On homomorphically «;,-complete systems of automata

By P. DOMOst

In [2] there is introduced a family of semi-cascade products named o;-products,
where the index i is a nonnegative integer, which dénotes the maximal admissible
length of feedbacks. By results of F. GECSEG (see for example [3]) it can be seen that
there exist no finite homomorphically complete systems with respect to the o,- and
o, -products. ) L

From [1] it follows that every automaton having » states can be represented (in
a certain sense) by an o, -product of automata, such that all components of this prod-
uct are either two-state reset automata, or special n-state automata, named ‘‘stand-
ard automata’. Using results of [4] we get that these “standard automata” can be
embedded state-isomorphically into an «,-product of two-state automata. Therefore,
taking into consideration the fact that an a,-product of «,-products is an a,-product,
every automaton can be represented (in a certain sense) by an «,-product of two-
state automata. '

In this paper we present a direct proof of this statement. By this result we receive
that for every i=2 there exists a finite homomorphically complete system of auto-
mata with respect to the a;-product. For the notions and notations that will not be
defined here, we refer to the book [3].

By an automaton A=(X, 4, Y,5,2) we mean a finite Mealy-type automaton,
where X, 4 and Y are the finite input, state and output sets, respectively; furthermore
6: AXX—~A denotes the transition and A: AXX—~Y is the output function.

Let A,=(X,, A,,Y,,6,,A) (t=1, ...,n) be a system of automata. Moreover,
let X and Y be finite nonvoid sets and

@ ALX . XAXX = Xy XXX,y W AX e X AXX Y
mappings. We say that the automaton A=(4, X, Y,6,1) with 4=A4,X...XA4,,
M@ ), X)=V (a1, ..., Gy, X)
5((01, (] an)’ x) = (5_1(01, (P1(¢11, cees Ay X)), ey 5n(an’ (0,,((11, LR an’ .X))),

is the a;-product of A, (t=1, ..., n) withrespectto X ¥, ¢, Y if ¢ can be given in the
form @(ay, ..., a5, X)=(@1(a1, ..., @y, X), ..., @,(ay, ..., a,, %)), such that ¢;(1=
=j=pn) is independent of states having indices greater than or equal to j+i, where
i is a fixed nonnegative integer. For this product we shall use the short notation
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A= [T A [X,Y,p,¢¥] The mappings ¢ and y are called feedback function and
t=1

output function, respectively.

Let A, B be a pair of automata. We say that A can be embedded state-isomorphi-
cally into B if B has an A-subautomaton B’, such that B’ is A-isomorphic to A.
If B has an A-subautomaton B’, such that B’ can be mapped A4-homomorphically
onto A then it is said that A can be strongly covered (or can be represented) by B.

Take a nonnegative integer i. Any system X of automata is homomorphically
complete with respect to the a;-product, or briefly, X is homomorphically a;-complete
if every automaton can be strongly covered by an appropriate «;-product of compo-
nents from X. Moreover, the system X is finite if it has finite-many elements.

Consider an automaton A=(X, 4, Y, 8, 4) with n states. For an arbitrary
positive integer m=n we say that A is m-husked if there exists an arrangement
a,, ..., a, of states in A, such that for a,¢4, xe¢X, I<m we have d(q,, x)€(a,, ...

.» dy41). (Obviously, for m=1 this is a formal requirement. Therefore, all automata
are 1-husked.)

If an automaton A with #n states is n-husked then it is said to be right-husked.
(We note that all (n—1)-husked automata with n>1 states need necessarily be
right-husked. )

The following holds.

Lemma 1. Every m-husked automaton A having n=>m states can be strongly

covered by a suitable o,-product M= ]] A,[X, Y, ¢, ¥1 whose components satisfy
the following conditions:

(i) A, has n—m states;

(ii) A, is an (m+ 1)-husked automaton the number of states of which is equal
to n.

Proof. Take an m-husked automaton A=(X, 4,Y,d,1) with n=m number
of states and let 4, ..., a, be an arrangement of states in A, such that for a;cA4,
x€X, I<m it holds that d6(ay, x)€{ay, ..., @;41). For any triplet u,v, we(l, ..., n)
we introduce the notation

a, if ug,w),

Auowmy =14, if u=w,
a, if u=ovo.
Construct the automata A,;=(X, B, BXX, 6;, 4,) and A,=(BXX, 4,7, 8,, 5)
in the following way. B=(m+1, ..., n), furthermore, for every triplet v¢B, ;€ 4,
xeX
if 6(an, X)€4ay, ...\ ap),
if é(an, x)¢{ay,...,a,y and 8(a,,x)=a,,
Acmt1,0y I 6(am, X)€{ay, ..., a,y and 8(ay,m+1,0)» X) = 4,
52(01’ (U, x)) = 1%z, m+1,w) if 5(0,,,, x) = an<a1’ ey am>
and 5(a(l,m+1,u)s x) =a
111(0, x) = (U, x)’ '12(‘11, (U> x)) = A'(a(!,m+l,v)’ x)'

v
61(”: x) = {W
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Define the ay-product M= ZA [X, Y, o, ¢], where in case of every pair
(v,a)eBXA, xeX ‘

¢, aj; x) = (x, (v, X)),
¥ (v, a), x) = Ao(ay, (v, x)).

By an elementary computation we obtain that the mapping u: BXA—~A with
u(v, a)=ay m+1,» is an A-homomorphism of M onto A. By the definitions of A,
and A, this completes the proof of Lemma 1.

The following statement is trivial.

Lemma 2. Let (A,,...,A;) and (B, ..., B,) be arbitrary finite systems of
automata. If any automaton A can be strongly covered by an ay-product of compo-
nents from (A, ..., A,), moreover, an element A, of (A, ..., A,) can be strongly
covered by an a,-product of components from (B, ..., B,) then A can be strongly
covered by an ay-product of components from (A;, ..., A3, B;, ... B, Aryy, oo

o A
Using Lemma 1 and Lemma 2 by an induction we get the following N

Lemma 3. Every automaton A can be strongly covered by an a,-product of
' right-husked automata having not more states than A.

Lemma 4. Every right-husked automaton can be embedded state-isomorphi-
cally into and a,-product of two-state automata.

Proof. Let A=(X, A4, Y, 6, ) be an arbitrary right-husked automaton and take
an arrangement a,, ..., a, of its states with 8(a,, x)€{a,, ..., a,4y) (t=1,...,n~1,
xcX). Consider the automaton B=({u, v}, (0, 1), (z), og, AB) where 63(0, u)=
=dg(1,v)=0, 5g(0, v)=355(1,u)=1 and Ag(j,x)=z for any j€{0, 1), x€{u,v).

\
Construct the a,-product C=(X, C, Y,d0¢c, A= [[ B, [X, Y, 0,¥] with B;=
. t=1
=...=B,=B as follows. For any l=s=n, (d;,...,d,)¢ ][ B, and x¢X
t=1

v if d;j=1, 6(a,—j41,%) =a,_s41 Sor some
jedl, ..., s=1,s+1)NQ, ..., n) or
(ps(dl, ...,d,,,.x)= _
d - 1: 5(an—s+1,vx) #= an—s+1,
u otherwise,
A@n-j41,x) if dj=1 forsome 1=j=n
Y(dy, ... dy, x) = and 2d, =1,
i=1

arbitrary fixed element of Y otherwise.

Denote C’ the set of all elements (d, ..., d,)€ ]] B, for which Za’ =1. It is

t=1
clear that C'=(X, C’, Y, dcic xx> Acjcrxx) 15 an A-subautomaton of C. Now con-
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_sider the mapping v: (d,, ...,d,)~a ((dy, ...,d,)€C’). Tt can be seen

f dy (r—141)
that v is an A-isomorphism of C’ onto A. This ends the proof of Lemma 4.

It is evident that any a4-product of a,-products also is an o,-product. Therefore,
by Lemma 3 and Lemma 4, the following result is shown.

Theorem. Every automaton can be strongly covered by an o,-product of two-
state automata.

We know, by definition, that for every i>2 the concept of o; -product is a
generalization of a,-product. (In [4] it is shown that this generalization is proper.)
Thus, the above Theorem and our remark about «,-product and «, -product jointly
imply the following result.

Corollary. For every nonnegative integer i there exists a finite homomorphically
a;-complete system if and only if i=2.
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