Epis of some categories of Z-continuous partial algebras

By A. PASZTOR ,

§ 1. Introductory remarks on the connections with Computer Science

Let | w Alg; denote the category of w-continuous X-algebras with bottom and
bottom-preserving w-continuous homomorphisms between them in the sense e.g.
of p. 132 of [13]. The structures WecOb | w Algs are simply algebraic systems in the
sense of [6] and the morphisms A: U—B of | w Alg; are homomorphisms in the
sense of [6]. What is special about { w Alg; is that these algebraic systems and ho-
momorphisms have to satisfy certain conditions. The present paper investigates
1w Algy and certain strongly related categories.

Nowadays a very large part of Theoretical Computer Science (TCS) is based on
Lo Alg; see e.g. [13] or [4] or [8]. We do not give here more references but it is
very easy to-find them in any recent publication on ‘“Algebraic Semantics of Pro-
gramming” or in the recent volumes of MFCS or FCT. Just for referential purposes
we note that the French school of TCS uses the word “‘complete magma™ for an
algebraic system A<Ob ( Lw Alg;). The importance of L Algy for computer
science was perhaps first discovered by Dana Scott and his co-workers during their
pioneering work a long time ago but of course at that time the tool they found did
not have its present polished form. Among others, the fixed point semantics of
programming is based mostly on 1w Algy (though this may not be explicit in some
of the papers on the subject).

In computer science one has to deal with recursion (or iteration). In | w Algy
recursion is treated as the supremum of an w-chain where the members of that w-
chain are the finite approximations of the recursion in question.

Since 1w Alg; is the foundation for a large part of TCS, we think it is impor-
tant for TCS — and what is more, it is indispensable for TCS — to investigate the
basic properties of 1w Algy. Such basic questions are to characterize the epimor-
phisms of 1w Algy and to know e.g. whether or not it is co-well-powered. The
present paper investigates these questions. We note that these questions are indeed
basic, e.g. in algebraic logic the epimorphism problem is equivalent to the problem
of the connections between explicit definitions and implicit definitions in the logic
under (algebraic) investigation.
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§ 2. Introduction

In [12], when characterizing the epis of POS (Z) — the category of Z-complete
posets with bottom and Z-continuous bottom-preserving maps — I just solved the
first problem which arised on the way of characterizing the epis in 1Alg;(Z) —
the category of Z-continuous X-algebras with bottom and of Z-continuous, bottom-
preserving homomorphisms. The present paper solves some other problems which
seem to play an important role in solving the main problem.

Instead of going on in an abstract manner, 1 will give first the basic definitions.
A subset system is a map Z which assigns to each poset 4 a collection Z(A4) of its
subsets such that for each monotonic map f: A—B, if X¢Z(A), then f(X):=
={f(x): xeX}eZ(B).
A poset A is Z-complete if every element of Z(4) has a L.u.b. (or sup) in 4.

A map f: A—B is Z-continuous if it is monotonic and whenever X €Z(A4) and
sup X exists, then sup f(X) also exists and equals f{sup X). :

Lét Z bea similarity ?ype or signature, i.e. a set of function symbols. For any o6¢Z,
r(o) denotes the arity of ¢, which is an arbitrary ordinal number.

A partial Z-algebra U consists of a set 4 and of a family (¢#: dom 64 ~A),¢;
of partial operations on 4, i.e. for each g¢ZX, dom 64<C A", Given two partial
Z-algebras A and B, a homomorphism f: A—-B is a map f A—-B with the
property that for any o€X, whenever acdom ¢4, foacdomo® and f(c4(a))=
=gB(foa). ~

A partial X-algebra U is total, if for any ¢€Z, dom g4=A4".

For more about subset systems Z see [1], [9], [7]. For more about the the-
ory of partial Z-algebras see [2], [L1], [10], [3].

The frame category of the present paper will be 1| ZP Alg; defined as follows.
AeOb | ZP Alg; iff A is a partial Z-algebra, 4 is partially ordered by =, with least
element and all the operations of A are monotonic. f: U—-BecMor L ZP Alg;
iff fis a Z-continuous bottom-preserving homomorphism.

The present paper gives a characterization of the epis in | ZP Algy, for any Z
and for any 2.

Actually, we are more interested in some full subcategories of |ZP Alg;,
which we define below.

1 Z Alg; denotes the full subcategory of | ZP Alg; defined as Ob_1Z Alg;=

={AcOb L ZP Alg;: U is total}.

LP Alg;(Z) denotes the full subcategory of | ZP Algy with objects 2 which are

Z-complete and in which the operations are Z-continuous, i.e. for any o¢Z, if

X¢Z(dom %) and if sup X<dom o4, then sup {6*(x): xcX}=0*( sup X).
= gr(o) =y = grla)

The objects of 1 P Alg;(Z) are called Z-continuous partial XZ-algebras.

1 Alg;(Z) is the full subcategory of | P Alg;(Z) with objects in which all opera-

tions are total.

1P Algy , is the full subcategory of [ P Alg;(Z) in which the objects are such that
the domains of the operations are Z-complete.

In §3 we define the closure operator CL; (see Definition 6) and, in Theorem 1,
we prove that a morphism f: A—+BeMor L ZP Alg; is an epi iff CL;(f(4))=B.
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This is a characterization of epis in 1 ZP Alg;. In Theorem 2 we extend this charac-
terization to many other categories. At the end of §3 we show the connection of
CL; with CL of [12].

In §4 we use the above characterization of epis to show co-well-poweredness,
assuming that the subset system Z is bounded. This assumption cannot be omitted.

Acknowledgement. This paper came into being due to Hajnal Andréka, Istvan
Németi, and I1dik6 Sain, who pushed and helped me with many exciting discussions
to write down these results

§ 3. Characterization of epis

Throughout the paper, let a signature X and a subset system Z be fixed.
Throughout this section, let WeOb 1 ZP Alg;, XS A4 and a, b, c,dcA.

Definition 0. cl (X) is the least subset Y of A suchthat XSY and whenever
VeZ(Y), then sup VeY.

Definition 1. We define a to be X-greater or equal than b (a—»b) iff there is an
ordinal & such that a is «, X-greater than b (@-2%-b) and the latter is defined as fol-

lows: a>%.b iff b=,x=,a for some xcX. Let a=>0. Then a>%.b iff there is
a term-function symbol ¢ of type ¥ such that b=,:¥(b) and a =1"(a) for some
b, acdom ¥ and for any i<r(t), b(z)Ecl (Y") for some Y'S A and for each yeY*

there is an ordinal a,<a with a(z)-———»y

=

8 Acta Cybernetica VI/1
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Remark 2. Comparing this definition with Definition 1 of [12], notice that
atr>X p implies a-=%+ b (just take for ¢ the identity). If the operations of 9 have all
empty domains, then aXeb iff (alib for some ordinal a).

Lemma 3. Suppose a>-b and let f,g: A—~BeMor | ZP Algs. Then
f1X=gtX implies f(a) z=g(b). :

Proof. a=~b means a->X.b for some ordinal «

If «=0 then thereis an x¢X with b=,x=,a. Hence by the monotonity of f
and g we have g(b)=5g(x)=f(x)=5 f(a).

Suppose a>0. Then b=,t¥"(b) and :¥(a)=,a for some termfunction r of
type X and some b, acdom ¥, and for any i<r(r), b(i)€cl (Y') for some Y'C A4
and for each y€Y' there is an ordinal o,<a with a(i) il y By the induction
hypothe31s for any i<r(t) and for any ycY' we have =p (a(z)) But,
since by the Z-continuity of g we have g(b()¢cl (g(Y), also g(b(z)) = f (a(z))
must hold for any i<r(r). By the monotonity of the operations we get then

g(B)=pg(1"(0))=1"(gob) =5 t*(foa)=f(t"(a)) =5 f(a). O

Corollary 4. a>b implies a =b.

Corollary 5. Let f, g: W—-BecMor 1 ZP Alg, with fiX=gtX. Then
aX-a implies f(a)=g(a).

Definition 6. CL;(X):={ac4: a"~a}.

Corollary 7. If for an f: W—-BeMor ZP Alg, we have CLy(f(4))=B5,
then f is an epi!

Now we are going to prove the converse of Corollary 7.

Lemma 8. aAébe»c,,éd imply a4

Proof. Immediate by Definition 1. [

CL; ()

Lemma 9. ¢« b implies a-=~b.

Proof. Suppose a 2Cl:® b We prove by transfinit induction on « that aX.p.

First let «=0. Then there is an x¢CLy(X) such that b=, x=,q. But since
xi»x, it follows from Lemma 8 that a—~b.

Now suppose a=0. Then b=,:%(b), t¥(a)=,a for some termfunction t of

type X and for some b,acdom (t¥) and for each i<r(?), b(i)ecl (Y?) for some

,CLz (X)

YIS A and for any y< Y there is an ordinal o, <a with a(i) a” y and hence

by the induction hypothesns there is another ordinal g, with a(z)—- y. Applying
Definition 1 we get then a2X+b for e.g. f= Z{(B,+1): yeY', i<r(t)} (see Fig.
2). O

Corollary 10. The operator CL;: #(A4)—~%(4A) which assigns CL;(X) to
each XS 4 is a closure operator.
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Fig. 2

Proof. 1) It follows immediately from Definition 1 that a>+b for some a, bed
and XSYSA imply a-~b. Hence XS YCS A implies CLy(X)SCLy(Y).

2) XS CL;(X) follows from Definition 1.

3) CL; (CL; (X))SCLs (X) follows from Lemma 9. O

Remark 11. Note that, by Lemma 9, if we suppose that either a or 4 is in CL; (X),
then a-Xob iff a =b.

Lemma 12. The operations of U are monotonic w.r.t. the relation ‘““X-greater
than or equal to” .. '

Proof. Let ocX be arbitrary and suppose that for any i<r(o), aiiibi.
Then by Definition 1, o¢%(a;: i<r(a))-—aj—x- oc%(b;: i<r(o)), where e.g.
a:=X {(o;+1): i<r(s)} (just let t=¢ and Y'={b})). O

Corollary 13. CL; (X) is closed w.r.t. all operations of 2.

Lemma 14. Let Y& A, If a—iy for every y€Y then aX+b for every
becl (Y).

Proof. Let becl(Y). For every yeY let a, be such that aa’—’x>y. Let
a:=X{(a,+1): yeY}. Then PRI by Definition 1 (just take for f the identity
termfunction), i.e. aXb. O

Corollary 15. cl (CL; (X))=CL; (X).
Remark 16. In general, CL; (X) is greater than the least subset YS 4 ‘such

8«
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that XSY and Y is closed under the operations and cl (¥Y)=Y. This follows from
the fact that c1=CL in POS which is proved in LEHEMANN—PAsZTOR [5].

Having arrived at this point we formulate the main result of the present paper.
THEOREM 1. If f: A~BeMor | ZP Algy is an epi then CLy(f(4))=B.

Proof. Denote CL; (f(4)) by B, and suppose that B—B,»0. We will con-
struct ¢, y: B~CeMor 1 ZP Algx with f.o=f-y but ¢y, which contradicts
the epiness of f.

Let ¢o: B—B,—~B, be a set isomorphism, where B, is disjoint from B. Let
C:=BUB, (the second copower of B with amalgam B,), ¢:=idy and ¥ :=idg Up
(the injections), where id and id, denote the identity maps on B and B, respectively.
Let 6:=¢pUg™t. Then §6: C—B.

Definition 17. We define on C the relation = as follows. For any a, beC

b {5((1) =5 0(d) if a,béB or a,bch,
= 3 é(a) o 6(b) otherwise.

ASSERTION 1. = is a partial order on C.

Proof. 1) =, is reflexive since = is reflexive.

2) Suppose a=cbh=cc. Assume ¢, c<B or a,ceB,. Then 6(a)=55(b) =pd(c)
by Definition 17 and Corollary 4, hence 6(a)=pé(c) by transitivity of = =g, ie.
a=cc by Definition 17. Assume that one of @ and c is in B and the other oné is in B;.

Then either é(a) «—6(b) or é(b) <—5(c) by Definition 17. Then §(a) <—-6(c)
by Lemma 8 and Corollary 4, i.e. a=cc¢ by Definition 17.

3) Leta=cb and b =ca for some a, beC. If a,b¢B or a,beB, then a=b by
antisymmetry of =g and since & is one to one on B,. Suppose one of ¢, b'is in B and

the other one is in B,. Then &(a) <—5(b)<—- d(a) by Definition 17 and hence
d(a)=0(b)€ B, by Corollary 4 and Lemma 8. Then a=65(a)=56(b)=> (contradlctmg
our hypothesis). O

ASSERTION 2. §: C—B is monotonic and ¢-d=y -d=idg.
Proof. Immediate by Corollary 4 and by the definitions. (]
ASSERTION 3. ¢, {1 B—~C are Z-continuous.

Proof. 1) Clearly @ is monotonic. Let @, b¢B be such that a=zb. If acB,

or beB, then a<2¢b by Remark 11 and hence Y(@)=cy(b). If a,beB~—B, then
Y(@)=cy () by ¢-d=idy and Definition 17. Thus ¢ is monotonic.

2) Let Y¢Z(B) and assume that b _sup Y exists. By Definition 17, y=cb

for any ycY, i.e. b=¢(b) is an upper bound of Y=¢(Y)in C. Now let ceC be
another upper bound of Y. If ¢¢B then b=cc by Definition 17 and since b—sup Y.

Suppose ccB,. Then 8(c)-2-35(y)=y for every ycY, by Definition 17. Thus
5(c)22+b by Lemma 14, ie. b=cc. Thus b—squ

C
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_ Since ¥ is monotonic, ¥ () is an upper bound of Y (Y). Let c€¢C be another
upper bound of ¢ (Y). Suppose c¢B,UB,=y/(B). Then é(c) is an upper bound of
Y in B since & is monotonic and Y -d=idg, therefore b=z6(c) by b=sup Y.

=B
Then Y (b)=cyYdc=c by monotonity of . Suppose c€¢B—B,. Then c22.y for
every ye Y by Definition 17 and Remark 11, therefore 2o, p by Lemma 14, ie.
c=58(c)225yb, hence Y(b)=cc by Definition 17. Thus ¥ (b)=sup y(¥).

Now we take on C the structure inherited from B, i.e. for any o€z,
6¢:=62Uoo®. Since by Corollary 13 B, is closed under the operations of B,
o€ is a partial operation on C.

Remarks 18. 1) If B is a roral Z-algebra and if X contains at most unary opera-
tion symbols, then €:=(C, ¢%),c; is also a total Z-algebra.
. 2) & is the second copower of B with amalgam B, in the category of all partial
Z-algebras.

3) 0:€—~B is a homomorphism. O3

By its definition and by Lemma 12, ¢€ is monotonic. Let €:=(C, 6%),; with
partial order =;. Then €¢Ob_ZP Alg;. Clearly, ¢,y: B~CE are homomor-
phisms, therefore ¢, eMor 1 ZP Algy, by Assertion 3. By B—By<0 we have
=y and by f(BYS B, we have f-@=f-y. Thus fis not an epi. O

To prove Theorem 2, we shall need Lemma 19.

Lemma 19. Let P be any poset. Then conditions (i) and (ii) below are equivalent.
~ (i) P is directed.
(ii) For any XC P either X is cofinal in P or P—X is cofinal in P.

Proof. Suppose that XS P is such that neither X nor P—X is cofinal in P.
Then there are x, peP such that x=ag implies gacX and p=a implies a¢ X.
Then {x, p} cannot have an upper bound.

Suppose that {x, p} does not have an upper bound. Then neither {a¢P: a=x}
nor {a€P: azx} is cofinal in P. O

NoOTATION. ZC A denotes the fact that X is directed for any poset P and
XeZ(P).

THEOREM 2. 1) For any Z and for any type X we have f: W —>BecMor 1 ZP Algy
is an epi iff CLj; (f(4))=B.
2) Suppose that ZS A. Then a)-—c) below hold.
a) For any type Z, _
f: A—-BeMor 1 P Algy(Z) is an epi iff CL;(f(4))=B.
b) For any type Z,
f: A—-BeMor | P Algy , is an epi iff CL;(f(4))=B.
¢) If the type Z contains only 0- or l-ary operation symbols then
f: A~BeMor L Alg;(Z2) is an epi iff CL;(f(4))=B.

Proof. A) By Corollary 7, if for f: W-BeMoriZP Alg; we have
CL; (f(A))=B then fis an epi. Further on, for any category ¥ and any subcategory
B of ¥, if feMor £ is an epi in &, then it is an epi also in 4.
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B) Now 1) follows from Theorem 1. Suppose that ZZ 4. To prove 2) we shall
use the construction in Theorem 1, i.e. we shall use ¢, , B, d, and C.

ASSERTION 4. If B is Z-complete then so is €.

Proof. Let XeZ(C). Then 6(X)eZ(B) since § is monotonic, hence
b: =sup 8(X) exists. Then ¢(b)= sup @dX and Y(b)= sup Y8X by Assertion 3. Sup-

pose that BNX is cofinal in X. Then @d(BNX)= BﬂX is cofinal in ¢@dX, hence
@(b)= sup (BNX)= sup X. If BNX is not cofinal in X then B,NX is cofinal in X

by ZCA and Lemma 19. Then, similarly as before, sup X=y(b). O

ASSERTION 5. If B is Z-continuous then so is € and if BeOb1PAlg;,
then CcOb L P Algy 5.

Proof. € is Z-complete by Assertion 4. Let aEZ and X¢Z(domo©). Let us
denote B'®), C'®, @) 4 and §") by B, C, p, ¥ and & respectively. By the
definition of € we have dom aCC<p(B)UtT/(B) Therefore either X,:=XN@(B)
or X,: _XﬂzF(B) is cofinal in X, by Lemma 19.

Suppose X, is cofinal in X. Then ¢€(X,) is cofinal in aC(X) by monotonity of
o€, hence sup X —supX and sup a’(X)= sup 6°(X,). By X,S@(B) and ¢-6=

=
=idp we have X, (pSX Smce o: (E—»SB 1s a monotonic homomorphism, we

have 6(X,)€Z (dom o®) and thus ¢2(6X,)e Z(B). Now, since ¢ is a homomorphism,
we have ac((p5 )=0c®(6X,), and then sup peP(6X,)=0 sup a®(6X,) by Z-con-

tinuity of ¢. By Z-completeness of B and (§ and by Z-contmu)ty of ¢ we have that-
P (sup Y)= 5up @(Y) for any YeZ(B)(because <p[(sup NOl=¢ sup {y(i): yeY}=

—sup {(py(z) yEY} (sup pY)()) for any t<r(a)) Thus <psup oX, —supX
and sup d(X,)= 5(supX) by ¢-8=idy, therefore supX edoma lﬂ' sup5( )€
Edoma since ¢ and ¢ are homomorphisms. Suppose sup d(X,)edom a’B’ Then
sup o®(6X,)= a”(sup 3X,) by Z-continuity of B and q)a"(sup 0X,)=0(p sup 8X,)

smce @ is a homomorphlsm
Summing up:

sup 6€(X) = sup 6°(X,) = sup ¢(¢5X,) = sup pa®(3X,) = g sups?(3X,) =
=c =c = el =pg

= ¢o (sup 0X,) = o¢(@ sup 0X) =o€ (sup PdX,) = o€ (sup X,) = o€ (sup X).

If X, is cofinal in X then the proof is the same as above, only ¢ has to be replaced
by ¢ everywhere. O

Now 2) follows from Assertion 5, Remarks 18 and from the proof of Theorem
1. M
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In part 2 of [12] we defined the closure operator CL on posets. Now we are going
to prove that in some cases CL; on Z-continuous f-algebras equals CL.

Lemma 20. Let ZS 4 and let 2 be finitary. Then for any WeOb 1 Alg; (Z),
if XS A4 is a subalgebra of U, then for any o¢% ai}—a"—’x—bi, i<r(c) implies
a=c*(a;: i<r(a))|ix—o‘(bi: i<r(o))=:b for a:= sup o;.

i<r(a)

Proof. If a=0 then for each i<r(o0), b;ecl(Y") for some Y'CA and for
each yeY’ there is an x,€X such that y=x,=q;. Let Y:={o4(y): y¢ X Y}
i<r(o)

By NeLsoN [9], for ZESd4 and finitary X, o4(cl(YY), ..., cl(¥,)=
=cl (64(Yy, ..., Y,)), hence becl (Y) and by the monotonity of ¢ for any ycY,
since y=o04(y) for some ye X Y;, thereis an x,:=04(x,;: i<r(e))eX (X is

. i<r(o)
closed w.r.t. ), such that y=,x,=,a. Hence ar>X .
Let =0 and suppose that whenever sup a;<a the statement holds. Then

i<r(o)

for any i<r(o) biecl(Y;) for some Y;SA and for any y'eY; thereis a by =)'
. Byi, X
and an ordinal B, <«; such that a;—=——b,. Let Y:={04(y): y¢ X Y;}. Then
. i<r(o)
for any yc¢Y, y=04(y) for some ye¢ X Y; and by the monotonity of ¢
i<r(o)

y=46%(byy: i<r(o))=:b,. By the induction hypothesis, al&iby, where
B,:= sup fy;. Since by the assumption béecl(Y) and since for any ycY, B,<a
i<r(o) .

(because r(o)cw), areX b O

Corollary 21. If ZC A and £ is finitary, then for any f: A—~BeMor L Alg;(Z),
CL (f(A)) is a subalgebra of B. '

Lemma 22. Let ZS A4 and let X be finitary. Then for any €ecOb 1 Alg; (Z),

for any a, b€ A and for any subalgebra X of U, a>-b implies at>X b for some
ordinal .

Proof. Supﬁose a>X.b. Then b= ,x=4,a for some xc¢X, which implies
0,X
al-—b.

Let a2%.b and suppose that for any f<a, alX. b already implies ar?X b
for some ordinal y. Then a-2%-b means b=,r%(b) and 1¥(a)=,a for some term-
function symbol ¢ and some a, beA"™® and for any i<r(t), b(i)ecl (¥Y*) for some
Y'S A4 and for each yeY' there is an ordinal a,<a with a(i)—ai{»y. By the in-
dulct;on hypothesis for each i<r(¢) and for each yeY’ a(i)}M— », for some ordi-
nal 8,. .
Lyet Yi={t"(y): ye¢ X Y*}. Then ¥(b)ecl(¥), since by NELSON [9] for

i<r(t)

finitary £ and for ZC4, ¥ (cl(¥),...,cl (Y ®-Y)=c (P, ..., ¥®-1),
For any yeY, y=1*(y) for some ye X Y, hence by Lemma 20, tm(a)l—&’—x— ¥

i<r(t)
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where f,= sup B,;. Then @) -2 A(b) for some B greater than each B,
i<r(t)
y€Y. By Lemmas 3 and 4 in part 2 of [12], a——— ALY
Corollary 23, If ZC 4 and ¥ isfinitary, then for any f: U —~BeMor L Alg;(Z)
we have CLj; (f(4))SCL(f(4)).

Corollary 24. If ZC A and X contains at most unary operations, then 1) and 2)
below hold.

1) f: A~BecMor L Alg;(Z) is an epi iff CL(f(4))=B.

2) 1Alg;(Z) is co-well-powered.

Proof. 1) By Corollary 23 and Corollary 21, CLy( f(A)) CL( f(4)). By
Theorem 2, f: U—~BcMor LAlgs(Z) is an epi iff CL (f(4)

2) In Corollary 2 of part 4 in [12] I proved CL(X)ES {sup S: S CX } for any
A€POS (Z) (Z arbitrary) and XS 4. 0O

§ 4. Co-well-poweredness

Suppose that Z is bounded, i.e. there is a cardinal 6(2) such that for any poset A4,
if XeZ(4) then |X|<d(Z).

In what follows our aim is to prove that for such Z-s those categories for which
we have proved [f: U—Bepi « CL;(f(4))=B] (see Theorem 2) are co-well-
powered.

Let 3(Z) denote the ordinal dimension of the type X, i.e. the least regular ordi-
nal é such that |§|<|r(o)| for any SeZ.

Denote by 9:=6(Z, Z) the least regular ordinal greater than max{6(Z),
8(2)}.

Notice that for any poset 4, if ae4 and YS A4, then accl (Y) implies that
there is an Y& Y with |Y’'|<d(Z) and aecl (Y’). In the following we will sup-
pose immodiately |¥|<d(Z) when writing accl (Y).

In the following let AeOb1ZP Alg;, XS A and aq,b,c,deA.

Lemma 25. Suppose that Z is bounded by 6(Z) and let §(Z, Z) be as above.
Then a-2+b implies a2X.b for some B<d6(Z, Z).

Proof. Let a->~b. Then a>*.b for some a.
If a=0 then the statement is true by J§=0.

Let =0 and suppose that for every f-a the statement holds. a2%.b means
that b=,1%(b), 1"(a)=,a for some termfunction symbol ¢ and some b, acdom "
and that for any i<r(r), b(i)ecl (¥Y’) for some Y'S 4, card (Y)<d&(Z), and for

any y€Y' there is an ordinal a,<a such that a(r)——» y. By the induction hy-
pothes1s for any i<r(t) and for any yeY! there is an ordinal B,<d(Z, Z) with
a(l)-——»y Let g:=Z{(B,+1): yeY’, i<r(z)}. By the definition of 5(Z, Z) we
have B<&(Z, Z) and by Definition 1, a2X.5. O

Definition 26. For every a,b¢A such that a—=~b we define R, , as follows.
Let « be the least ordinal for which a-=X.p.
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If =0 then @a—>-b means that there is an xeX with b=,x=,a. Letus
fix one xcX with this property Then R, ,:={{x}, 0).

If >0 then a-2%.b means that b=,r%(b) and r¥(a)=a for some term-
function symbol ¢ and some b,acA™® and that for each i<r(), b(i)ecl(Y?)

for some Y'C A and for any yeY'’ there is an ordinal a,<a with a(i)——+a”x y.
Let us fix #,a, b and the Y’-s for any i<r(¢). Then

Ropi={t, {Ra,y: YEY Dicry> 2.
Lemma 27. If aib, c—X»d, and R, ,=R., then d=,a (and b=,0).

Proof. By transfinit induction on « of R, ;.

Let R, =R, 4=({x}, 0). Then b=,x=,a and d=,x=,¢, hence d=,x=,aq,
ie. d=,a.

Let R, ,=R. =, {Rai.y: YEY Picry, ®) where a=>0. Then b=,1%(b),
1"(a)=,a, d=,1%(d) and 1*(c)=,c for some a,b,c and deA"™ and for any
i<r(t), b(i)€cl(¥Y’) and d(i)ecl (Z) for some Y, Z'CA and for any yeY’
there is a z€Z' such that R, ,—Rc(,) . (and since R, =R, , of course for any
z¢Z' there is a yeY' with R .=R.q,). By the induction hypothesis this
implies z=,a(i) for any zeZ' Since d(z)Ecl (ZH, d(i)=,a(i). Then by the
monotonity of ¢, d=,t*(d)=,t"(a)=,4q, ie. d=4a. O

Let Term (Z) denote the class of all termfunction symbols of type Z. It is easy
to show that Term (Z) is a set. Let y(X, Z) be the least regular ordinal greater
than (max {|X|, |Term (2)|, 6(Z, Z)})**2.

Let H, be the set of all R, ,-s of form ({x},0). Then |Hy|=|X|<y(X, Z).

Let O<a<d(Z, Z). Then we define H, to be the set of all R, ,-s of form
<t, <{Ra(l),y ye Y }>t<r(t), (Z> Then 'Ha,< |Term (Z)l KU {Hﬂ ﬂ<a})6(2) 6(E)I<
<y(X, Z).

By Lemma 25, if a—-»b then there is an ordinal f<d(Z, Z) suchthat R, ,€ Hy.
By the definition of y(X, Z), |U{H,: ﬂ<6(2 Z)} <y (X, Z).

By Lemma 26, we know that for any a,b¢CL;(X), if R, ,=R, , then a=b.
Hence we can immediately see that we have proved

Corollary 28. |CL; (X)|<y(X, Z).

Corollary 29. 1) Let Z be bounded. Then for any similarity type ~, 1 ZP Alg,
is co-well-powered.

2) Suppose that Z is bounded and ZZ 4. Then for any type 2, 1P Alg;(Z)
and also L P Algs ; are co-well-powered. If X contains only 0- or l-ary operation
symbols then 1 Alg;(Z) is co-well-powered. O

Next we prove that in Corollary 29 the condition that Z is bounded cannot be
omitted.

Proposition 30. Let 2 be a signature with at least one f¢ZX such that
r(f)=0. Then thereis a subset system ZC A suchthatboth | ZP Algzand 1 Z Alg;
are not co-well-powered.
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Proof. For simplicity we assume Z={f} with r(f)=1. It is obvious how to
extend the present proof for the general case (in the formulation of the present
Proposition).

We define Z as follows. For every poset (4, =,) let Z({(4, =,)={Y: YE 4
and (3a€OrdXa, €)=(Y, =,). Clearly, Z is a subset system and ZE 4.

@ denotes the set of natural numbers and Idg denotes the identity function on S,
for any set S.

Let W:={(w, 1,, =4, f*) such that 1,=0, =,={0}XwUIld, and
fA=Id,. Then AcOd L Z Alg;.

Fig. 3 Fig. 4

Let x€Ord be arbitrary but such that x=w. Let B:=(x+1, 15, =z, f?)
such that 1,=0, =s=¢N(BXB)UIdp and fE=f4U{{a,a+1): @=a+1eB}U
U{(x, 2)}. E.g. if w+1¢B then fB(w)=w+1 (see Fig. 4). Now BcOb_|Z Alg;
since f®: (B, =p)~(B, =p) is an endomorphism that is f#: B—B is monotonic.

Let A:=1d,, i.e. h: A—~B is the identical embedding of w into »+1. Then

h: A-BecMor 1 Z Alg; since h is a bottom-preserving homomorphism and 4
is Z-continuous. Since | Z Alg;S 1 ZP Alg; we have that h: % ~BcMor | ZP Algy,
too. :

ASSERTION 6. h: A—~B is an epiin L ZP Alg; as well as in | Z Alg;.

Proof. Let X=h(A4). Then X=wCB. Let yeB. Assume ycCl;(X). If
y€X then y+1¢XSCL;(X) obviously. Assume y¢ X. Then y=w, and fB(y)=
=y+1. Hence y+1e¢CL;(X) by Corollary 13. Let «€¢B be a limit ordinal and
assume a SCL;(X). Then by a=sup o and o€ Z(B) we conclude a€cl (CL; (X))

CCL;(X) by Corollary 15. Thusﬂi)y induction we proved B=x+1=CL;(X).
Hence by Lemma 7 we have checked that / is anepi bothin | ZP Alg; and in
1ZAlg;. O

By Assertion 6 and the definition of 8B we proved that U is such that (¥x€Ord)-
-(3B)(I U~ B) |B|=|x|, which means that the epimorphic images of W are not iso-
morphic to any subset of Ob1ZP Alg;. Thus | ZP Alg; is not co-well-powered.
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Since & is an epi in 1 Z Alg; as well, we have that 1 Z Alg; is not co-well-powered
either. O

Problem 31. Is | ZP Alg; co-well-powered for some wunbounded Z? More
precisely, is it true that for all Z there is some unbounded Z such that ZP Algy
is co-well-powered?

INSTITUT FUR INFORMATIK
UNIVERSITAT STUTTGART
7 STUTTGART i1 AZENBERGSTR. 12.

References

[1] ApAmek, J., E. NeLsoN, J. REITERMAN, Tree construction of free continuous algebras,
J. Comput. System Sci., v. 24, 1982, pp. 114—146.

[2]1 ANDREKA, H., I. NEMETI, Generalization of the concept of variety and quasivariety to partial
algebras through category theory, Dissertationes Mathematicae (Rozprawy Math.) No
204, Polish Scientific Publishers, Warszawa, 1981, p. 101.

[3] BURMEISTER, P., Partial algebras — Survey of a unifying approach towards a two-valued
model theory for partial algebras, Algebra Universalis, To appear.

[4) Guessarian, 1., Algebraic semantics, Lecture Notes in Computer Science, v. 99, Springer-
Verlag, Berlin, 1981, p. 158.

[5] LenMANN, D., A. PaszTor, Epis need not be dense, Theoret. Comput. Sci., v. 17, 1982, pp.
151—161.

[6] MALcev, A. L, Algebraic systems, Springer-Verlag, Berlin, 1973,

[71 MESEGUER, J., Completions, Factorizations and Colimits for w-Posets, Colloq. Math. Soc.
J. Bolyai XXVI.

[8] MESEGUER, J., A Birkhoff-like theorem for algebraic classes of interpretations of program
schemes, Formalization of Programming Concepts (Proc. Peniscola, Spain, 1981), Lecture
Notes in Computer Science v. 107, Springer-Verlag, Berlin, 1981.

[9] NELson, E., Free Z-continuous algebras, Proc., Workshop on Continuous Lattices. LNM 871,
1981, pp. 315—334. .

[10] Németi, I., From hereditary classes to varieties in abstract model theory and partial alge-
bras, Beitrdge Algebra Geom., v. 7, 1978, pp. 69—78.

[11] Németr, 1., I. SaIN, Cone-implicational subcategories and some Birkhoff-type theorems,
Contributions to Universal Algebra (Proc. Coll. Esztergom, 1977), Colloq. Math. Soc. J.
Bolyai, Vol 29, North-Holland, 1981, pp. 535—578.

[12] PaszTOR, A., The epis of POS(Z), Comment. Math. Univ. Carolin., v. 23, 1982, pp. 285—299.

[13] THATCHER, J. W., E. G. WAGNER, J. B. WRIGHT, Notes on algebraic fundamentals for theo-
retical computer science, Foundations of Computer Science 111. Part 2: Languages, Logic,
Semantics, J. W. pDEBAKKER ed. J. VAN LEEUWEN ed, Mathematical Centre Tract, v. 109, pp.
83—164.

{ Received Dec. 3, 1981 )



