (w, x,)€lvs ()},

Vy=nds (t,)\lvs (),

Vs={(w, 0)}, where (w,x,)€lvs (z,).

lvs (1)=V,UV,UV,
It is easy to verify that nds (+) and lvs (¢) are uniquely defined by the above con-
struction, and for each w¢N* there exists at most one a¢nds (#) having w as its
first component. Clearly, |nds (¢)||=r(¢), the number of nodes in 7.

Let W=(ZX, A, k,I,h, S) be an attributed tree transducer, fixed in the rest of
the paper, reT(Z)L,

Z, = {x(x, i, y(o, m)|wends (¢), ic[k], me[l]}

a set of variable symbols. Construct a system E, ; of nondeterministic 4-equations
over the variables Z, as follows

E, w={E, »(a i)axends (¢)\lvs (2), ic[k]}U
AJ{E,, 1 (o, m)eends (2)\ {(4, root (¢))}, me[l1},

where
(i) if x={(w,0) with ¢€¢Z, and
A }1(0') = <Tla '--,'Tk, Ql: seey Ql-n)} (2)
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then the equation E,(a, i) is of the form
X(d, 1) = Ti [xk-(r—1)+p e X(dr, p)’ Xkn+s = y(a, s)|p€[k],r€[n], SE[I]]’

where <« denotes variable substitution, «,énds (¢t} is the unique node having wr
as first component. (We omitted the index /4, whizh is fixed.)

(i) If a=(wj,ay with a€¢ZUX,, then consider the unique node &=(w, o),
where o¢Z,, n=j, and the nodes &, re[n]. (Naturally &;=a.) Let A(o) be as (2)
above. Then the equation E («, m) looks as

y(d, m) = Ql~(j—1)+m[xk~(r—1)+p e X(&,, p)’ Xints )’(0_‘, S)IPE[IC], re["]? SG[I]]
The variables
Z! = {x(o, Dlaclvs (1), ic[kPJU {y ({2, root (¢)), m)|me[l]}

do not occur on the left-hand side of these equations, so they are considered as para-
meters. On the other hand, the variables

Z2 = {x((4, root (1)), i)lie[k]}U{y (o, m)|xelvs (¢), me[!]}

do not occur on the right-hand side of the equations. If we identify the elements of
Z, with the variables xi, ..., X4 1.y by a bijection ¢: Z,~[(k+1)-r(t)] so that
the variables Z! get the highest and Z? the lowest indices, we get an ®’(t,¢,):
k+D-r(t)—(k-q+D)~>(k+1)-r(t)eRec (4) for which w’(t,e)=0;,;.,90(1,¢)
and (w’(t,e))*=E} (with respect to ¢). E} denotes the solution of E,.

Lemma 3.4. Let R be a rational theory, k=1,1=0, g=1,n=0, pc[q] integers,

acR(k, D}, beR(k, )}. Then -
A a- (ep—1®b®eq—p) = Hl‘-*—l.(ll_l-+-")'(Ok+l~(q—1+n)®
®(gq,p,n' {a'r’q,p,nkb'Cq,p,n}))-l-’ (3) R
where A

Qapn = £ XD, v Oy, U ImPH Oy oy ®pt $
k+l-(p—1D+1-n+l-(q—p)+k+1 - k+1-(p=D)+1+1-(g—p)+k+1-n,
fapon = € Yelo-1> Bikprn F ®VEl—p 4t
k-(p—1)+k+k-(g—p)+! ~k+I1+k-(p—D)+k-n+k-(g—p)+1,
Cavon = 0@ € ViEFPD 4l o _10my P @0k e pyas
ken+l - k+l+k-(p—D+k-n+k-(g—p)+1

(The left-hand side of (3) is a polynomial in R(k, /), while the right-hand side is a
polynomial in R.)

Instead of presenting a complete proof we only remark that it would be enough
to prove the lemma for one special free rational theory, analogously to the proof of
Theorem 2.2. Then the proof reduces to an easy computation that we do not preform
here. The following lemma can be proved in the same way
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Lemma 3.5. Let R be a rational theory; ny, ny, 1y, py, ps, P3, m, r, s nonnega-
tive integers,

fim+mtns+s—s+p,+r+p;eR,

g:r+n,—p,+meR.

Then
#"1+”2+n3 * (On1+ng+n3®(g RS #"l+m+"3 * (0n1+m+n3®f)+ /P C))+ =

= ,u"1+"2+"3-(0,,1+,,2+,,3®(Qs- 4: f' rlss g'Cs }))-*.’ . (4)
where

0=ty Vy,, Op 4 m@ustr, 0,,1®/1'” F:mtnetngt+r+m->n+m+tns+rtns,
0s = € p™, Vngs 0"1+m®un3+s+r, 0n1®ll'" %
m+ns+ng+s+r+m-—-m+m+ng+s+ritn,,
n=KVytm > ®VEL P+ F 4y > R S A Y )
(=0, % Vitir, up i p, 3 ®0,.0 patm — r+m+pi+patps, (= 0,0

Lemma 3.6. Let ¢=0,7e¢T(2)}, t5x,. There exists a bijection ¢:Z,—~
—[(k+1)-r(¢)] such that _

(A) for arbitrary ic[k], j€[q),.m€[l] and appropriate weN*

&(x((%, root (1)), i))=1,

e(y((w, x;), m))=k+1-(G—1+m,

e (e ((w, X0, D) =r () =k - g+ D +k- (= 1)+,

&(y ({4, root (1)), m))=r(t)—I+m;

(B) 1 0110 @0 (1, 2))* (D),

Proof. If t=0(xy, ..., x,) for some ocZX,, then g is completely determined
by (A). Obviusly, w(t, &)= h(t), so (B) is trivially satisfied. Now let 7=1,-(id,_; ®
@0 (xy, ..., x,) ®id, - ), where g=1, pelql, 1,6 T(Z)}, to=x;, n=0, 0¢ %,, and sup-
pose the lemma is true for 7,. Let s=(k+/)- llnds (to)\Jvs ()| —(k+1). Using
the sets V,, ..., V5 introduced in the construction of nds (¢), we define ¢, as follows
If acV,,a= (w, x;, then for arbitrary icfk] and me[l]

e(x (o, N=k+1-(p—D+l-n+l-(g—p)+s+k+I+k-(G—1)+1i,
e(y(e, m))=k+I1-(j—1)+m.
If aeVl,, a:(w X, - then

ex(a, i))=
=k+l-(p=1D)+l-n+l-(g—p)+s+k+I+k-(p—1)+k-n+k-(j—1)+i,
ey, m)=k+1-(p—D+l-n+l-(j—1)+m.

If aeV;, a=(wj, x,j_s), then

e(x(, ))=k+1-(p=D)+1-n+1-(q=p)+s+k+I+k-(p—D+k-(j—D+i,
&y m)=k+I1-(p=D+I-(j—1+m.
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If eV, and a={4 root(t)), then

g(x(a, 0))=i,
&(y(a, m)=
=k+I.-(p—D)+l-n+l-(g—p)+s+k+i+k-(p—1)+k-n+k-(g—p)+m,
Ise
) & (x(@, i))=g,(x(o, i)+l n—1,
&,(y (o, m)) =g, y(o, m))+1-n—1.

If aeV;, then a=(w,o) and _

ex(a, i))=k+l-(p—D+1-n+1-(g—p)+s+i,
e(y(a, m))=k+I1-(p—1)+Il-n+l-(g—p)+s+k+m,

It is easy to see that ¢, is a bijection and satisfies (A). To prove (B), apply Lemma
3.6 for R=Rec (4), f=w(ly, &,), g=h(0), m=k+I-(p—1), n,=I-n, ny=1-(qg—p),
m=I1, r=k, py=k-(p—1), po=k-n, p;=k-(q—p), (and s=s). Observe that
0s° €S 15, g, =w(t, &), and the right-hand side of (4) equals to p*+t@-1+m.
“(Ops1.(g-14m®@w(t, &))*. So we must prove that the left-hand side of (4) equals
to A(t). By the inductive hypothesis pm*m*m.(0, ..., ®f)*=h(t), so we have

to see that .
h(t) = h(t)) - (6,1 @h(6) ®e,_,) =
=#k+['(q_1+")‘(0k+1-(q—1+n)®(9‘ < h(ty) -n, h(o) 'C}))+'

This is exactly the statement of Lemma 3.5, so we are through.
Replacing 2 by Z, we get

Corollary 3.7. For each 1 T(Z), tu(f) equalsto the x((4, S), 1) component
of Egy,, .

’l(”})lis result links our work to [4], where the same technic was used to define the
semantics of attribute grammars.

Now we turn our attention to the domain of 7q, that is the set Dry= {tc T(Z)}|
for some ue T(A)§(t, uyety}. Let G(k,!) be the following finite set

Gk, D)={(G; V1,1, V1,2, Vo1, V2, 2)IG=(V, E) is a directed acyclic bipartite

graph, and

@) V=V,UV,, V=[k+I], V,=[k], V,=V\V,1, E=E|UE,, dom (E)ZSV,,
dom (Ep) EV,;
(ll) Vl_Vl 1UV1 2 Vl lmVI 2—0 V2_V2 1U V2 2> V2 an2 Z_Q
(iii) for each ]EV2 1 there exists an i€V, ‘such that (z _]>€E1 and the vertices
V1.:UV, . are isolated.}

(A vertex is called isolated if there are no edges entering or leaving it.)

We construct a finite state top-down tree automaton B that operates nondeter-
ministically on 7'(Z)! with states A=G(k, /). Let t€¢ Dtg, « anode in ¢ and suppose
that B passes through a in state (G;V;,;, ..., V5 2). The synthesized (inherited)
attributes of « are represented as the nodes in V1 Vs, respectlvely) Vi, UV,
will contain the indices of those attributes that take part in the computation of
t9(?). The edges of G will show how these “useful” attributes depend on each other.
A similar construction was used in [5] for testing circularity of attribute grammars.
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The fact that, starting from state a,, B is able to reach the vector of states

*
(@, ..., @) on input re¢T(Z)} will be denoted by aot:t(al, .y a). If for some

*
0€Z,, t=0(xXy, ..., X,), we simply write a0 0(a,, ..., a}).

B
Let 0€(Zg),, 1(0)=(Ty, ..., Tuyrn)s 1s={i€[k+1-n)|T;=0}. The set of alter-
natives of ¢ is

Alel={t1, ..., tirrap| if i€l then ;= 1, else 1;,€T;}.

We say that c€ A[S] realizes the initial state a=(G,; V{,, ..., V'§ o) if the following
conditions are satisfied:
(a) If jeV§,, then (j,iyeES if and only if x; occurs in ¢;.
(b) V£.20=/{ie[k]|x; occurs in t;}, and for each i€V \Q there exists an
+ T+

i’€Q such that i’t+i-+ denotes the transitive closure of I =E°.

G, G, G
() Vi 2{j=kljels).
Define the set of initial states of B as A,={acA|a is realized by some ccA[S]}.
. Let n=0,0¢Z,, 4y, ...,0,6A4, a,=(G,; V{1, ..., V) for each 0=m=n,
and c¢=(ty, ..., liy1.np€A[6). Construct the graph Glc, a,, ..., a,] by adding the
edges Elc, ay, ..., a,] to the disjoint union of graphs G,,,0=m=n. An edge ({i, m,),
{j, mo)Y€ETc, ay, ..., a,) if and only if one of the following conditions is satisfied:
(1) my=my=0,icV?,, j=k and X, ,._x occurs in f;
(i) my=0,myz=1, ieV?,, jsk and X, (m-1); OCCurs in t;
(ii}) my=1, mp=0, icV M, j=k and X ,i(—xy OCCUTS N fiy (mi—1)+(imk)>
(iv) mz1, my=1, eV, j=k and X.(po—1)4; OCCUTS IN Iy if(mi—1)4(ik)-

=

<

G'lc, a5 .-, ;) can be obtained from Gic, g, ...,a,] by leaving the edges
E?U( U Eg"] We say that ¢ realizes the transition ay0t-0(ay, ..., a,) if the follow-
m=1 8

ing conditions are satisfied. (The mark [c, 4y, ..., «,] will be omitted from the right
of G, G’ and E.) :

(A) Let icl,. If i=k, then ieV?],, else if for some me[n] and k<j=k+],
i=l-(m—1)+j, then jeV,. _

(B) For each me¢[n], ieV{"; if and only if there exists an i"¢¥?, such that

@, o>§<i, m).

+ +

(C) For each 0=m=n, +|G,=1+.
¢ Gom

Now for each 6¢ X, ayot-0(ay, ..., a,) if and only if this transition is realized
B

by some c€A[o].

Let ¢=0,1e¢T(Z);. A deterministic part of Eg, can be chosen as follows.
Replace the equations of the form z=0 by z=z, then for each z¢Zgs,\Z5,
replace the right-hand side of the equation z=7T, by an arbitrary ¢,¢7,. Further
on DEg, will always denote a deterministic part of Eg(,. For each zeZg)\Z}(,,
n(z) - Esy,y#9 if and only if there exists a DEg, such that n(z)-DEg,,#9. (n(2).
means the selection of the component z.) Let - DEg,, denote the dependence rela-
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tion among the variables Zs(,) in a deterministic part of Eg,y, that is, z; - DEg,z,
if and only if z, occurs m t.,. It is clear that n(z).DEg,,#0 if and only if

‘zl—DEs(,) z’ implies z’ };‘DES(,V .
For each ne¢[l] take a new symbol y,, and construct the ranked alphabet

r= UF with I',={y,}. Let ¢=0, tET(Z)q, ay, .. @€ A, a;=(Gj; Vi, ..., Vi)
for each Jjelg). By Ela,, ..., a,] we mean the following system of equations

E[ah q] - {X((W x}) l) - }’ (y(<w’ xJ> ml)a . ,y((W x1> mn))l
Jelql, (w, x;)€lvs(t), ic[k] and m,, ..., m, are all the possible
values of such an m for which (i, k+m>eEf}

Lemma 3.8. Let ¢=0,7eT(5)}, a,...,a,64 and for each j¢[g), a;=
g

=(Gj; Vi1 .- Vi o) There exists an a€4, for which at \- 1(ay, ..., a,) if and only
- 3

if a DEg, can be chosen such that
) ﬁ(x(() S), 1))-(DEsyUE[ay, ..., a )" #9;

+
(i) for each jelgl, (w, x;) € lvs (S(1)), i€[k], x((4, S), Y x({w, x;),i) holds
in DEgpUE\][a,, ...,a,} if and only if zEV1 1

+
(iii) for each m+keVi ,, y((w, x;), m) }— x({w, x;), 1) if and only if m+k | i.

G,
Proof. Only if: If t=x,, then a=a,<A4,. In this case Eg is the same as i(S),
written in the form of equations, so (i), (i) and (iii) follow from the conditions (a),
(b) and (c) that must hold for acA,. Let g=1, pe[q], n=0, o€ Z,, t,¢ T(Z). and

+
t=ty- (id,_1 Q0 (xy, ..., X,)Qid,_,). If at1(d,...,a" Y a4y, ..., 4, 0", ..., &),
B

.
then there exists an a,€A4 such that ary  #(d, ..., a7, a,, a?*1, ..., a%) and
B

b

a,0 + o(ay, ..., a,). Suppose the Only if partis true for t, and states 4, ..., aP~?
B
ay, @P*1, ..., a% and the transition a0 0 (a,, ..., a,) is realized by ¢={t, ..., ly11.,)
8

€A[o]. Then there exists an appropriate DEg,, satisfying the three conditions.
For all i¢[k] and me[l], replace the variables x((w, x,),i) and y((w, x,), m)
in DEg(, by x((w, 6),i) and y((w o), m), respectively, and add the set of
equations

{x(<W, O'>, l) = tl'[xk~(j—1)+r hn x(<Wj, xj+p—1>’ T),

Xgonts y((w, 0>> S), 1~ x((w, 6>9 l)l]E[n]’ relkl, SE[l]]llE[k]}U

U{}’«Wj, xj+p—1>’ m) = livtG-1+m [xk-(u—1)+r - x«WU, xu+p—1>’ r,

xk‘n+s hn y(<W, U>a S), L ‘"Y(<WJ, xj+p-1>s m)IME[n]a rE[k], SE[l]]I]E["], mé[l]}
to obtain DEgy. For O0=m=n let a,¢ends (S(r)) such that o,=(w,0c) if
m=0, else o,=0vm, X, ,_1). If ic[k+!], then z({i,m)) will denote the
following variable of Zg,

. x(om, 1) if €[kl

2(, m)) = {y(oz,,,, i—k) if i=>k
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By the inductive hypothesis and conditions (A), (B), (C) imposed on the transitions
of B we have

. .
™ (il,m1>|;—(i2,m2> if and only if for j=1,2,i;e(¥{UV;4) and

+
2({iy, m)) - DEgnUE,[a*, ..., a" "', &y, ..., a,, a”*, ..., a®] z((i,, my)) are both sat-
isfied (G=Glc, ay, ..., a,]) '

* +
To prove (i) suppose that x((4, S), 1)tz and zlz hold in DEg,U
UE[a, ...,a" Y, ay, ..., a,,a®*1, ..., a?] for some ze€Zg,. By the inductive hy-
pothesis we can assume that z= z((z m)) for some z€[k+l], 0=m=n. Using
(*) and (C) we conclude that G,, contains a cycle, which is a contradiction.
Let a=(u, x,)elvs (S(t)) By (B) and (*),ieV{, if and only if there exists
a j'¢lg] and an i’€¥Vy{,; such that

*
x(aj, i) = DEsy U Efa, ..., """ a4y, ..., a,, a1, ..., d¥]x(a, 0),

where a;=(w,o) if j'=p, else a;=a Let &, =(w, x,) if j—p, else

&;=o. By the inductive hypothesxs i"eV{, if and only if x((4, S5, l)l—x( i)
holds in DEg, JE,[a,...,a"™, a, a?*t, ..., a%], which is equivalent to

. .
x((%, S)) - DEgyUE[d, ...,a" %, ay, ..., a,, a**1, ..., a¥] x(0;., 1)

+ .

Thus, i€V, if and only if x((4, S), I)I-x(a, i), which proves (ii).

Let us remark that (iii) is already proved for p=j<p+n as a special case of
(M. It is easy to prove it for other values of j, too.

If: The case t=x; is again trivial. Let t=t,-(id,_; ®0(xy, ..., X,) ®id,_,)
as above, and suppose the If part 1s true for t, and any appropriate states by,..., b,
Let DES\,) and the states a', ..., a*"%, q,, ..., a,, a’*?, ..., a? satisfy (i), (i) and (111)
Split DEg, into DEg,, and a part that can be derlved from c=(t;, ..., ty11.n)€
€d[o]. Let a,=(Gy; V7., ..., V2:) be the following state ‘

+
ieV, if and only if -x({(4 S), DFx((w,0),i) holds in -DEg,U
UE[d, ...,a" %, a,, ..., a,, a®*1, ..., a], where wis the first component of the node
(w, x,) in g3

+
(i, JyeEY if and only if ieV), and x((w,0) i)-y(w,0), j—=k),
V2,={j| for some icVy (i, jYcE};

G iYeES if and only if JjePE, and  y((w, o) j—K)Ex((w, o) ).
It is clear that DEg and states a*, a"‘1 dg, a1, ..., af satisfy (i), (ii) and (i),
hence, by the inductive hypothesis atoi—to(a L APl ay, aPt L., af) for some
acA,. On the other hand it can easily be checked that a,0 l— o(ay, ..., a,) is realized

by ¢, so we are through.
Taking g=0 in the lemma we get
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Theorem 3.9. The domain of attributed tree transformations is a regular tree
language.

However, Lemma 3.8 is worth some further considerations. It can be seen that
Lemma 3.8 remains valid if we require the states of B not contain any redundant
edges. (An adge {(i,j) is redundant if there is another path from i to j containing
more than one edge.) Let A be deterministic, and suppose the states of B satisfy
the above additional requirement. The following statement can be proved by a bot-
tom-up type induction combined with Lemma 3.8.

Proposition 3.10. Let 1¢Dty, t=t,-u with IOET (2% There exists a unique
ac A such that for some a,€A4, we have aotol—to(a) and aul—-u This unique
a=(G; V1,1, ..., Vo) 1is the following: V, IUV2 1=Z,= {zEZS(,)l the “node”
index of z is a=root(¥) and x({4, S), l)l—DEs\,)z} and I; I—DES(,)IZG.

(Obviously, DEg, is unique in this case.)

As an application of Proposition 3.10 we finally show how to decide the K-visit
property for deterministic attributed tree transducers. (Alternative proofs can be
derived from [6] and {7].) Let t¢Dty, aends (¢). Proposition 3.10 shows that the
state a=(G,; Vi1, ..., V22 in which B passes through a during the recognition
of ¢ is uniquely determined, and it describes the dependence relation among the use-
ful attributes of «. If p is a path in G, (pepath (G,)), then let v,=|{icV{,|p passes
through i}||, v,=max {v,|p€path (G,,)} v, shows how many times we must “enter”
the subtree havmg root « to ask for the value of certain attributes. (Supposing an
optimal, maximally paralleled evaluation of the useful attributes.) Define

vy = max {v,Jaends (t) for some t€Dty}.

Since this set is finite, it is easy to give an algorithm that computes vy, and obvi-
ously, 2 is K-visit if and only if vy=K. Moreover, it follows from the con-
struction that

ifl <k, then vy =I[+1, else vy = k.

A trivial consequence of this statement is the known fact that every deterministic
attributed tree transducer is K-visit for some K.

Abstract

A general concept of attributed transformation is introduced by means of magmoids and ration-
al theories. It is shown that the domain of attributed tree transformations is a regular tree language,
and an alternative proof is given for the decidability of the K-visit property of deterministic attrib-
uted tree-transducers.
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