Simple deterministic machines
By N. T. KHANH

§ 1. Introduction

Classes of formal languages are frequently characterized by different types of
accepting automata. It is interesting to note that deterministic languages, i.e., lan-
guages accepted by deterministic automata are very difficult to characterize by oth-
er properties. However, as it will be shown in this paper, if we restrict ourselves to
the so called simple deterministic machines then the corresponding language classes
can be characterized by the prefix-free property. A language L is called prefix-free
if and only if for every pair of words (x,y): xeéL and xy¢L jointly imply y=A4,
where A is the empty word. The hierarchy of simple deterministic machines will thus
correspond to the intersections of the classes of deterministic languages in the
Chomsky hierarchy with the family of all prefix-free languages. Simple machines
introduced by E. P. FRIEDMAN in [3] will be compared with our simple deterministic
pushdown machines and we show that the class of languages accepted by the former
ones constitute a proper subset of those accepted by the latter machines. This means
that although the languages accepted by Friedman’s simple machines are prefix-free,
they do not include every prefix-free deterministic language. The classes of languages
characterized by our simple deterministic machines have different closure properties
under the usual operations. We also define some specific operations with respect
to the prefix-free property. The usefulness of our simple deterministic machines
can be seen also from the properties of the corresponding language classes.

§ 2. Prefix-free languages

Definition 2.1. A language L is said to be prefix-free if for every pair of words
(x,): x€L and. xycL imply y=A. The family of all prefix-free languages is denot-
ed by £,. We can prove that %, is closed under intersection and concatenation, but
it is not closed under complementation and union.

Definition 2.2. Let L,, L, be two languages over the alphabet X.

a) For x,y in X*, write x<y if y=xz for some z in X*—{i}.
b) The p-quotient of L, by L, is defined by

LipL,={yeL,/ if x<y then x¢L,}.

3*

424 N. T. Khanh

¢) The p-union of two languages L, and L, is defined by

L,V pL2 =(L,pLy) U(LypL,y).

It is easy to see that

LU, Ly=L,ULy,—{y,€L,/ there is an x<y, with x¢L,}
—{y.€Ly/ there is an x<y, with xeL}.

Theorem 2.1. The family %, is closed under p-quotient and p-union.

Proof. Let L,, L, be prefix-free languages. It should be clear that L,pL, is pre-
fix-free. We now prove that L, U L, is prefix-free. Assume on the contrary that there
isan x¢L,U,L, with xyeL,U L, for some y#A. Let xeL,pL,. (The case where
x€L,pL, is similar.) Since L, is prefix-free and .y, it suffices to consider the case
where xycL,pL,. But, by Definition 2.2, we can easily see that if xyeL,pL, for
y#2 then x¢L,, ie, x¢L,pL, and the contradiction arises. [J

Definition 2.3. Let X and 4 be two disjoint alphabets, and w any fixed string
in 4*. We deﬁne the homomorphlsm h,: Z*—(ZUA4)*, such that

a) h, (V)=

b) A, (@)= aw for all acZ,

¢) h{(PQ)=h,(P)h,(Q) forall P,QcZ*
For a language L over X, we define

hy(L) = {h,(P)/PeL}.

Theorem 2.2. A language LC Z* is prefix-free if and only if h,(LyS(ZUA*
is prefix-free.

Proof. The case where w=2 is trivial, so we assume that w=gq,...a, for some
a, ..., 3,€ 2 with n=1. Similarly, we can assume that L {1}.

Part 1. LeZ,~h,(L)eZ,. ’

Let xeh (L) and xy¢h,(L), then there are P¢L and PQEL such that
x=h,(P), xy=h,(PQ)=h,,(P)h,(Q). Since L is prefix-free, Q=4. Consequently,
y=hw(Q)=hw(l)=/1, Thus £, (L)¢Z,.

Part 2. h(L)eZ,~Le,.

Assume on the contrary that there are x¢L and xy¢L for some y=A. Itis
clear that P=h,(x)¢h, (L), PQ=h,(xy)eh, (L) and Q=h,(y)=A. Thus, h,(L)
is not prefix-free and the contradiction arises. O -

§ 3. Simple finite deterministic machines

In this section first we investigate a special kind of finite deterministic automata
called simple finite deterministic machines (abbreviated SFD-machines), and prove
that the family of all languages accepted by SFD-machines is the intersection of the
two families %5 and &,. Further, we note that this family is not closed under comple-
mentation and union, but it is closed under concatenation, intersection, p-quotient,

Simple deterministic machines 425

p-union and homomorphisim #,,. The proofs of these facts will not be presented in
this paper.

Let us consider the standard definition of a finite deterministic automaton (ab-
breviated FD-automaton, see [1]). That is: Let M=(X, Z, d,q,, H) be an FD-
automaton, where K is the set of states, X is the set of inputs, ¢, is an element of K
(the initial state), H is a subset of K (the set of final states), and 6 is a mapping from
KX Z to K.

Notation. Given an FD-automaton M let — be the relation on KX ZX*
M

defined as follows. For acX, weZXZ* q,peK
gaw +pw iff 6(q, @)=p.
We let |— denote the transitive closure of }— Finally, we define the language ac-

cepted by M to be
. *
L(M) = {weZ*/gowip for some pcH}.
M

Definition 3.1. a) A simple finite deterministic machine (abbreviated SFD-
machine is a 5-tuple M=(K, %, 4, q,, H), where K, X, q,, H are the same as in
the definition of an FD-automaton and ¢ is a mapping from (K—H)XZX to K.
Similarly, we define the language accepted by an SFD-machine M to be

*
L(M) = {weZ*/qywi—p for some peH}.
M

b) A language L is said to be a simple finite deterministic language (abbreviated '
sfd-language), if L=L(M) for some SFD-machine. The family of all sfd-languages
is denoted by Z4s.

Remark. For simplicity of Definition 3.1 we have restricted the definition of
the mapping & to K—H, so & is not complete. By the following theorem we shall
see that the SFD-machine is a special kind of the FD-automaton.

Theorem 3.1. Let L be any language over the alphabet Z. L is an sfd-language
if and only if L is prefix-free and L¢.%;.

Proof Part 1. LeZyu—~Le¥,NYs.

Let L=L(M) for an SFD- machine M= (X, Z, 6, qo,H) Since the domain
of 6 is K— H, we can easily see that Le.%,. We now prove that Le.%;.

Construct an FD-automaton M’ from M as follows: Let M’ =(KU({g}, z,
&, qe, H), where g¢K and ¢ is defined so that

1) for every qeK—H,acX:6 (q; a)=06(yg, a),

2) for all peHU{g), acZ: 8 (p, a)=3.
It is clear that L(M")=L(M). Thus, Le%,N%,.

Part 2. LEL; N L, ~LEL 3.
By Theorem 3.3 in [1], we may assume that L=L(M), where M=(X, %, 4,
go» H) is an FD-automaton. We construct an SFD-machine M’ from M as follows,

426 N. T. Khanh

Let M'=(K, X,0’, g4, H), where ¢ is defined so that

1) for every qcK—H, ac XZ: &' (g, @)=6(q, a),

2) for all pcH,acX: 6 (p,a) is undefined.

We now prove that L(M")=L(M).

(E). By the definition of §’, we can easily see that if we L(M’) then weL(M).

{2). We shall prove that if w¢ L(M") then w¢ L(M). We now have two cases
to consider:

*
Case 1. Let w=wyaw, for acZX, w,, wo,€ Z*, and gow,awyt paw, for some
1 2 1 2 1 ZM’ 2

pEH.
*
It is easy to see that g,w,—p for p€ H. Thus, w,€ L(M). Since L(M) is pre-
M
fix-free and y=aw,#i, w=w,y¢ L(M).

*
Case 2. Let g,w—g for some qg¢H.
M7

* ' : .
1t is clear that gowigq for q¢ H. Thus, w¢éL(M). O
M

§ 4. Simple deterministic pushdown machines

In this section we investigate a special kind of deterministic pushdown automata
known as simple deterministic pushdown machines (abbreviated SDP-machines)
and prove that the family of all languages accepted by SDP-machines is the inter-
section of %, and the family of all deterministic context-free languages. Furthermore,
we can prove that this family is fiot closed under intersection, complementation and
union, but it is closed under concatenation, homomorphism h,,,and L,pL,, L,U L,
are accepted by SDP-machines if L, is accepted by an SDP-machine and L, is an
sfd-language. In this paper, however, we do not present all these proofs.

Let us consider the standard definition of a deterministic pushdown automaton
(abbreviated DP-automaton, see [2]). That is: Let M=(K, X, T, d, gy, 24> H) be
a DP-automaton, where K'is the set of states, X is the input alphabet, I is the push-
down alphabet, g€ K is the initial state, z,€I' is the initial pushdown symbol,
HEK is the set of final states, and 6 is a mapping from KX(ZU {A)XT to KXTI*
satisfying the following conditions: for each g€k, z¢I' either (i) (g, 2, z) is unde-
fined and 4(g; a, z) contains exactly one element for all a€ Z, or (ii) 6(q,) z) con-
tains exactly one element and (g, g, z) is undefined for all a€ Z.

Notation. Given a DP-automaton M let - be the relation on KX X*xI'*
defined as follows _ " ‘
for gq,peK,acZU {2}, we Z*, z€T, a, eI,
(g, aw, az) ;(p’ w,af) iff 6(g, a, 2)=(p, B).

* . .
Let — denote the transitive closure of . Finally, we define the language accepted
M M

Simple deterministic machines 427

by M to be

*
L(M)={we 2*/(qy, w, o) --(p, A, &) for some p€H,acl™}.
M

Alanguage L is said to be deterministic context-free if L=L(M) for some DP-auto-
maton M. The family of all deterministic context-free languages is denoted by Zy,.

Definition 4.1. a) A simple deterministic pushdown machine (abbreviated
SDP-machine) is a 7-tuple M=(K, X, T, 6, gy, 20, H), where K, Z, T, 4o, 7, and
H are the same as in the definition of a DP-automaton, and § is a mapping from
(K-H)X(ZU{APXT to KXTI'* satisfying the following conditions: for each
geK—H, zeT either (i) (g, 4, z) is undefined and (g, a, z) contains exactly one
element for all g€ X or (ii) 6(g, A, 2) contains exactly one element and 6(g, a, z) is
undefined for all acZ. _

b) An input string is accepted by the SDP-machine M when the entire tape has
been processed and the actual state is a final state. That is

. .
L(M)={w€ Z*/(qe> ws zo) - (ps 2,) for some pEH}.
- M
Fd

A language L is said to be simple deterministic context-free (abbreviated sdc-language)
if L=L(M) for some SDP-machine M. Finally, the family of all sdc-languages is
defined by Z.-

Theorem 4.1. Let L be any language over the alphabet 2. L is an sdc-language
if and only if L is deterministic context-free and prefix-free.

Proof. Part 1. LEL g~ LeL N L.

Let L=L(M) for an SDP-machine M=(X, %, T, 4, g, 2o, H). By the defi-
nition of &, we can easily see that L is prefix-free. We now prove that Le %,;,. Con-
struct a deterministic pushdown automaton M’ from M as follows.

Let M=(KU{g}, Z, I, &', gy Zos H), where g¢K and &’ is defined as

1) for every q€K—H,ac XU {4}, zeT, &' (g, a, 2)=5(g; &, z),

2) for all pe HU{g}, zel', &' (p, 4, 2)=(q, A).

It is clear that L(M")=L(M). Thus, LeZL,;,,N%Z,.

Part 2. LEZL N L, ~LEL 4.

Let L=L(M) for a DP-automaton M= (K, Z’ T, d, g4, zg, H). Construct
an SDP-machine M’ from M as follows.

Let M'=(K, 2, T,?&,q,, zy, H), where & is deﬁned 50 that

1) for every q€K—H, zcT', ac ZU {1}, 8(q, @, 2)=5(q, a, 2),

2) for all peH,zel',ac ZU {4}: 6’(p, a, z) is undefined.

We now prove that L(M")=L(M).

(S). By the construction of §’, we can easily see that if we€L(M’) then
weL(M).

(2) We shall prove that if w¢L(M’) then we{L(M) We now have threg
cases to consider; .

428 R N. T. Khanh

Case 1. Let w=w,aw, for a€ X, w;, wo€ ¥, and (qo,w,awz,zo)r—(p, aw,, o)
for some p€H.

It is clear that (g, wl,zo)l—(p, /,a) for pcH. Consequently, w,cL(M).
M
Since L(M) is prefix-free and y=aw,4, w¢ L(M).
*
Case 2. Let w=w,w,, where w;, w,€ Z*, and (qg,, w,w2,zo))—(q, w,, A) for

some qEK H.
It is clear that (go, Wyw,, zo)}—(q, Was)) for g¢ K—H. Thus, w¢ L(M).

Case 3. Let (gq, w, zo)}—(q, 2, az) forsome g€ K— H, z¢I such that (g, 4, z)
M7

is undefined.
It is easy to see that w¢L(M). O

In the following part we want to deal with a subfamily of simple deterministic
context-free languages known as simple context-free languages (E. P. Friedman
1977).

Definition 4.2. (Deﬁnition 2.1 in [3]). a) A simple machine is a 4-tuple M=
=(2, T, d, z,), where Z is a finite input alphabet, I' is a finite pushdown alphabet,
Zo€I is the initial pushdown symbol, & is the partial transition function from
(ZU{APXT to I'* satisfying the following conditions: for each z€I' either (i)
d(4, z) is undefined and &(a, z) contains exactly one element for all a€X; or (ii)
d(4, z) contains exactly one element and §(a, z) is undefined for all a€ Z.

- Let }— be the relation on Z*XF * defined as follows: for each ac XU {4},

we ¥, zél’ a, BeT™*, (aw, az)l—(w,oz,B) if 8(a, 2)=8.

Let }—— denote the transitive closure of . Finally, we define the language accept-
M M

*
ed by the simple machine M to be L(M)={weZ*/(w, zy)+ (4, 1)}
M

b) A language L is said to be simple context-free (abbreviated sc-language)
if L=L(M) for some simple machine M. It is easy to see that if L is an sc-language
then L must be prefix-free. The family of all sc-languages is denoted by %,..

Theorem 4.2. a) For every SFD-machine M, there is a simple machine M’
such that L(M")=L(M).
b) There is a simple machine M; such that L(M))¢ % ,.

Proof. a) Let M=(K, X, d, qq, H) be an SFD-machine. We now construct
the simple machine M’ from M as follows.
Let M’'=(X,I',¢,z,), where I''={z,/qc¢K} and 6 is defined so that
1) for each gcK—H,acZ, if d(q,a)=p then &(a, z))=2z,,
2) for all peH:6"(A, z,)=4.
It is clear that L(M")=L(M). »
™ b) To- prove the second statement, we reconsider the non-regular language
(which is not an sfd-language), first seen in [2] L={a"b"/n=1}.

Simple deterministic machines 429

We now provide a simple machine M, which accepts this language M,=({a, b},
{Z,, A, E}, 8, Z,), where &, is defined so that

l) 51(61, Zo)zA,

2) 6,(a, A)=AA,

3) 60(b, A)=1,

4) 6,(b, Zy)=E,

5) 6.0 E)=E. O

Theorem 4.3. a) For every sixﬁple machine M, there is an SDP-machine M’
such that L(M")=L(M).
b) There is an SDP-machine M, such that L(M,) is not sc-language.

Proof. a) Let M=(Z, T, 4, Z,) be asimple machine. Without loss of generality,
‘we may assume again that for arbitrary a€ ZU {1} and Z¢rI if 6(a, Z)=o then
a€(I' —{Z,})*. In the opposite case we can introduce a new initial pushdown symbol
Z, and take the new machine M=(Z, 'U{Z,}, 3, Z,), where 8(a, Zy)=5(a, Z,)
and 8(a, Z)=06(a, Z) for each Zer, ac ZU {i}.

Construct an SDP-machine M’ from M as follows. Let M’'=(K, X, I"”, &, q,,
Zy, {q4})s where K={qq, q,}, T=T'U{Z,} for Zy4T', and & is defined so that
for each ac ZU{A), ZeI—{Z,}

D) if é(a, Z))=a then & (qys a5 Zo)=(qy> Zo2),
2) if 6(a, Z)=a then &(gy> a, Z)=(qo, %),
3) 0"(qos A5 Zo)=(gn» 4)- ~

* .
First by induction on the length of we€ Z* we can easily prove that (w, Zg)+ (4, a)
M

. *
iff (g9, Ws Zo) - (gy» 7, Zo). Now, let we Z*, then
M/
*
wEL(M) «— (w, Zy) + (4, 4)
M

* %
(g0, W, Zo) = (Qo> 7 Zo) = (G, 20 1)
M’ M’

—weL(M").

b) To prove the second statement, we reconsider the non sc-language first seen
in [3] L={a'ba’'b/i=1}U {dca’c/i=1}. We can easily check that the following
SDP-machine M, accepts this language.

Let M, = (K, {a,b ¢}, T's 015 Go» Zo» {qs})s Where K={qo> 41, 42> §» q,,} r={z,, A}
and §; is defined so that

1) 1.a) 6,(qo> @ Zy) = (90> ZyAA),
1.b) 6,(gy> a, A) = (o, AA),
1.c) 6,(q0> b, A) = (q1> 4)s
1.d) 6,(qo, . A) = (g5 7),
1.e) 61(q0, by Zy) = 6:(qo> ¢, Zo) = (g, 1);

430 N. T. Khanh

2) 2.2) 6,(qy>a, A) = (g1, 2),
2.b) 6,(q:, b, A) = (g,),
2.¢) 6.(qusc, A) = (G, 2),

2.d) 6,(d1. b, Z0) = (gu» ;

3) 3.a) 0,(gssa, A) = (g2,),
3b) 6.(qss ¢, A) = (g, 2,
3.0 6.1(gz> b, A) = (7, 1),
3.d) 61(92> & Zy) = (gn> A);

4) 61(&’ ;"’ ZO) = 51(‘7’)"a A) = (‘7: ;~) D

Theorem 4.4. There exists a prefix-free context-free language which is not an
sdc-language.

1|

Proof. Let Z be a finite nonempty alphabet. By Corollary 1 to Theorein 3.5 in
[2], we can easily see that L= {ww®/w€ Z*} is a context-free language which is not
deterministic context-free, where w® is the mirror image of w. Let ¢ be a symbol
not is Z, and set L;=L -{c}={wwRc/w€ Z*}. Tt is easy to sce that L,€%,N.Z,.
We now prove that L;§.%,. Assume on the contrary that L,€.%,,. By Corollary
to Theorem 3.4 in [2], if L,=L -{c} is deterministic context-free then L is determi-
nistic context-free, and the contradiction arises. Consequently, L,={wwRc/x¢ Z*}
is a prefix-free context-free language which is not an sdc-language. O

§ 5. Simple deterministic linear bounded machines

In this section we investigate a special kind of deterministic linear bounded
automata called simple deterministic linear bounded machines (abbreviated SDLB-
machines), and prove that the family of all languages accepted by SDLB-machines
is the intersection of the family %, and the family of all deterministic context-sensi-
tive languages. Furthermore, we mention without proof that this family is closed
under concatenation, intersection, p-quotient, p-union and homomorphism #4,;
but it is not closed under complementation and union.

Let us consider the standard definition of a deterministic linear bounded auto-
maton (abbreviated DLB-automaton, see [7]). That is: Let M=(I, K, $, q,, H)
be a DLB-automaton, where I' is the tape alphabet, K is the set of states, ¢,€K
is the initial state, HE K 1is a set of final states and 6: KXI'-KX(I'U{R, L))
is the mapping satisfying the condition: for arbitrary g€ K and x¢TI, 8(g, x) con-
tains exactly one element.

Notation. An instantaneous configuration is a word of the form wigw,,
where g€k, wy, wo€I'™* and wyw,¢2. Given a DLB-automaton M let — be the
M

relation on configurations of M defined as follows. For ¢, p€K, x, y€I', wy, wo€T *
wigxwy = wipyw, it (g, x) = (p, y),
M
wigxwy = wixpw, iff 8(q, x) = (p, R),
M

Wy pgxw, = wipyxw, iff (g, x) = (p, L).
M

Simple deterministic machines 431

.
Let — denote the transitive closure of . Finally, we define the language accepted
M Mo

*
by a DLB-automaton M to be L(M)={w€X*/gowi-op for some p€H}, where
. o |

FCT. A language L is said to be deterministic context-sensitive (abbreviated dcs-
language) if L=L(M) for some DLB-automaton M. The family of all dcs-languages
is denoted by %, .

Lemma 5.1. Let L be a dcs-language over the alphabet 2. Then there is a DLB-
automaton M’'=(I"", K’, &, q;, H) such that

iy L=L(M"),

i) 8: K'XI"~K’ X ((I''— Z)U{R, L}) is the mapping satisfying the following
condition: for arbitrary g€ K’ and a€ X, thereis a z€I"— 2 such that ¢'(g, @)=
=(p, 2), i.e., there are no forms J(g, a)=(p, R) or d&(q, a)=(p, L)..

Proof. Let L=L(M) for a DLB-automaton M=(T', K, é, q,, H). We now
construct a DLB-automaton M’ from M as follows. Let M'=(I"", K’, &', g5, H'),
where I'"'=I'U{d’jac L}, K'=K, g4=q,, H'=H and ¢’ is defined so that

1) for arbitrary a€ X and €K, d(q, a)= (q,a)

2) for arbitrary x€I'—-X and g€k

2.) if 8(g, x)=(p,i) for an i€{R, L} then &(q, x)=(p, 1),
2.b) if (g, x)=(p,y) then &(q, x)=(p,y), where

_ {y if yel—-2,
YTy it yes,
3) for arbitrary g€K and a€ZX.

3.a) if 6(g, @)=(p,i) for an i€{R,L} then (g, a)=(p,i),
3.b) if (g, @)=(p,y) then &'(q,a")=(p,y), where

. {y if yer-2z,
Y=y if yer

It is clear that L(M")=L(M) and the condition ii) is satisfied. O

Definition 5.1. a) A simple deterministic linear bounded machine (abbreviated
SDLB-machine) is a 6-tuple M=(I', K, X, 8, q,» H), where I' is the tape alphabet,
K is the set of states, X is the input alphabet for N I'=§, g€ K is the initial state,
HCK is a set of final states, and §: KX(I'U 2)~KX(I'U{R, L}) is the mapping
satisfying the following conditions

1) for arbitrary g€ K—H and x¢I'U Z: 6(g, x) contains exactly one element,

ii) for every p€H:d6(p, a) contains exactly one element if g€I" and it is unde-
fined if a€Z.

*
b) An instantaneous configuration and the relation are defined as in the case

M
of a DLB-automaton. We define the language accepted by a SDLB-machine M to be

L(M) = {w€Z*/gowi-ap for some pcHY).
Aw

432 N. T. Khanh

A language L is said to be simple deterministic context-sensitive (abbreviated sdcs-
language) if L=L(M) for some SDLB-machine M. The family of all sdcs-languages
is denoted by L.

Theorem 5.2, Let L be any language over the alphabet Z. L is an sdcs-language
if and only if L deterministic context-sensitive and prefix-free.

Proof. Part 1. LEZ ~LeLnNZ,.

Let L=L(M) for an SDLB-machine M=(I, K, Z, 6, q4, H). By condition
it) of §, we can easily see that if M is an SDLB-machine then L(M) must be prefix-
free. We now prove that Le¥,,. Construct a DLB-automaton M’ from M as fol-
lows.

Let M'=(I",K’,&,q,, H), where I''=I'UZ, K’'=KU{g} for g¢K, and
¢’ is defined so that

1) for every qe K—H:98(q, x)=04(q,x) for all xcI'UZ,

2) for every p€eH

6(p,a) if acl,
s a={ "
g, R if acZ,

3) 6'(g, x)=(g, R) for all xeI'UZ.

It is clear that L(M")=L(M). Thus Le&L,NZ,.

Part 2. LeSyNF,~LEF .

Without loss of generality, we may assume that L=L(M) for a DLB-automa-
ton M=(T, K, d, qy, H) satisfying condition ii) of Lemma 5.1. We now construct
an SDLB-machine M’ from M as follows. Let M'=(I"", K, X, &, q,, H), where
I'=r—Zx,§ is defined so that

1) for every qg¢ K—H: (g, x)=6(q, x) for all xerrvz,

2) for every p€H

5 {5(p, a) if aer”,
(p, a) = undefined if ac¢Z.
We now prove that L(M")=L(M).

* -
(S). Let weL(M’), ie., gowlap for some pc€H. By the definition of &,
M7

3 B
we obtain: gowiop for p€H. Thus weL(M).

M
(2). We shall prove that if w¢ L(M’) then w¢ L(M). There are two cases to
consider:

Case a) Let w=w,aw, for acZ, w,, w, Z* and q(,wlaw21~*—e:z1mw2 for some
pEH. "

It is clear that qowlliap for pc H. Since L is prefix-free and y=aw,=4, we
obtain: w=w,y¢ L(M). "

*
Case b) Let g,wag for some g€K—H.
M2

*
It is clear that gowi-ag for g¢ H. Thus w¢ L(M). O
M

Simple deterministic machines 433

Theorem 5.3. a) For every SDP-machine M, there is an SDLB-machine M’
such that L(M"}=L(M).

b) There is an SDLB-machine M, such that L(M)¢ % .

Proof. a) Part a) holds, due to Theorem 5.2 and the following statement

(Theorem 3 in [5]) “A context-free language is accepted by a deterministic linear
bounded automaton”.

b) To prove part b), we reconsider the non context-free language
L = {a"b"c"/n=1}
(which is not an sdc-language either), first seen in [1], [4], [7].

We now construct an SDLB-machine M; whichaccepts this language. Let M;=
=(I'y, Ky, {a, b, c}, 6,5 qo» {gn}), where

ry={4,B,CX, Y}’ Ky = {qos 41 G2 > Gu1s G125 @5 Gi}s

0, is defined so that:

D 61(q0, @) = (40, 4), 01(9o> A) = (41 R), 01(q1» @) = (g1, X),
01(q1> X) = (g1, R), 01(41, b) = (g1, B), 01(¢1, B) = (92, R),
01(g2, b) = (g3, ¥), 01(gz> Y) = (2> R).

2) 61(gas ¢) = (g5, C); 0,(q2> C) = (g5, L), 01(95, Z) = (g5, L),
for Ze{Y, B, X}.

3) 8,(qs, A) = (94, R), 01(qs, X) = (g5 A)» 0,(qs> A)=(g55 R),
4 (qu B) = (6112, R)

4) 0,(g55 X) = (g5 R), 01(q5> B) = (9> R).

5) 01(qes ¥) = (g3, X)s 0,1(qg, Z) = (g4, R) for Ze {B’ X}

6) 06,(q7, X) = (g, R), 01(q:, Y) = (g X).

7 6:(gs> X) = (gs, L), 0,(qs, B) = (95 B), 0:(g9s X) = (g4, B),

6,(g9> B) = (q10> R).
8) 6,(qi0> X) = (qu> B), 91(q10> C) = (q10> R)-
9) 61(ga1s ©) = (gs> O)s 01(qs, C) = (gss L), 0,(qu1> Z) = (qu1> R)

for zZel{x, C}.
10) 8,(g10> ©) = (G125 C)s

01(g12, C) = (gs, R).

11) 6,(3,2)=(3, 4) for Zze(I'—{4)U{a, b, c},
51(qh’ Z) = (fi, A) fOI' Z_€F19 51(6: A) = (q’ R)
12) In all other cases for arbitrary ¢€K,—{g,q,} and x€I'Ul{a, b,c},
6,(¢> x) = (g, A).

It is easy to see that if w¢€ {a, b, c}*—{a"b"c"/n=1}— {1}, then

gow — aq’, where «¢I'f, and
e

q, f w=a",
qg =19, if w=a"b"
g otherwise.
Consequently, w¢ L(M,).

434 N. T. Khanh

We now check that w=a"b"c"¢ L(M,) for all n=1. Indeed, for rn=1

* *
qgoabc+— ABg, C\—qs ABC+ Aq, BC+ ABq,, C+— ABCy,.
M, M, M,

1 Ml
Similarly, for all n=1
%o a"“b"“c"“}—AX"BY"qch }__An-HBXn 1q XCc"

Ml

An+1Bn+1qu oc}—A"“B"“C"q 2C‘_ An+1Bn+1cn+1

Ml l

Consequently, a"b"c*¢L(M,) for all n=l.

§ 6. Simple deterministic Turing-machines

In this section we investigate a special kind of deterministic Turing-machines
known as simple deterministic Turing-machines, (abbreviated SDT-machines), and
prove that the family of all languages accepted by SDT-machines is the intersection
of the two classes &, and £ ,. Furthermore, we can prove that this family is closed
under concatenation, intersection, p-quotient, p-union, and homomorphism #,;
but it is not closed under complementation and union. In this paper we do not prove
these statements.

Definition 6.1. a) A deterministic Turing-machine (abbreviated DT-machine)
is a 6-tuple M=(K,T, X, 9, q,, H), where K is the set of states, I is the set of tape
symbols, one of these, usually denoted by B, is the blank, XCI'—{B} is the set of
input .symbols, ¢,£K is the initial state, HS K is the set of final states, and 4:
KXT—~KX(I'—{B})X{R, L} is the mapping satisfying the following condition: -
for arbitrary g€ K and z€rl, 6(q,z) contains exactly one element. °

b) We denote a configuration of the DT-machine M by wyqw, or qgBw for
ws wy, w6 (F—{BP* and wyw,=A. Let }— be the relation on configurations of M

- given as follows. For arbitrary ¢€K, x, yEF {B} and w,, wze(l’ {BY*
1) wygxwyt-wyzpw, if é(q, x) = (p, z, R),
2) W1yqxwzlbi WiPyZW, if 0(¢, x) = (p, 2, L),
3) qxw2 l- szw2 if (g, x) = (p,z, L),
4) gqBw, k— 2pWw, if (g, B) = (p» 2, R),
S) quZ}; pBzw, if (g, B) = (p, z, L).

. .
Let + denote the transitive closure of . Finally, define the language accepted by
M M R

*
the DT-machine M to be L(M)={we X*/gowi-op for some pcH,ac(I'—{B})*}.
. M

Remark. In this definition the tape of the Turing-machine is infinitely exten-
sible to the left, but is totally bounded to the right by the end of the tape. By a carry

Simple deterministic machines 435

forward algorithm to the left (M. Davis, 1958, [6]), we can prove that thisis the equiv-
alent of Turing-machine definition in [1] such that its tape is totally bounded to the
left by the end of the tape.

Lemma 6.1. Let L be a type-0 language over the alphabet X. Then there is a
DT-machine M’'=(K’,TI’, £, &, 4§, H") such that

i) L=L(M"),

ii) the mapping 6’ satisfies the following condition: for arbitrary g€ K’ and
xel” if &(g, x)=(p, z,i) for an i€{R, L} then z¢ Z".

Proof. By the Theorem 6.3 in [1], we may assume that L=L(M) for a DT-
machine M=(K, T, %, 6, q,, H).

We now construct a DT-machine M’ from M as follows. Let M’'=(K’,I"’,
2, 8,q,, H), where K'=K,I'=I'U{d jac 2}, gi=4q,, H'=H, and & is defined
so that

1) for arbitrary g€ K and x€I': if (g, x)=(p, z,i) for i€{R, L} then &'(g, x)=
=(p, z,i), where

7 =

z if zel—Z—{B},
{z’ if zeZ,

2) for arbitrary ¢€K and a€X:d'(g, a)=0'(g, a).
It is clear that L(M')=L(M) and the condition ii) is satisfied. [

Definition 6.2. a) A simple deterministic Turing-machine (abbreviated SDT-
machine), is a 6-tuple M=(K, I, X, d, q¢, H), where K is the set of states, I' is the
set of tape symbols; one of these, usually denoted by B, is the blank, X is the set of
input symbols for which 2 NIr=#, and &:KxX('U E)»Kx(l’ {BHX{R, L}
is the mapping satisfying the following conditions

i) for arbitrary g¢ K—H and x€I'U X: (g, x) contains exactly one element,

i) for each pc€ H: 8(p, a) is undefined if a€ X, and it contains exactly one ele-
ment for all acl.

b) The relation }— is defined as in the case of a DT-machine. Finally we define

the language accepted by an SDT-machine M to be L(M)= {wE Z*/q(,w}—ap for

some p€H,ac(—{B})*}. A language L is said to be simple determlnlstlc type-0
(abbreviated sdO-language) if L=L(M) for some SDT-machine M. The family
of all sd0-languages is denoted by Z4,.

Theorem 6.2. Let L be any language over the alphabet . L is an sd0- language
if and only if L is prefix-free and Le%,.

- Proof. Part . LEZLy—~LEL,NYL,.
Let L=L(M) for an SDT- machine M= (K, T, %, 6, go, H). By the defini-
tion of J, we can easily see that LE.%,. On the other hand, it is easy to see that an
SDT-machine is a Turing-machine. Consequently, LMeg,NZ,.

Part 2. LEgomgp»LE,gsdo.

436 N. T. Khanh

By Lemma 6.1, we may assume that L=L(M) for a DT-machine M=
=(K, T, %, 6, q, H) satisfying the condition ii) of Lemma 6.1, i.e., for arbitrary
geK and x€I if 8(q, X)=(p, z,i) then z¢ X, where i€{R, L}. We now construct
the SDT-machine M’ from M as follows. Let M’'=(K,I’, X, 6’,q,, H), where
I"=r—=Zx,6 1is defined as

1) for arbitrary g€ K—H and xeI'UZ: 8(g, x)=45(g, x),

2) for each peH

o(p, a) if acel’,
&(p,a) = { .
undefined if acZ.
We prove that L(M)=L(M).
* *
(S). Let weL(M), ie., gowtap for some p€H. It is clear that: gowHap
M/ M

for pcH. Thus, weL(M).
(2). We shall prove that if w¢L(M") then w¢ L(M). We have two cases to
consider:

-Case 1. Let w=w,aw,, for acZ,w;, w,€ Z*, and qowlawz:ocpaw2 for some
PEH. "

It is easy to see that: qowlliap for peH, ie., weL(M). Since L(M) is
prefix-free and y:aw2¢).,w=w}1uy&£L(M). '

Case 2. Let qowi-,ap for some g€K—H.

" :
It is clear that: gowroag for q¢ H. Thus, wé¢L(M). O
M

Theorem 6.3. a) For every SDLB-machine M, there is an SDT-machine M’
such that L(M’)=L(M). _
b) There is an SDT-machine M, such that L(M,) is not an sdcs-language.

Proof. a) Part a) is implied, by Theorems 5.2., 6.2 and the following statement
“A context-sensitive language is of type-0. '

b) By Theorem I11/9.4 in [7], there is a type-0 language L€ {a, b}* which is
not context-sensitive. Without loss of generality, we may assume that A4 L.

First, we can easily check that L,=L -{c}={wc/weL}c¥,N¥,. Conse-
quently, L,€%,4. We now prove that L,¢.%, (i.e., L, is not an sdcs-language
either). Assume on the contrary that L,€.%,. We consider the following homo-
morphism k: {a, b, c}*—~{a, b}* such that

h(A) =2, h(aey=a, hb)=0b, h(c)=.

It is clear that if x€L,=L -{c}, then lg (h(x))=Ig(x)—1 (where lg(x) denotes
the length of x). On the other hand, it can be easily seen that if x¢ L, then Ig (x)=2.
Consequently, for all x€L,:21g (h(x))=2(1g (x)—1)=lg (x), ie., h is termed a
2-linear erasing with respect to L, (this definition can be found in [7]). By Theorem
111/10.4 in [7], if L,€%, then L=h(L)€#,, and the contradiction arises. Thus,
L is an sd0O-language which is not an sdcs-language. OJ

Simple deterministic machines 437

In the final part we wish to deal with the two memory simple machine that is
the equivalent of an SDT-machine.

Definition 6.3. a) A two memory simple machine (abbreviated TS-machine)
is a 6-tuple M=(Z, I, I, 9, zy, z;), where X is the set of input symbols, I and I'’
are two sets of pushdown symbols zo€l', zy€I'" are two initial symbols of two push-
down stores, and the mapping d: I'X(ZU {A}) X I'" ~I'* X I"’* satisfies the following
conditions: for arbitrary z€I' and, z'€I” either (i) (z, 4, z’) is undefined and
é(z, a, z’) contains exactly one element for all a€ZX; or (i) 6(z, 4,z") contains
exactly one element and 6(z, a, z") is undefined for all a€ Z.

b) A configuration of M is a triplet (x, w, a’), where w¢€ZX*, acI™, o’cI'"*.
We define the operator — on configurations of M as follows. For arbitrary

M
ac LU {4}, we Z*, zell, Z’€I”, a, BEI™* and o', p'el"™: (az, aw, a’z)(af, w, ')
M

3 ~
if 6(z,a,z)=(B, p’). Let denote the transitive closure of . Finally, we shall
M

M
be concerned with the acceptance of an input tape by empty pushdown stores. Ac-
cordingly, we define the language accepted by a TS-machine M to be

LOM) = {we 2z, w, 21 0n 20 A

Theorem 6.4. Let L be any language over the alphabet Z. L is an sd0-language
if and only if L is accepted by some TS-machine M.

Proof. Part 1. Let L=L(M) for an SDT-machine M=(X, T, X, 4, gy, H).
Without loss of generality, we may assume again that: for arbitrary ¢¢K, and
acZU {1} if 8(g, a)=(p,z, i) then p=gq,, where ic{R,L}. We now construct
the TS-machine M, from M as follows. Let M,=(X,TI,, I} 15 01> qg. $), where
. I=KUru{s}, Fl-—(K {goHUIrU{8} for $¢ KUT, and &, is defined so that

1) For arbitrary g¢K—H—{q,} and a€ZX:
a) if d(ge, @) = (p, x, R) then 01(q0>a, $) = (Bxp, $),
b) if d(g; @) = (p,x, L) then 6,(go, a, $) = (B, $xp),
C) lf 5(4, a) - (p’ Xy R) then 51(4, a,) = (xP’ $)
dyif d(g a) =(p,x, L) then d,(g, a, $) = (4, $Sxp).
2) For arbitrary p€H and yel' —{B}:

a—) 51(17’ A’ $) = ()N, $)9
b) &:(», 4, 8) = (As $),
¢) 6,(B, A, 8) = (4,).

3) For arbitrary g€ K—{q,} and z€rl:
a)if 6(g;2) =(p, x, R) then &,(g, 4 z) = (xp, %),
b) if &(g,2) = (p, x, L) then 0,(g, 4, 2) = (4, xp),
C) 51(q09 }hs }’) = ($’ $) fOf all yEF
4) For arbitrary y€I'—{B} and gq€K—{g,}:
a) 6.(»: % q) = (¢, »),
b) 51(Bs)"’ 9) = (Bq’ B)
5) For arbitrary y, €I’ and y,€I:6,(yy, 4 y2)=($, $).
6) For arbitrary ¢,€K and g,€ K—{go}: & (ql, L, g2)=(8, 8).
7) For each z&l,=(K—{go) UT'U {8}: 8,(5, 7, 2)=(3, 9).

4 Acta Cybernetica V/4

438 N. T. Khanh

It is easy to see that

*
weL(M)« gow ap for some peH
M

*
~{(90, W, $) - (Bap, 2, $) for pcH
Ml

“ *
l_ (Qa’)“’ $) "_ (B’ A’: $) I_ ()"’)‘5 }”)}
M M, M,

«~ we L(M,).

Thus, L=L(M,) for the TS-machine M,.

Part 2. Let L=L(M) for a TS-machine M.

By the acceptance of an input tape by empty pushdown stores, it can be easily
seen that L is prefix-free. On the other hand, by the Church’s thesis, L€.%,. Conse-
quently, L€Zq40. O

Finally, we prove that every sd0-language equals to a homomorphic image of
the intersection of two simple deterministic context-free languages.

Theorem 6.5. Every sd0-language L can be expressed in the form L=h(L,; N L,),
where # is a homomoprhism and L,, L, are simple context-free languages.

Proof. By Theorem 6.4, we may assume that L=L(M), where M=(Z,T,
I, 8, zy, zg) is a TS-machine. First, we set:

3y = {xp fz€l, Z€l"}, T = {[z, Z'}/z€T, Z’€T"}.

We now construct two simple machines M,; and M, from M in the following way.
Let M,=(2", 3,0, 20 My=(Z', Iy, 85, 2,), where X'=XUZX,,[=T"UrU{S),
T,=r'Uruf{s}, and 4,,9d, are defined as follows: -

1) For arbitrary y,z€I’ and y’,z'¢I”:

[z,2] f y=z

a) 01(*x1y, 2115 2) = {s if y+#z

i [z,2] if y =2,
b) 62(x[z '] Z) = {$ if y/ = Z,,

& 6,(a,2) =S8, 6(a,z)=$ for all acZ.

2) For arbitrary zéI' and z'¢I”:
a) The case where d(z, 4, z’) is defined.
If 8(z, 4, 2")=(r, ') then &,(A [z, ZY=a, d,(4, [z, Z’P=a.
b) The case where d(z, 4, z’) 1s undefined.
For every acZ, if 6(z,a,2)=(x, &) then &,(a, [z, z)=ua, d,(a, [z, ') =2,
and &,(b, [z, Z])=8, 8:(b, [z, z’)=8 for all b€ Z;.
3) 51(19 $)=$9 52(19 $)=$

Simple deterministic machines 439
Let A be the homomorphism of X’ into X defined by

" {a if acZ,
@D=1, it aex,.

We now prove that L(M)=h(L,NL,) for L,=L(M,) and L,=L(M,). First,
we can easily check that for arbitrary a¢ X, z€T, z’€I”’, a, ay €I'*, B, BT,

there is u€ X¥ such that

*
(ua, az) + (4, a;) and
Ml

*
(xz, a, Bz’) &= (o1, 4, By) iff (6.5.1)
M *
(uas ﬂZ’) l_ ('1, ﬁl)
M,
Then, we prove by induction on the length of w=aq,...q,€ Z* that
[there are uy, ..., u,€ZF such that
*
*
(Zo, @y 0y, Z0) b (o, 2, B) iff !(”1“1"' Uaa: 2 1 (o) and g o)
M

*
(way...u,a,, z5) + (4, B).
My

Indeed, the case where w=a€ZX is trivial.

Assume that statement (6.5.2) is valid for all we Z* with lg (w)<n. We now
consider the word w=ay...q,_;4,; and let wy;=a,...a, ;. Since 'Ig (w)<n,
statement (6.5.2) is true and we have

A

there are u,, ..., u,_,€%,; such that

*
v (20: Wi, Z(l)) I;; ((XIZ, /1, Blz/) lﬂ- (ulal"- Uy 1851, ZO) }1:{-1 (’la (le)

*
{(ulal“' Uy-18,-1, 20) = (4, B, 2).
M,
On the other hand, by statement (6.5.1), we can easily see that

there is u,€ X} such that

*
(unan’ alz) = (A, (X), and
M

(042, a, B 2) b (0, 4 B) iff { ,
|

*
U,ay,, Blzl) = ()“, B)
M,

4%

440 N. T. Khanh: Simple deterministic machines
Thus, statement (6.5.2) holds. Finally, for w=a,...aq,¢x*
*
w=a,...a,¢ L(M) iff (zy,0,...,0,,z) — (4,2, 2)
M

[there are u,,..., u, €%, such that

*

lff ! (ulal'“ upa,, ZO) }1;1 ()‘9)»)
*

I(ulal"' unar‘n 26) = ()"1 ;')
M,

there are u,, ..., 4,€Zy such that
iff ywa,..u,a,¢L,NL, and
h(ua,...ua,)=ay...a,ch(LyNLy). O

Corollary 6.6. Every sd0-language can be expressed in the form L=h(L,NL,),
where h is 2 homomorphism, and L,, L, are two sdc-languages.

Acknowledgement. The author would like to thank J. Demectrovics, I. Pedk
and Gy. Révész for th eir careful readings of several versions of the manuscript and
their many helpful suggestions for its revision. This paper is very much improved
by their contributions.

COMPUTER AND AUTOMATION INSTITUTE
HUNGARIAN ACEDEMY OF SCIENCE
KENDE U. 13-17,

BUDAPEST, HUNGARY

H-1502

References

[1} Hopcrorr, J., J. ULLMAN, Formal languages and their relation of automata, Addison-Wesley,

1969.
{2] GINSBURG, S., A. GREIBACH, Deterministic context-free languages, Inform. and Control, v. 9,

' 1966, pp. 620—648. :

[3] FrIEDMAN, E. P., Simple context-free languages and free monadic recursion schemes, Math.
Systems Theory, v. 11, 1971, pp. 9—28.

{4] RévEsz, Gy., Bevezetés a formalis nyelvek elméletébe, Akadémiai Kiado, Budapest, 1979.

[5] Kuroba, S. Y., Classes of languages and linear-bounded automata, Inform. and Control, v. 7,
1964, pp. 207—223.

[6] Davis, M., Computability and unsolvability, McGraw-Hill, New York, 1958.

[71 SaLomaa, A., Formal languages, Academic Press, 1973.

{ Received Oct. 31, 1980)

