On homomorphically α_{i}-complete systems of automata

By P. DömöSı

In [2] there is introduced a family of semi-cascade products named α_{i}-products, where the index i is a nonnegative integer, which denotes the maximal admissible length of feedbacks. By results of F. Gécseg (see for example [3]) it can be seen that there exist no finite homomorphically complete systems with respect to the $\alpha_{0}-$ and α_{1}-products.

From [1] it follows that every automaton having n states can be represented (in a certain sense) by an α_{0}-product of automata, such that all components of this product are either two-state reset automata, or special n-state automata, named 'standard automata". Using results of [4] we get that these "standard automata" can be embedded state-isomorphically into an α_{2}-product' of two-state automata. Therefore, taking into consideration the fact that an α_{0}-product of α_{2}-products is an α_{2}-product, every automaton can be represented (in a certain sense) by an α_{2}-product of twostate automata.

In this paper we present a direct proof of this statement. By this result we receive that for every $i \geqq 2$ there exists a finite homomorphically complete system of automata with respect to the α_{i}-product. For the notions and notations that will not be defined here, we refer to the book [3].

By an automaton $\mathbf{A}=(X, A, Y, \delta, \lambda)$ we mean a finite Mealy-type automaton, where X, A and Y are the finite input, state and output sets, respectively; furthermore $\delta: A \times X \rightarrow A$ denotes the transition and $\lambda: A \times X \rightarrow Y$ is the output function.

Let $\mathbf{A}_{t}=\left(X_{t}, A_{t}, Y_{t}, \delta_{t}, \lambda_{t}\right)(t=1, \ldots, n)$ be a system of automata. Moreover, let X and Y be finite nonvoid sets and

$$
\varphi: A_{1} \times \ldots \times A_{n} \times X \rightarrow X_{1} \times \ldots \times X_{n}, \quad \psi: A_{1} \times \ldots \times A_{n} \times X \rightarrow Y
$$

mappings. We say that the automaton $\mathrm{A}=(A, X, Y, \delta, \lambda)$ with $A=A_{1} \times \ldots \times A_{n}$, $\lambda\left(\left(a_{1}, \ldots, a_{n}\right), x\right)=\psi\left(a_{1}, \ldots, a_{n}, x\right)$

$$
\delta\left(\left(a_{1}, \ldots, a_{n}\right), x\right)=\left(\delta_{1}\left(a_{1}, \varphi_{1}\left(a_{1}, \ldots, a_{n}, x\right)\right), \ldots, \delta_{n}\left(a_{n}, \varphi_{n}\left(a_{1}, \ldots, a_{n}, x\right)\right)\right),
$$

is the α_{i}-product of $\mathbf{A}_{t}(t=1, \ldots, n)$ with respect to $X Y, \varphi, \psi$ if φ can be given in the form $\varphi\left(a_{1}, \ldots, a_{n}, x\right)=\left(\varphi_{1}\left(a_{1}, \ldots, a_{n}, x\right), \ldots, \varphi_{n}\left(a_{1}, \ldots, a_{n}, x\right)\right)$, such that $\varphi_{j}(1 \leqq$ $\leqq j \leqq n$) is independent of states having indices greater than or equal to $j+i$, where i is a fixed nonnegative integer. For this product we shall use the short notation
$\mathbf{A}=\prod_{t=1}^{n} \mathbf{A}_{t}[X, Y, \varphi, \psi]$. The mappings φ and ψ are called feedback function and output function, respectively.

Let A, B be a pair of automata. We say that A can be embedded state-isomorphically into \mathbf{B} if \mathbf{B} has an A-subautomaton \mathbf{B}^{\prime}, such that \mathbf{B}^{\prime} is A-isomorphic to \mathbf{A}. If \mathbf{B} has an A-subautomaton \mathbf{B}^{\prime}, such that \mathbf{B}^{\prime} can be mapped A-homomorphically onto \mathbf{A} then it is said that \mathbf{A} can be strongly covered (or can be represented) by \mathbf{B}.

Take a nonnegative integer i. Any system Σ of automata is homomorphically - complete with respect to the α_{i}-product, or briefly, Σ is homomorphically α_{i}-complete if every automaton can be strongly covered by an appropriate α_{i}-product of components from Σ. Moreover, the system Σ is finite if it has finite-many elements.

Consider an automaton $\mathbf{A}=(X, A, Y, \delta, \lambda)$ with n states. For an arbitrary positive integer $m \leqq n$ we say that \mathbf{A} is m-husked if there exists an arrangement a_{1}, \ldots, a_{n} of states in \mathbf{A}, such that for $a_{l} \in A, x \in X, l<m$ we have $\delta\left(a_{l}, x\right) \in\left\langle a_{1}, \ldots\right.$ $\left.\ldots, a_{l+1}\right\rangle$. (Obviously, for $m=1$ this is a formal requirement. Therefore, all automata are 1-husked.)

If an automaton \mathbf{A} with n states is n-husked then it is said to be right-husked. (We note that all ($n-1$)-husked automata with $n>1$ states need necessarily be right-husked.)

The following holds.
Lemma 1. Every m-husked automaton A having $n>m$ states can be strongly $\begin{aligned} & \text { covered by a suitable } \alpha_{0} \text {-product } \mathbf{M}=\prod_{t=1}^{2} \mathbf{A}_{t}[X, Y, \varphi, \psi] \text { whose components satisfy } \\ & \text { the following conditions: }\end{aligned}$
(i) $\mathbf{A}_{\mathbf{1}}$ has $n-m$ states;
(ii) $\mathbf{A}_{\mathbf{2}}$ is an $(m+1)$-husked automaton the number of states of which is equal to n.

Proof. Take an m-husked automaton $\mathbf{A}=(X, A, Y, \delta, \lambda)$ with $n>m$ number of states and let a_{1}, \ldots, a_{n} be an arrangement of states in \mathbf{A}, such that for $a_{1} \in A$, $x \in X, l<m$ it holds that $\delta\left(a_{l}, x\right) \in\left\langle a_{1}, \ldots, a_{l+1}\right\rangle$. For any triplet $u, v, w \in\langle 1, \ldots, n\rangle$ we introduce the notation

$$
a_{(u, v, w)}=\left\{\begin{array}{lll}
a_{u} & \text { if } & u \notin\langle v, w\rangle, \\
a_{v} & \text { if } & u=w, \\
a_{w} & \text { if } & u=v .
\end{array}\right.
$$

Construct the automata $\mathbf{A}_{1}=\left(X, B, B \times X, \delta_{1}, \lambda_{1}\right)$ and $\mathbf{A}_{2}=\left(B \times X, A, Y, \delta_{2}, \lambda_{2}\right)$ in the following way. $B=\langle m+1, \ldots, n\rangle$, furthermore, for every triplet $v \in B, a_{l} \in A$, $x \in X$

$$
\begin{aligned}
& \delta_{1}(v, x)=\left\{\begin{array}{lll}
v & \text { if } \delta\left(a_{m}, x\right) \in\left\langle a_{1}, \ldots, a_{m}\right\rangle, \\
w & \text { if } \delta\left(a_{m}, x\right) \oplus\left\langle a_{1}, \ldots, a_{m}\right\rangle \quad \text { and } \quad \delta\left(a_{m}, x\right)=a_{w},
\end{array}\right. \\
& \delta_{2}\left(a_{l},(v, x)\right)=\left\{\begin{array}{lll}
a_{(2, m+1, v)} & \text { if } \delta\left(a_{m}, x\right) \in\left\langle a_{1}, \ldots, a_{m}\right\rangle & \text { and } \quad \delta\left(a_{(l, m+1, v)}, x\right)=a_{z}, \\
a_{(z, m+1, w)} & \text { if } \delta\left(a_{m}, x\right)=a_{w} \notin\left\langle a_{1}, \ldots, a_{m}\right\rangle \\
& \text { and } \delta\left(a_{i l, m+1, v)}, x\right)=a_{z},
\end{array}\right. \\
& \lambda_{1}(v, x)=(v, x), \quad \lambda_{2}\left(a_{l},(v, x)\right)=\lambda\left(a_{(1, m+1, v)}, x\right) .
\end{aligned}
$$

Define the α_{0}-product $\mathbf{M}=\sum_{t=1}^{2} \mathbf{A}_{t}[X, Y, \varphi, \psi]$, where in case of every pair $\left(v, a_{l}\right) \in B \times A, \quad x \in X$

$$
\begin{aligned}
& \varphi\left(v, a_{l} ; x\right)=(x,(v, x)) \\
& \psi\left(v, a_{l}, x\right)=\lambda_{2}\left(a_{l},(v, x)\right)
\end{aligned}
$$

By an elementary computation we obtain that the mapping $\mu: B \times A \rightarrow A$ with $\mu\left(v, a_{l}\right)=a_{(l, m+1, v)}$ is an A-homomorphism of \mathbf{M} onto \mathbf{A}. By the definitions of \mathbf{A}_{1} and \mathbf{A}_{2} this completes the proof of Lemma 1.

The following statement is trivial.
Lemma 2. Let $\left\langle\mathbf{A}_{1}, \ldots, \mathbf{A}_{n}\right\rangle$ and $\left\langle\mathbf{B}_{1}, \ldots, \mathbf{B}_{m}\right\rangle$ be arbitrary finite systems of automata. If any automaton \mathbf{A} can be strongly covered by an α_{0}-product of components from $\left\langle\mathbf{A}_{1}, \ldots, \mathbf{A}_{n}\right\rangle$, moreover, an element \mathbf{A}_{i} of $\left\langle\mathbf{A}_{1}, \ldots, \mathbf{A}_{n}\right\rangle$ can be strongly covered by an α_{0}-product of components from $\left\langle\mathbf{B}_{1}, \ldots, \mathbf{B}_{m}\right\rangle$ then \mathbf{A} can be strongly covered by an α_{0}-product of components from $\left\langle\mathbf{A}_{1}, \ldots, \mathbf{A}_{t-1}, \mathbf{B}_{1}, \ldots, \mathbf{B}_{m}, \mathbf{A}_{t+1}, \ldots\right.$ $\left.\ldots, A_{n}\right\rangle$.

Using Lemma 1 and Lemma 2 by an induction we get the following
Lemma 3. Every automaton \mathbf{A} can be strongly covered by an α_{0}-product of right-husked automata having not more states than \mathbf{A}.

Lemma 4. Every right-husked automaton can be embedded state-isomorphically into and α_{2}-product of two-state automata.

Proof. Let $\mathbf{A}=(X, A, Y, \delta, \lambda)$ be an arbitrary right-husked automaton and take an arrangement a_{1}, \ldots, a_{n} of its states with $\delta\left(a_{i}, x\right) \in\left\langle a_{1}, \ldots, a_{t+1}\right\rangle(t=1, \ldots, n-1$, $\left.x \in X^{\prime}\right)$. Consider the automaton $\mathbf{B}=\left(\langle u, v\rangle,\langle 0,1\rangle,\langle z\rangle, \delta_{\mathrm{B}}, \lambda_{\mathrm{B}}\right)$ where $\delta_{\mathbf{B}}(0, u)=$ $=\delta_{\mathrm{B}}(1, v)=0, \delta_{\mathrm{B}}(0, v)=\delta_{\mathrm{B}}(1, u)=1 \quad$ and $\lambda_{\mathrm{B}}(j, x)=z$ for any $j \in\langle 0,1\rangle, x \in\langle u, v\rangle$. Construct the α_{2}-product $\mathbf{C}=\left(X, C, Y, \delta_{\mathbf{C}}, \lambda_{\mathrm{C}}\right)=\prod_{t=1}^{n} \mathbf{B}_{t}[X, Y, \varphi, \psi] \quad$ with $\quad \mathbf{B}_{1}=$ $=\ldots=\mathbf{B}_{n}=\mathbf{B}$ as follows. For any $\mathbf{l} \leqq s \leqq n,\left(d_{1}, \ldots, d_{n}\right) \in \prod_{t=1}^{n} B_{t}$ and $x \in X$

$$
\begin{aligned}
& \varphi_{s}\left(d_{1}, \ldots, d_{n}, x\right)= \begin{cases}v \text { if } d_{j}=1, & \delta\left(a_{n-j+1}, x\right)=a_{n-s+1} \text { for some } \\
& j \in\langle 1, \ldots, s-1, s+1\rangle \cap\langle 1, \ldots, n\rangle \text { or } \\
& d_{s}=1, \delta\left(a_{n-s+1}, x\right) \neq a_{n-s+1} \\
u \text { otherwise, }\end{cases} \\
& \psi\left(d_{1}, \ldots, d_{n}, x\right)= \begin{cases}\lambda\left(a_{n-j+1}, x\right) & \text { if } d_{j}=1 \text { for some } 1 \leqq j \leqq n \\
\text { arbitrary fixed element of } Y \text { otherwise }\end{cases}
\end{aligned}
$$

Denote C^{\prime} the set of all elements $\left(d_{1}, \ldots, d_{n}\right) \in \prod_{t=1}^{n} B_{t}$ for which $\sum_{t=1}^{n} d_{t}=1$. It is clear that $\mathbf{C}^{\prime}=\left(X, C^{\prime}, Y, \delta_{\mathbf{C}_{\mid C^{\prime} \times X}}, \lambda_{\mathbf{C} \mid C^{\prime} \times X}\right)$ is an A-subautomaton of \mathbf{C}. Now con-
sider the mapping $v:\left(d_{1}, \ldots, d_{n}\right) \rightarrow a_{i=1}^{n} d_{t} \cdot(n-t+1)\left(\left(d_{1}, \ldots, d_{n}\right) \in C^{\prime}\right)$. It can be seen that v is an A-isomorphism of \mathbf{C}^{\prime} onto \mathbf{A}. This ends the proof of Lemma 4.

It is evident that any α_{0}-product of α_{2}-products also is an α_{2}-product. Therefore, by Lemma 3 and Lemma 4, the following result is shown.

Theorem. Every automaton can be strongly covered by an α_{2}-product of twostate automata.

We know, by definition, that for every $i>2$ the concept of α_{i}-product is a generalization of α_{2}-product. (In [4] it is shown that this generalization is proper.) Thus, the above Theorem and our remark about α_{0}-product and α_{1}-product jointly imply the following result.

Corollary. For every nonnegative integer i there exists a finite homomorphically α_{i}-complete system if and only if $i \geqq 2$.

DEPT. OF MATHEMATICS
KARL MARX UNIVERSITY OF ECONOMICS
DIMITROV TÉR 8.
BUDAPEST, HUNGARY
H-1093

References

[1] Евтушенко, Н. В., К реализации автоматов каскадным соединением стандардных автоматов, Автоматика и Вычислительная Техника, 1979, № 2, pp. 50-53.
[2] Gécseg, F., Composition of automata, Proceedings of the 2nd Colloquium on Automata, Languages and Programming, v. 14, 1974, pp. 351-363.
[3] Gécseg, F. and I. Peák, Algebraic theory of automata, Akadémiai Kiadó, Budapest, 1972.
[4] Imreh, B., On α_{i}-products of automata, Acta Cybernet., v. 3, 1978, pp. 301-307.

