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§ 1. Introduction 

Classes of formal languages are frequently characterized by different types of 
accepting automata. It is interesting to note that deterministic languages, i.e., lan-
guages accepted by deterministic automata are very difficult to characterize by oth-
er properties. However, as it will be shown in this paper, if we restrict ourselves to 
the so called simple deterministic machines then the corresponding language classes 
can be characterized by the prefix-free property. A language L is called prefix-free 
if and only if for every pair of words {x,y)\xiL and xyeL jointly imply y = X, 
where X is the empty word. The hierarchy of simple deterministic machines will thus 
correspond to the intersections of the classes of deterministic languages in the 
Chomsky hierarchy with the family of all prefix-free languages. Simple machines 
introduced by E. P. FRIEDMAN in [3] will be compared with our simple deterministic 
pushdown machines and we show that the class of languages accepted by the former 
ones constitute a proper subset of those accepted by the latter machines. This means 
that although the languages accepted by Friedman's simple machines are prefix-free, 
they do not include every prefix-free deterministic language. The classes of languages 
characterized by our simple deterministic machines have different closure properties 
under the usual operations. We also define some specific operations with respect 
to the prefix-free property. The usefulness of our simple deterministic machines 
can be seen also from the properties of the corresponding language classes. 

§ 2. Prefix-free languages 

Definition 2.1. A language L is said to be prefix-free if for every pair of words 
(x, y)\ xeL and xytL imply y = X. The family of all prefix-free languages is denot-
ed by JS?P. We can prove that «Sfp is closed under intersection and concatenation, but 
it is not closed under complementation and union. 

Definition 2.2. Let Lx, L2 be two languages over the alphabet I . 
a) For x,y in I*, write x<y if y=xz for some z in I* — {/.}. 
b) The ^-quotient of L1 by L2 is defined by 

L1pL2={y^LJ if x<y then 

3» 
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c) The p-union of two languages Lx and L2 is defined by 

L 1 U p L 2 = ( L 1 p L 2 ) U ( L 2 / > L 1 ) . 

It is easy to see that 
LX UPL2=L1 UL2— {YIZLJ t h e r e is a n X<YX w i t h XEL2J 

— { y ^ L J there is an x < y 2 with x iL x ) . 

Theorem 2.1. The family S£p is closed under p-quotient and p-union. 

Proof. Let Lx, L2 be prefix-free languages. It should be clear that LtpL2 is pre-
fix-free. We now prove that LXUpL2 is prefix-free. Assume on the contrary that there 
is an x€ i - !U p L 2 with xyiLxU pL2 for some y^X. Let xtL1pL2. (The case where 
x iL 2 pL x is similar.) Since La is prefix-free and . y ^ l , it suffices to consider the case 
where xy^L2pLx. But, by Definition 2.2, we can easily see that if xy£L2pLx for 
y ^ X then i.e., x^L x pL 2 and the contradiction arises. • 

Definition 2.3. Let Z and A be two disjoint alphabets, and w any fixed string 
in A*. We define the homomorphism hw: Z* —(XUA)*, such that 

a) hw(X)=l, 
b) hw{a)=aw for all aiZ, 
c) hw(PQ)=hw(P)hJQ) for all P,QiZ*. 

For a language L over Z, we define 

hw{L) = {hw(P)/P€L}. 

Theorem 2.2. A language LQZ* is prefix-free if and only if hw(L) Q(Z U A)* 
is prefix-free. 

Proof. The case where w=l is trivial, so we assume that w-^.-.a,, for some 
a u . . . ,a„£Z with n g l . Similarly, we can assume that 

P a r t 1. L e ^ p - ^ C Q e i f p . 
Let x€hw(L) and xy£hw(L), then there are PtL and PQzL such that 

x=hw(P), xy = hw(PQ)=hw(P)hw(Q). Since L is prefix-free, Q = L Consequently, 
y = K { Q ) = K { X ) = l , Thus hJL)eXp. 

P a r t 2. h w (L)z2 p ~LzSe p . 

Assume on the contrary that there are x(.L and xyzL for some y^X. It is 
clear that P=hw(x)thw(L), PQ=hw(xy)ihw(L) and Thus, hw(L) 
is not prefix-free and the contradiction arises. • 

§ 3. Simple finite deterministic machines 

In this section first we investigate a special kind of finite deterministic automata 
called simple finite deterministic machines (abbreviated SFD-machines), and prove 
that the family of all languages accepted by SFD-machines is the intersection of the 
two families and <£p. Further, we note that this family is not closed under comple-
mentation and union, but it is closed under concatenation, intersection, p-quotient, 
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/»-union and homomorphism h„. The proofs of these facts will not be presented in 
this paper. 

Let us consider the standard definition of a finite deterministic automaton (ab-
breviated FD-automaton, see [1]). That is: Let M=(K, Z, 8, qa, H) be an FD-
automaton, where K is the set of states, I is the set of inputs, q„ is an element of K 
(the initial state), H is a subset of K (the set of final states), and 8 is a mapping from 
KX Z to K. 

N o t a t i o n . Given an FD-automaton M let | - be the relation on Kx Z* 
M 

defined as follows. For azZ,wiZ*,q,pzK 

qaw \-pw iff <5(q, a)—p. 
* 

We let l- denote the transitive closure of . Finally, we define the language ac-
M M 

cepted by M to be 
* 

L(M) = {wiZ*/q0w\-p for some p£H}. 
M 

Definition 3.1. a) A simple finite deterministic machine (abbreviated SFD-
machine is a 5-tuple M=(K, Z, <5, q0, H), where K, Z,q0, H are the same as in 
the definition of an FD-automaton and <5 is a mapping from ( K — H ) X Z to K. 
Similarly, we define the language accepted by an SFD-machine M to be 

* 
L(M) = {w£l*/q0w\-p for some pZH). 

M 

b) A language L is said to be a simple finite deterministic language (abbreviated 
sfd-language), if L=L(M) for some SFD-machine. The family of all sfd-languages 
is denoted by i f s d 3 . 

R e m a r k . For simplicity of Definition 3.1 we have restricted the definition of 
the mapping <5 to K—H, so 5 is not complete. By the following theorem we shall 
see that the SFD-machine is a special kind of the FD-automaton. 

Theorem 3.1. Let L be any language over the alphabet Z. L is an sfd-language 
if and only if L is prefix-free and 

Proof. P a r t 1. 
Let L=L(M) for an SFD-machine M=(K, Z, 8, q0, H). Since the domain 

of 8 is K—H, we can easily see that Z,6<£?p. We now"prove that 
Construct an FD-automaton M' from M as follows: Let M' = (KU {q}, Z, 

8',q0,H), where q$K and 8' is defined so that 
1) for every qiK-H, aeZ: 8'(q; a)=8(q, a), 
2) for all p£HU{q}, aiZ\8'{p, a) = q. 

It is clear that L(M')=L(M). Thus, 

P a r t 2. L(L&3C\£ep-+L<iSesM. 
By Theorem 3.3 in [1], we may assume that L=L(M), where M=(K, Z,8, 

qn, H) is an FD-automaton. We construct an SFD-machine M' from M as follows. 
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Let M'={K, I , 8', q0, H), where 5' is defined so that ' 
1) for every qdK—H, a£Z: 8'(q, a)=8(q, a), 
2) for all p£H,a£l: 8'(p, a) is undefined. 
We now prove that L(M')=L(M). 
(Q). By the definition of 8', we can easily see that if w£L(M') then w£L(M). 
< 3 ) . We shall prove that if w$L(M') then w$L(M). We now have two cases 

to consider: 
* 

Case 1. Let w—wiawz for I , w261*, and q0wxawt\-paw2 for some 
M' 

p£H. 
* 

It is easy to see that qow^p for p£H. Thus, w^L(M). Since L(M) is pre-
M 

fix-free and y=aw^X, w—w1y^.L(M). 
* 

Case 2. Let q0w^-q for some q$H. 
M' 

* 

It is clear that q0w\-q for q^H. Thus, w^L(M). • 
M 

§ 4. Simple deterministic pushdown machines 

In this section we investigate a special kind of deterministic pushdown automata 
known as simple deterministic pushdown machines (abbreviated SDP-machines) 
and prove that the family of all languages accepted by SDP-machines is the inter-
section of i f p and the family of all deterministic context-free languages. Furthermore, 
we can prove that this family is not closed under intersection, complementation and 
union, but it is closed under concatenation, homomorphism hw, and L^pL2, L1U PL2 
are accepted by SDP-machines if Lx is accepted by an SDP-machine and L2 is an 
sfd-language. In this paper, however, we do not present all these proofs. 

Let us consider the standard definition of a deterministic pushdown automaton 
(abbreviated DP-automaton, see [2]). That is: Let M=(K, I , r, 8, q0, z0, H) be 
a DP-automaton, where AT is the set of states, I is the input alphabet, T is the push-
down alphabet, q0£K is the initial state, z0£T is the initial pushdown symbol, 
HQK is the set of final states, and 8 is a mapping from i X ( l U {A})XT to KxT* 
satisfying the following conditions: for each q£K,z£r either (i) 8(q, I, z) is unde-
fined and 8{q, a, z) contains exactly one element for all a£ I , or (ii) 8(q, I, z) con-
tains exactly one element and 8(q, a, z) is undefined for all a£ E. 

N o t a t i o n . Given a DP-automaton M let h- be the relation on Kx I*XT* 
M 

defined as follows 

for q,p£K, ZU {A}, I*, z € f , a, 
(q, aw, <xz) I ~ ( p , w , oifi) iff 8 (q, a, z) = (p, ft). 

M 
* 

Let I- denote the transitive closure of I- . Finally, we define the language accepted 
M M 
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by M to be 

L(M) = {w<E E*/(q0, iv, z0) H (p, X, a) for some p£H, a^r*}. 
M 

A language Lis said to be deterministic context-free if L=L(M) for some DP-auto-
maton M. The family of all deterministic context-free languages is denoted by 

Definition 4.1. a) A simple deterministic pushdown machine (abbreviated 
SDP-machine) is a 7-tuple M=(K, I , i , 5, q0, z0, H), where K, E, T, q0, z0 and 
H are the same as in the definition of a DP-automaton, and <5 is a mapping from 
( A - i i ) X ( r U {A})xr to Kxr* satisfying the following conditions: for each 
q£K—H, z£.r either (i) <5 (q, X, z) is undefined and 5(q, a, z) contains exactly one 
element for all a€ E or (ii) S(q, X, z) contains exactly one element and 8(q, a, z) is 
undefined for all a€ E. 

b) An input string is accepted by the SDP-machine M when the entire tape has 
been processed and the actual state is a final state. That is 

* 
L(M)={w£ E*/(q0, w, z 0 ) | - (p , X, a) for some p£H}. 

M 

A language L is said to be simple deterministic context-free (abbreviated sdc-language) 
HL=L(M) for some SDP-machine M. Finally, the family of all sdc-languages is 
defined by i? s d 2 . 

Theorem 4.1. Let L be any language over the alphabet E. L is an sdc-language 
if and only if L is deterministic context-free and prefix-free. 

Proof. P a r t 1. 
Let L=L(M) for an SDP-machine M=(K, E, T, 5, q0, z0, H). By the defi-

nition of <5, we can easily see that L is prefix-free. We now prove that £,£ jSfd2- Con-
struct a deterministic pushdown automaton M' from M as follows. 

Let M=(KU {§}, E, r, 5', q0, z0, H), where q$K and S' is defined as 
1) for every q£K-H, a£EU{X}, d'(q, a, z)=S(q, a, z), 
2) for all ptHU {q}, z£r, S'(p, X, z) = (q, A). 

It is clear that L(M')=L(M). Thus, L^Sei2C\Sep. 

P a r t 2. 
Let L=L(M) for a DP-automaton M=(K, 2, r, <5, q0, z0, H). Construct 

an SDP-machine M' from M as follows. 
Let M'=(K, E,r,S',q0,z0,H), where 5' is defined so that 
1) for every q^K—H, z^r, a€ I U {A}, 8'(q, a, z) = 5(q, a, z), 
2) for all p£H,z£r, a£EU {A}: 3'(p, a, z) is undefined. 

We now prove that L(M')=L(M). 

(Q). By the construction of <5', we can easily see that if w£L(M') then 
w£L(M). 

( 3 ) We shall prove that if w^L(M') then w§L(M). We now have threQ 
cases to consider; 
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Case 1. Let w=wiawi for I , wx, w2£1*, and (q0, w¡aw2, z0)|— (p, aw2, a) 
for some p£H. M' 

* 

It is clear that (q0,wx, z<¡)\-(p, á,ol) for p£H. Consequently, w^L{M). 
M 

Since L(M) is prefix-free and y—aw^l, w$L(M). 
* 

C a s e 2. Let w = w1vv2, where w2([ I*, and (q0, vv,n>2, z0) 1— (q, > v 2 ' f o r 
M> 

some qdK—H. 
It is clear that (q0, »VjW2, z0)\-(q, vv2, A) for q^K—H. Thus, w$L(M). M 

* 

Case 3. Let (q0, w, z0)\-(q, ?., az) for some q£K—H, z^T such that 8'(q, /., z) 
M' 

is undefined. 
It is easy to see that vv$L(M). • 

In the following part we want to deal with a subfamily of simple deterministic 
context-free languages known as simple context-free languages (E. P. Friedman 
1977). 

Definition 4.2. (Definition 2.1 in [3]). a) A simple machine is a 4-tuple M = 
= { I , r , 8, z0), where I is a finite input alphabet, r is a finite pushdown alphabet, 
z 0 £ r is the initial pushdown symbol, <5 is the partial transition function from 
( I U {/.})XT to r * satisfying the following conditions: for each z£T either (i) 
<5 (A, z) is undefined and 8 (a, z) contains exactly one element for all a£Z; or (ii) 
<5 (A, z) contains exactly one element and 8 (a, z) is undefined for all I. 

Let t- be the relation on I * X T * defined as follows: for each 
M 

weZ*,z£r,a,P£r*,(aw,ixz)\-(w,<xP) if 8(a,z) = p. 
M 

* 

Let 1- denote the transitive closure of I - . Finally, we define the language accept-
M M 

* 

ed by the simple machine M to be L(M)={w£X*/(w, z0) H(A, A)}. 
M 

b) A language L is said to be simple context-free (abbreviated sc-language) 
if L—L(M) for some simple machine M. It is easy to see that if L is an sc-language 
then L must be prefix-free. The family of all sc-languages is denoted by J<?sc. 

Theorem 4.2. a) For every SFD-machine M, there is a simple machine M' 
such that L{M')=L(M). 

b) There is a simple machine M2 such that J$?sd3. 

Proof, a) Let M=(K, I , 8, q0, H) be an SFD-machine. We now construct 
the simple machine M' from M as follows. 

Let M'=(I,r',8',zqo), where r'={zJqeK} and 8' is defined so that 
1) for each q£K—H,a£Z, if 8(q,a)=p then 8'(a, zq) = zp, 
2) for all peH:8'(l,z„) = L 

It is clear that L(M')=L(M). 
b) To prove the second statement, we reconsider the non-regular language 

(which is not an sfd-language), first seen in [2] L={a"b"/n^\}. 
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We now provide a simple machine Mx which accepts this language Mx--({a, b}, 
{Z„, A, E}, <5j, Z0), where is defined so that 

1) 5x(a,Z0)=A, 
2) 81(a,A) = AA, 
3) 5,{b,A)=l, 
4) 5x(b, Z0) = E, 
5) <5X(A,£) = E. • 

Theorem 4.3. a) For every simple machine M, there is an SDP-machine M' 
such that L(M') = L(M). 

b) There is an SDP-machine Mx such that L(MX) is not sc-language. 

Proof, a) Let M—{I, r, <5, Z0) be a simple machine. Without loss of generality, 
we may assume again that for arbitrary a £ Z U {2} and Z £ T if 8(a, Z ) = a then 
a 6 ( r — {Z0})*. In the opposite case we can introduce a new initial pushdown symbol 
Z0 and take the new machine M = ( £ , T U {Z0}, S, Z0), where <5(a, Z 0 )=3(a , Z0) 
and Z) = 8{a, Z) for each Z^r,a£lU {A}. 

Construct an SDP-machine M' f rom M as follows. Let M'=(K, I , /"', 6', q0, 
Z0 , {qh}), where K= {q0, qh}, T = r U {Z0} for Z0(J T, and <5' is defined so that 
for each a f l U {A}, Z € T - { Z 0 } 

1) if ¿(a, Z0) = a then a, Z0) = (q0, Z0a), 
2) if <5(a, Z) = a then S'(q0, a, Z) = (q0, a), 
3) d'(q0,X, Z0) = {qh,X). 

* 

First by induction on the length of w£ I * we can easily prove that (w, Z0) I- (A, a) 
M 

* _ 
iff {q0, w, Z0)\-{q0,/., Z0ot). Now, let w£l*, then 

M> 

w£L(M) (w, Z0) H (A, A) 
M' 

* _ * — (<7o, w, Z0) h (q0 , A, Z0) H (qh, A, A) 
M' M' 

b) To prove the second statement, we reconsider the non sc-language first seen 
in [3] L—{a iba ibli^. \}\J {a'ca'c/Zsl}. We can easily check that the following 
SDP-machine Mx accepts this language. 

Le tM X = {K, {a, b, c}, T, <5X, q0, Z 0 , {qh}), whereK={q 0 , qx, q2, q, qh}, r = {Z0, A} 
and (5t is defined so that 

I) I .a) 6x{qQ,a,Z0) = (q„, Z0AA), 
Lb) ¿ i ^ o , a, A) = (q0, AA), 
l.c) ¿].(90, b, A) = (qx, A), 
I d) 81(q0,c,A)=(q2,A), 
l.e) Sx(q0, b, Z„) = 5x{q0, c, Z0) = (q, A); 
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2) 2.a) 5x{qx,a,A) = (?1, A), 
2.b) 8l(ql,b,A) = (q,X), 
2.c) 5x(qx,c, A) = (q,?.,), 
2.d) 5x(qx, b, Z0) = fe, A); 

3) 3.a) dx(q2, a, A) - (q2, A), 
3.b) 5x(q2, c, A) = (q, A), 
3 c) <5^2, b, A) = (q, A), 
3 - d ) <5I(<72> C, Z 0 ) = ( q h , A ) ; 

4) «5^, A, Z„) - ^(¡j , A, A) = (q, A). • 

Theorem 4.4. There exists a prefix-free context-free language which is not an 
sdc-language. 

Proof. Let I be a finite nonempty alphabet. By Corollary 1 to Theorem 3.5 in 
[2], we can easily see that L= {wwR/w£ I*} is a context-free language which is not 
deterministic context-free, where wR is the mirror image of w. Let c be a symbol 
not is I , and set LX = L-{c}= {wwRc/w£ I*}. It is easy to see that 
We now prove that Lx$ J5fstj2- Assume on the contrary that L x £ _ 3 ? B y Corollary 
to Theorem 3.4 in [2], if L-i=L • {e} is deterministic context-free then L is determi-
nistic context-free, and the contradiction arises. Consequently, Lx={wwRclx£Z*} 
is a prefix-free context-free language which is not an sdc-language. • 

§ 5. Simple deterministic linear bounded machines 

In this section we investigate a special kind of deterministic linear bounded 
automata called simple deterministic linear bounded machines (abbreviated SDLB-
machines), and prove that the family of all languages accepted by SDLB-machines 
is the intersection of the family Jz?p and the family of all deterministic context-sensi-
tive languages. Furthermore, we mention without proof that this family is closed 
under concatenation, intersection, /»-quotient, /»-union and homomorphism h„; 
but it is not closed under complementation and union. 

Let us consider the standard definition of a deterministic linear bounded auto-
maton (abbreviated DLB-automaton, see [7]). That is: Let M—(r,K,S,q0,H) 
be a DLB-automaton, where r is the tape alphabet, K is the set of states, q0£K 
is the initial state, HQK is a set of final states and <5: Kx r -*KX ( r U {R, L}) 
is the mapping satisfying the condition: for arbitrary q£K and x£r,S(q,x) con-
tains exactly one element. 

N o t a t i o n . An instantaneous configuration is a word of the form wxqw2, 
where q£K, wx, w2£r* and wxw2^A. Given a DLB-automaton M let f- be the 

M 

relation on configurations of M defined as follows. For q,pdK, x, y^r, w, , w2£i* 

wxqxw2\- wxpyw2 iff S(q, x) = {p, y), M 

wxqxw2 \- wxxpw2 iff 5(q, x) = (p, R), 
M 

wxyqxw.2 wxpyxw2 iff d(q, x) = (p, L). 
M 
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* 
Let I- denote the transitive closure of 1-. Finally, we define the language accepted 

M M 
* 

by a DLB-automaton M to be L(M) — {wg Z*/q0w \- ap for some p^H), where 
M 

I g r. A language L is said to be deterministic context-sensitive (abbreviated dcs-
language) if L=L(M) for some DLB-automaton M. The family of all dcs-languages 
is denoted by jS?dl. 

Lemma 5.1. Let L be a dcs-language over the alphabet Z. Then there is a DLB-
automaton M' = ( r , K', 8', q'0, H') such that 

i) L = L(M% 
ii) 8': K'xr'-K' X ( ( r ' - I ) U {7?, L}) is the mapping satisfying the following 

condition: for arbitrary qiK' and a£Z, there is a z£T'—Z such that 8'(q,a) = 
—(p, z), i.e., there are no forms 8(q,a)=(p,R) or 8(q, a)=(p, L). -

Proof: Let L=L(M) for a DLB-automaton M~(r, K, 8, q0, H). We now 
construct a DLB-automaton M' from M as follows. Let M' = (T', K', 8', q'0, H'), 
where R=RU {a'/a^Z}, K'= K, q'0=q0, H'=H and 8' is defined so that 

1) for arbitrary a£Z and qdK, 8'(q, a) = (q, a ), 
2) fo r a rb i t ra ry x^T—Z a n d qd K 

2.a) if 8(q,x) = (p,i) for an i£{R,L} then S'(q, x)=(p,i), 
2.b) if 8(q,x) = (p,y) then 8'(q, x) = (p, y), where 

_ _ r y if y t r - Z , 

if y£Z, 

3) for arbitrary q£K and a€ Z. 
3.a) if 8(q,a) = (p,i) for an L) then 8'(q, a')={p, i), 
3.b) if 8(q,a) = (p,y) then 8'(q, a')—{p,y), where 

. if y e z . 

It is clear that L(M')=L(M) and the condition ii) is satisfied. • 

Definition 5.1. a) A simple deterministic linear bounded machine (abbreviated 
SDLB-machine) is a 6-tuple M=(r, K, Z, 8, q0, H), where T is the tape alphabet, 
K is the set of states, Z is the input alphabet for ZDr=0, q0€K is the initial state, 
H^K is a set of final states, and 8: KX(rU Z)-KX(rU {R, L}) is the mapping 
satisfying the following conditions 

i) for arbitrary q£K—H and x^TU Z\ 8(q, x) contains exactly one element, 
ii) for every p£H: 8(p, a) contains exactly one element if and it is unde-

fined if a£ Z. 
* 

b) An instantaneous configuration and the relation h are defined as in the case 
M 

of a DLB-automaton. We define the language accepted by a SDLB-machine M to be 

* 

L(M) = {w€Z*/q0w\-ap for some p£H}. 
M 
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A language L is said to be simple deterministic context-sensitive (abbreviated sdcs-
language) if L=L(M) for some SDLB-machine M. The family of all sdcs-languages 
is denoted by JS?sdi. 

Theorem 5.2. Let L be any language over the alphabet E. L is an sdcs-language 
if and only if L deterministic context-sensitive and prefix-free. 

Proof. P a r t 1. i f s d l - L € i f d i n i f „ . 
Let L=L(M) for an SDLB-machine M=(r, K, E, 8, q0, H). By condition 

ii) of <5, we can easily see that if M is an SDLB-machine then L(M) must be prefix-
free. We now prove that Construct a DLB-automaton M' from M as fol-
lows. 

Let M' = {r',K',8',q0,H), where r = rU E, K' = KU {q} for q$K, and 
5' is defined so that 

1) for every q^K-H: 8'(q, x) = 5(q, x) for all i 6 f U i , 
2) for every p £ H 

r S ( p , a ) if atr, 
Hp>a) = Uq,R) if «€1 , 

3) 8'(q,x) = (q,R) for all x^rUE. 
It is clear that L(M')=L(M). Thus L<iS£<£p. 

P a r t 2. 
Without loss of generality, we may assume that L=L(M) for a DLB-automa-

ton M=(r, K, 8, q0, H) satisfying condition ii) of Lemma 5.1. We now construct 
an SDLB-machine M' from M as follows. Let M ' = ( F ' , K, E, 8', q0, H), where 
r ' = r - E , 8 ' is defined so that 

1) for every q£K—H: 8'{q, x)=8(q, x) for all x E f U i , 
2) for every p£H 

r H p , a) if o e r , 
d W ' a ) Undefined if a£E. 

We now prove that L(M')=L(M). 
* 

Let w£L(M'), i.e., q0w\-ap for some p£H. By the definition of 8', 
M' 

. * 
we obtain: q0w\-ap for p£H. Thus \v£L(M). 

M 
( 3 ) . We shall prove that if vv^L(M') then w$X(M). There are two cases to 

consider: * 
Case a) Let w=w1aw2 for a£ I , w,, I* and q0w1aw2\—apaw2 for some 

M' 

* 

It is clear that </oM'il_a/' for p£H. Since L is prefix-free and y=a\v2^k, we 
M 

obtain: vv=iVj y $ L (M). 

Case b) Let q0w\-<xq for some q£K—H. 
M' 

* 

It is clear that q0w\-a.q for q$H. Thus w$L(M). • 
M 
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Theorem 5.3. a) For every SDP-machine M, there is an SDLB-machine M' 
such that L(M')=L(M). 

b) There is an SDLB-machine Mx such that L(M 1 )^ i f s d 2 . 

Proof, a) Part a) holds, due to Theorem 5.2 and the following statement 
(Theorem 3 in [5]) "A context-free language is accepted by a deterministic linear 
bounded automaton". 

b) To prove part b), we reconsider the non context-free language 

L = {anb"cn/nszl} 

(which is not an sdc-language either), first seen in [1], [4], [7]. 
We now construct an SDLB-machine Mx which accepts this language. Let Mx = 

=(/\, Kx, {a, b, c}, 3x,q0, {<?,,}), where 

Fj = {A, B, C, X, 7}, Kx - {q0, qx, q2, ..., qxx, qx2, q, qh), 

is defined so that: 

1) 6x(q0,a) = (q0, A), 3x(q0, A) = (qx, R), Sx(qx, a) = (qx, X), 
8x(qx, X) = (qx, R), 3x(qx, b) = (qx, B), 3x(qx,B) = (q2, R), 
Sx(q2, b) = (q2, Y), 3x(q2, Y) = (q2, R). 

2) Sx(q2, c) = (q2, C), 3x(q2, C) — (q3, L), Sx(q3, Z ) = (q3, L), 
for Z€ {Y, B, X). 

3) 8x(q3, A) = (gd, R), 3x(q4, X) = (q4, A), 3x{q„ A) = (q5, R), 
dAd^B) = {qx2, R). 

4) dx(q5, X) = (qt, R), 3x(q5, B) = (q7, R). 
5) 3x(q„ Y) = (q3, X), 3x(qe, Z ) = (q„ R) for Z€{B,X}. 
6) 3x(q7, X) = (q7, R), 3x(q7, Y) = (q8, X). 
7) 3x(q8, X) = (q8, L), Sx(q8,B) = (q9, R), 8x(qs, X) = (q9, B), 

3x(q9, B) = (qx0, R). 
8) <5^0 , X) = (qxl, R), 3X(qxo, C) = (qx0, R). 
9) 3x(qxx,c) = (q8, C), 3x(qa, C) = (q8, L), 3x{qxx, Z) = {qxx, R) 

for Z£{X,C}. 
10) 3x(qxo, c) = (qX2, C), 3x{qx2, C) = (qh, R). 
11) 5x(q, Z) = (q, A) for Z € ( J \ - {A}) U {a, b, c), 

3x(qh,Z) = (q,A) for Ztrx, 3x(q, A) = (q, R). 
12) In all other cases for arbitrary q£Kx-{q, qh} and xtrx\J {a, b, c}, 

8x(q, x) = (q, A). 

It is easy to see that if w£{a, b, c}*- {a"bncnjn^\}-{X}, then 

q0w I— aq ' , where oi£rx, and 
M' 

qx if w = a", 
q2 if w = a"bm, 
q otherwise. 

Consequently, w$L(Mx). 
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We now check that w=a"bncn£L(M1) for all Indeed, for n= I 

q0abc\-ABq2C\-q3ABCh AqtBC|- ABq12CH ABCqh. 
M 1 M t i f , M , M l 

Similarly, for all n s 1 

40an+1£>"+1c' ,+1 h AX"BY"q2 Ccn H An+1BXn-1qgXCc" 

l_ ^n+i^n+i C"q10c\- A"+1B"+1 Cnq12C\-A"+1Bn+1Cn+1qh. 
Mx M1 Ml 

Consequently, a"bnc"£L{Md for all n ^ 1. 

§ 6. Simple deterministic Turing-machines 

In this section we investigate a special kind of deterministic Turing-machines 
known as simple deterministic Turing-machines, (abbreviated SDT-machines), and 
prove that the family of all languages accepted by SDT-machines is the intersection 
of the two classes £?0 and p . Furthermore, we can prove that this family is closed 
under concatenation, intersection, /»-quotient, /»-union, and homomorphism hw; 
but it is not closed under complementation and union. In this paper we do not prove 
these statements. 

Definition 6.1. a) A deterministic Turing-machine (abbreviated DT-machine) 
is a 6-tuple M={K, F, I , <5, q0, H), where AT is the set of states, T is the set of tape 
symbols, one of these, usually denoted by B, is the blank, Z^r—{B} is the set of 
input symbols, q0£K is the initial state, HQK is the set of final states, and 5: 
KXT-*KX(r~{B})X{R, L} is the mapping satisfying the following condition: 
for arbitrary q(LK and z^F, S(q, z) contains exactly one element. 

b) We denote a configuration of the DT-machine M by wxqw2 or qBw for 
w, vt'!, w2£(r — {B})* and w1w27i?- Let b be the relation on configurations of M 

M 
given as follows. For arbitrary q£K,x, ydr — {B} and wJ,w2^(r~{B})* 

1) w^qxw21— w^zpw2 
M 

2) u\yqxw2 h wxpyzw2 
M 

3) qxw21— pBzw2 
M 

4) qBw21- zpw2 
M 

5) qBw2 h pBzw2 
M 

* 
Let l - denote the transitive closure of 1-. Finally, define the language accepted by 

M M 
* 

the DT-machine M to be L ( M ) = I*/q0\v]-oip for some p£H,a.e(r-{B})*}. 
M 

R e m a r k . In this definition the tape of the Turing-machine is infinitely exten-
sible to the left, but is totally bounded to the right by the end of the tape. By a carry 

if d(q,x) = (p, z, R), 

if d(q,x) = (p , z, L), 

if 6 (q,x) = (p , z, L), 

if 5{q, B) = (p, z, R), 

if 8(3, B) = (p, z, L). 
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forward algorithm to the left (M. DAVIS, 1958, [6]), we can prove that this is the equiv-
alent of Turing-machine definition in [1] such that its tape is totally bounded to the 
left by the end of the tape. 

Lemma 6.1. Let L be a type-0 language over the alphabet Z. Then there is a 
DT-machine M'={K', T', Z, 5', q'a, H') such that 

i) L = L(M'), 
ii) the mapping 8' satisfies the following condition: for arbitrary q£K' and 

xtr' if 8'(q,x) = (p,z,i) for an i£{R,L} then 

Proof. By the Theorem 6.3 in [1], we may assume that L=L{M) for a DT-
machine M—(K, r, Z, 8, q0, H). 

We now construct a DT-machine M' from M as follows. Let M'=(K', f" , 
Z, 8', q'0, H'), where K' = K, T' = r U {a'/a£ I}, q'0=q0, H' = H, and 8' is defined 
so that 

1) for arbitrary q£K and x£T: if 8(q, x) = (p, z, i) for i£{R, L} then 8'(q,x)~ 
= (p, z, i), where 

(z if z(ir-X-{B}, 
Z = \z> if z g l , 

2) for arbitrary q£K and I: 8'{q, a') = 8'(q, a). 
it is clear that L(M') — L(M) and the condition ii) is satisfied. • 

Definition 6.2. a) A simple deterministic Turing-machine (abbreviated SDT-
machine), is a 6-tuple M=(K, /", I , 8, q0, H), where K is the set of states, r is the 
set of tape symbols; one of these, usually denoted by B, is the blank, I is the set of 
input symbols for which Z H r = 0 , and <5: KX(rU Z)-+Kx(r~ [8})X{R, L} 
is the mapping satisfying the following conditions 

i) for arbitrary q£K—H and x^TU Z: 8(q, x) contains exactly one element, 
ii) for e a c h p € H : 8(p, a) is undefined if a(LZ, and it contains exactly one ele-

ment for all a e r . 
* 

b) The relation \— is defined as in the case of a DT-machine. Finally we define 
M 

the language accepted by an SDT-machine M to be L(M)= {w£Z*/q0w\-ap for 
M 

some p£H, a(i(r — {B})*}. A language L is said to be simple deterministic type-0 
(abbreviated sdO-language) if L=L(M) for some SDT-machine M. The family 
of all sdO-languages is denoted by -S?sd0. 

Theorem 6.2. Let L be any language over the alphabet Z. L is an sdO-language 
if and only if L is prefix-free and LZSP0. 

Proof. P a r t 1. o H ^ p . 
Let L=L(M) for an SDT-machine M=(K, T, Z, 8, q0, H). By the defini-

tion of <5, we can easily see that L(L p. On the other hand, it is easy to see that an 
SDT-machine is a Turing-machine. Consequently, £ ( M ) 6 i f o n 

P a r t 2. L d s e ^ s e p - L a s e , 
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By Lemma 6.1, we may assume that L=L(M) for a DT-machine M= 
=(K,T, Z,3,q0,H) satisfying the condition ii) of Lemma 6.1, i.e., for arbitrary 
q£K and x£T if 3(q, x) = (p, z, i) then z$Z, where i£{R,L). We now construct 
the SDT-machine M' from M as follows. Let M' = (K, f , Z, 3', q0, H), where 
r = r - Z , 3 ' is defined as 

1) for arbitrary qdK—H and x £ F ' U Z: 3'(q, x) = 3(q, x), 
2) for each p£H 

¡HP, a) if fl€r, 
( P , f l ) Undefined if a(iZ. 

We prove that L(M')=L(M). 
* * ( g ) . Let w£L(M'),. i.e., q0w\-ap for some p£H. It is clear that: q0w\-ap 

M> M 
for p£H. Thus, w£L(M). 

( 3 ) . We shall prove that if w$L(M') then w$L(M). We have two cases to 
consider: 

* 

Case 1. Let w=wxaw2, for a£Z,wx, w2£Z*, and q0wxaw2\- ctpaw2 for some 
M> 

p£H. 
* 

It is easy to see that: qQwx\-txp for pdH, i.e., wxdL(M). Since L(M) is 
M 

prefix-free and y—aw2 w=wxy^L (M). * 
Case 2. Let q0w\-<xp for some qiK—H. 

M> 
* 

It is clear that: q0w\-aq for q$H. Thus, w^L(M). • 
M 

Theorem 6.3. a) For every SDLB-machine M, there is an SDT-machine M' 
such that L(M')=L(M). 

b) There is an SDT-machine Mx such that L(Ml) is not an sdcs-language. 

Proof, a) Part a) is implied, by Theorems 5.2., 6.2 and the following statement 
"A context-sensitive language is of type-0". 

b) By Theorem III/9.4 in [7], there is a type-0 language L£ {a, b}* which is 
not context-sensitive. Without loss of generality, we may assume that A(£L. 

First, we can easily check that LX=L •{c}={wc/w€L}£ifon.£?J,. Conse-
quently, Lx£J?sd0. We now prove that (i.e., Lx is not an sdcs-language 
either). Assume on the contrary that Lx££?x. We consider the following homo-
morphism h: {a, b, c}* — {a, b}* such that 

h{)) = I, h(a) = a, h(b) = b, h(c) = 

It is clear that if x£Lx=L • {c}, then lg (/¡(x))=lg (x)— 1 (where lg (x) denotes 
the length of x). On the other hand, it can be easily seen that if x£Lx then lg ( x ) s 2 . 
Consequently, for all x£Lx: 2 lg (A(x)) = 2(lg (x) — l ) s l g (x), i.e., h is termed a 
2-linear erasing with respect to Lx (this definition can be found in [7]). By Theorem 
III/10.4 in [7], if LX££CX then L=/t(L1)€JS?i, and the contradiction arises. Thus, 
L is an sdO-language which is not an sdcs-language. • 
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In the final part we wish to deal with the two memory simple machine that is 
the equivalent of an SDT-machine. 

Definition 6.3. a) A two memory simple machine (abbreviated TS-machine) 
is a 6-tuple M=(E, T, F', 8, z0, z'0), where I is the set of input symbols, r and T' 
are two sets of pushdown symbols, z0£T, z^dT' are two initial symbols of two push-
down stores, and the mapping 8: r x ( £ U {A})xr '—r*xT '* satisfies the following 
conditions: for arbitrary z€T and, z '£T' either (i) 8(z,l,z') is undefined and 
8(z, a, z') contains exactly one element for all I ; or (ii) ¿(z, A, z') contains 
exactly one element and 8{z, a, z') is undefined for all a£ I. 

b) A configuration of M is a triplet (a, w, a'), where w£L* ,a .€ r* , a ' £ r ' * . 
We define the operator H on configurations of M as follows. For arbitrary 

M 
a€2:U{A}, w£Z*, z'er, and a', p'er'*: (or, aw, aV) | - (a jJ , w, <*T) 

M * „ if 5(z, a, z')=(fi, fi'). Let | - denote the transitive closure of I - . Finally, we shall 
M M 

be concerned with the acceptance of an input tape by empty pushdown stores. Ac-
cordingly, we define the language accepted by a TS-machine M to be 

L(M) = {vv€ r / ( z 0 , w, z'0) H (A, A, A)}. 
M 

Theorem 6.4. Let L be any language over the alphabet I. L is an sdO-language 
if and only if L is accepted by some TS-machine M. 

Proof. P a r t 1. Let L=L(M) for an SDT-machine M=(K, T, I , 8, q0, H). 
Without loss of generality, we may assume again that: for arbitrary q£K, and 
ad IU {A} if 8(q, a) = (p, z,i) then p^q0, where {P, L). We now construct 
the TS-machine Mx from M as follows. Let M1=(E, r{, <515 q0, $), where 
r 3 = / i : U r U { $ } , r i = ( A : - { ^ 0 } ) U r U { $ } for $$KUr, and <5X is defined so that: 

1) For arbitrary q£K—H—{q9} and 
a) if 8(q0, a) = (p, x, R) then ¿ j (q 0 , a, $) = (Bxp, $), 
b) if 8(q0, a) = (p, x, L) then S^q„, a, $) = (S, $xp), 
c) if 8(q, a) — (p, x, R) then 8x(q, a, $) = (xp, $), 
d) if 8(q, a) = (p, x, L) then 8±(q, a, $) = (A, %xp). 

2) For arbitrary p£H and j C T - f f i } : 
a) Slip, A, $) = (A, $), 
b) 8x(y, A, $) = (A, $), 
c) S^B, A, $) = (A, A). 

3) For arbitrary q£K-{q0} and z£T: 
a) if 8(q, z) = (p , x, R) then d^q, A, z) = (xp, A), 
b) if d(q, z) = (p, x, L) then 8-Jiq, A, z) — (A, xp), 
c) &i(q0, A, y) = ($, $) for all y£r. 

4) For arbitrary y d r ~ { B ) and q£K-{q0}: 
a) 8^y, A, q) = (q, y), 
b) 8JB,X,q) = ( B q , B ) . 

5) F o r a rb i t r a ry y^r a n d y2er: 8x(yx, /., y2)=($, $). 
6) For arbitrary q^K and q2£K-{q0): 8 ^ , q2) = ($,$). 
7) For each zZr{ = ( K - {?„}) U TU {$}: <5X($, A, z) = ($, $). 

4 Acta Cybcrnetica V/4 
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It is easy to see that 
* 

w£L(M) -— q0w |— ccp for some pdH 
M 

- {(?o, >v, $) h (Bap, A, $) for p$H 
Af t 

h (Ba, A, $) (-- (B, A, $) t- (A, A, A)} 

w£L(Mx). 

Thus, L=L(MX) for the TS-machine Mx. 

P a r t 2. Let L—L(M) for a TS-machine M. 
By the acceptance of an input tape by empty pushdown stores, it can be easily 

seen that L is prefix-free. On the other hand, by the Church's thesis, L£ J?0 . Conse-
quently, L££e s d 0 . • 

Finally, we prove that every sdO-language equals to a homomorphic image of 
the intersection of two simple deterministic context-free languages. 

Theorem 6.5. Every sdO-language L can be expressed in the form L=h(LxC\L2), 
where h is a homomoprhism and Lx, L2 are simple context-free languages. 

Proof. By Theorem 6.4, we may assume that L=L(M), where M—(I,T, 
F', z0,z£) is a TS-machine. First, we set: 

Ii = {x^.j/zer, z'er},r = {[z,z']/ztr, z ' f s ' } . 

We now construct two simple machines Mx and M2 from M in the following way. 
Let Mx=_(I',rx,bx,z0), M2 = (r,r2,52,z0), where X'=IU I ^ r ^ r U r U {$}, 
r 2 = r U f U { $ } , and 5 x ,5 2 are defined as follows: 

1) For arbitrary y,z^r and y',z'£r': 

([z, z'] if y = z 
a) <5i(x[y,2.], z) = | ^ .f ^ ^ 

r[z,z '] if / = z ' , 
b) 8 2 { x b , i , z ) = \ $ , f / ? f 2 / j 

c) 5x(a, z) = $, d2(a, z') = $ for all a£X. 

2) For arbitrary z £ f and z 'gF ' : 
a) The case where <5(z, A, z') is defined. 

If <5 (z, A, z') = (a, a') then 5x(X, [z, / ] ) = *, <52(A, [z, z'}) = a'. 
b) The case where <5(z, A, z') is undefined. 

For every a£ I , if 8(z, a, z/) = (a, a') then dx(a,[z, z']) = <x, 82(a,[z, Z'])—OL', 

and ¿ 1 (6 , [ r ,z ' ] )=$, d2(b, [z, z ' ] )=$ for all b£Xx. 
3) 5 ^ , $ ) = $ , <52 (A, $) = $. 
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Let h be the homomorphism of I' into I defined by 

a if a£X, 

A if a € £ i -

We now prove that L(M)=h(L1C\L2) for L 1 = L ( M 1 ) and L2 = L(M2). First, 
we can easily check that for arbitrary a£E, z£T, z'^r', a, a^T*, ft ftgT'*, 

(az, a, j?z') h (a1 ; A, ft) iff 
M 

there is such that 
* 

(ua, az) 1- {X, «i) and 

(ua, pz') h (X, ft). 

(6.5.1) 

Then, we prove by induction on the length of w = ai...an£X* that 

(there are M l5..., un£Z* such that 

J (u1a1... u„a„, z0) H (X, oc) and 
\ Mi (z0,a1...an,z'0) \-(CL,X,P) iff 

M , * 
(«!«!... u„a„, Zq) h (X, P). 

M„ 

(6.5.2) 

Indeed, the case where w = a £ I is trivial. 
Assume that statement (6.5.2) is valid for all w £ I * with lg(w)-=;«. We now 

consider the word w=a1...an_1a„, and let \v1=a1...an_1. Since lg(iv^-c«, 
statement (6.5.2) is true and we have 

(z„, w l5 ZQ) h- (ax z, X, ftz') iff < 
M 

there are wl5 . . . , un_1£Z1 such that 

( M J F L ! . . . « „ _ ! « „ _ ! , ZQ) H- ( A , A x z ) 
Ml * 

(«!«!. . . «„-!«„_!, Zjj) h (A, ftz'). 
M. 

On the other hand, by statement (6.5.1), we can easily see that 

( a i z , f l n , f t z ' ) t- (a, A, ft iff 
A/ 

there is «„££* such that * 
(w„«n> « i z ) 1-(A, a), and 

Mt 

unan, ftz') H (A, p). 
M. 

4' 
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Thus, statement (6.5.2) holds. Finally, for w=a1 ...a„£ I* 

w = a1...a„^L(M) iff (z0, a1..., an, z'0) I- (A, A, A) 
M 

j there are w,,..., un^E1 such that 

iff 

( u ^ . - u ^ , Zq) I- (A, A) 
M. 

there are ut, ..., un£X* such that 
iff «XŰ!-.. u„a„£L ir\L2 and 

Muiai-unOn) = ci1...aneh(L1i]L2). • 

1 s • 

Corollary 6.6. Every sdO-language can be expressed in the form L=h(L1PiL2), 
where ft is a homomorphism, and Lx, L2 are two sdc-languages. 
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