On v;-products of automata

By P. DOomOs1* and B. IMREH**

In this paper we introduce a family of compositions and investigate it from
the point of view of isomorphic completeness. Using results concerning well-known
types of compositions, we give necessary and sufficient conditions for a system
of automata to be isomorphically complete with respect to these products.

By an automaton we mean a finite automaton without output. For any non-
void set X let us denote by X* the free monoid generated by X. Furthermore,
denote by X* the free semigroup generated by X. Considering an automaton
A=(X, 4,9), the transition function & can be extended to AXX*—~A4 in the
following way: &(a, 2)=a and &(a, p)=56(8(a, p’), x) for any acd, p=p’x€X*,
where A denotes the empty word of X*. Further on we shall use the notation ap,
for 8(a, p). If there is no danger of confusion then we omit the index A in ap,.
Let M be an arbitrary nonvoid set. Denote by P(M) the set of all subsets of M.

Let A,=(X,, 4,,8,) (t=0, ...,n—1) be a system of automata. Moreover let
X be a finite nonvoid set, ¢ a mapping of Ay X ... X A,_; XX into X, X ... X X,,_; and
y a mapping of {0, ...,n—1} into P({0, ..., n—1}) such that ¢ can be given in
the form

@(agy oes Ay X) = (@o(Aos ey uogs %)y ooy Ppo1(dygy ooy Aoy, X))
where each ¢, (0=t=n-1) is independent of states, which have indices not con-
tained in the set y(¢). We say that A=(X, "]_IIA,,é) is a v;-product of A,
(t=0, ...,n—1) with respect to X, ¢ and y if t];zt)léi (z=0, ...,n—1) and for
any (ao,...,a,,_l)Gt"]—ZlA, and x¢X
8((ag, - ), x) =

= (60(‘103 (Po(am vy Gp_1, X)), ey 6"_1(0"_1, (pn—l(aOa ceey A1, x)))

n—1
For this product we use the notation J] A,(X, ¢, 7).
t=0

It is clear that the v,-product is the same as the quasi-direct product. There-
fore, we consider the case i=1 only. Furthermore, it is interesting to note that
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if n=2,i=1,y(0)={1},y(1)={0} then we obtain the cross product (see [2]) as
a spec1al case of the v, -product. Finally, observe that the v -product is rearrangable,

i.e. changing the order of components of a v;-product ]] A, (X, ¢, y) and choosing

suitable mappings ¢’,y" we get such a v;-product Wthh is isomorphic to the
original one.

Let X be a system of automata. X is called isomorphically complete with re-
spect to the v;-product if any automaton can be embedded isomorphically into
a v;-product of automata from Z. Furthermore, X is called a minimal isomorphically
complete system if X is isomorphically complete and for arbitrary A¢Z the system
IN\({A} is not isomorphically complete.

For any natural number n=1 denote by D,=(X,, {1, ...,n}, d,) the auto-
maton for which X,={x,: 1=r,s=n} and

s if t=r,

8,(t, x,5) = {

for any ¢€{l,...,n} and x€X,.
The following theorem holds for the v;-products if i=1.

t otherwise

Theorem 1. A system X of automata is isomorphically complete with respect
to the v;-product (i=1) if and only if for any natural number n=z=1, there exists
an automaton A€ZX such that D, can be embedded isomorphically into a v;-
product of A with a single factor.

Proof. Theorem 1 can be proved in a similar way as the corresponding state-
ment for the o;-products in [4]. The sufficiency follows from Theorem 2 in [4],
but it is not difficult to see directly. In order to prove the necessity we show that
for any n=1 if D, can be embedded isomorphically into a v;-product of automata
from X then there exists an automaton A€ZX such that D,,, can be embedded

n

it1
the largest integer less than or equal to V.
If n=1 then the statement is obvious. Now let n>1 and assume that D,

isomorphically into a v,-product of A with a single factor, where [ +VrT_l denotes

k
can be embedded isomorphically “into a v-product B= J[ A,(X,, ¢, y) of auto-
=0

mata A,=(X/, A,,6)€X (t=0, ..., k). Let us denote by u such an isomorphism
and for any t¢{l, ..., n} denote by (ay, ..., a,) the image of t under u. We dis-
tinguish two cases depending on the sets y(¢) (+=0,...,k). If y(1)=0 for all
tc{0, ..., k} then B is a quasi-direct product. Since the quasi-direct product can
be considered as a special oz,~+1-product we have that D, can be embedded iso-

morphically into an «;,,-product ]] A,(X,, ¢) of automata from X. From this,

by the proof of Theorem 2 in [4], 1t follows that there exists an automaton A¢ZX
such that D[”, can be embedded isomorphically into an «;,-product of A with

|

a single factor. Since an o;.,-product with a single factor is a v;-product with a
single factor we have proved the statement for this case.



On v,-products of automata 151

Now assume that y(f)#0 for some t€{0, ..., k}. By the rearrangability of
v-products, without loss of generality we may suppose that y(0)=0. We show
that D, can be embedded isomorphically into a v;.,-product of automata from
{Ao, ..., A} with at most i+1 factors. If k=i then we are ready. Assume that
k=i. We may suppose that there exist natural numbers rss (1=r,s=n) such
that a,,7#a,, since otherwise D, can be embedded isomorphically into a v;-
product of automata from {A,, ..., A} with k factors. Let y(0)={/jy, ..., Ju}-
By the definition of the v;-product, we have that w=i and

0@y, s A, X)=04(a;j,, .--» a;,,, ¥) for any (a,, ..., a)€ ]]A and x€X,.

We prove that the elements (ay, j,, ..., a;;) (=1, ...,n) are pairwise different.
 Indeed, assume that a,,=a,, and a,,,—a,,, (t =, . ,]w) for some u#v(1=u, v<n)
Then @o(d,j,, ---s Quj> X) =Po(@ojys --os Auj,» X) for any x€X,. Therefore, in the
v;-product B the automaton A, obtams the same input signal in the states a,
and a, for any x€X,. Since p is isomorphism, u>v and a,=a,, thus the
automaton A, goes from the state a,, into the state a,, and from the state a,y
it goes into the state a,, for any x, (¢=1, ..., n). This implies g,,=a,, (t =1, ..., n)
which contradicts our assumption &,,7dy. Therefore, we have that the elements
(@0, ayjy> - arj,) (t=1,...,n) are pairwise different. Now take the following
v,-+1-product C= AOXA“X XA; (X,,¥,9) where for any 1€{0,...,w} $(t)=
={0,1,...,w} and

©old,g, oo r > x) if =0 and there exists 1=r=n
such that by =a,, b;=a,;, (=1,..,w),

©; (s -y ap, x) if 10 and there exists 1=r=n
such that by =a,,, by;=a,;, (s=1,...,w),

otherwise arbitrary input signal from X; if
t=0 and from X; if =0,

lpt(bO’ AR bws x) =

for all (b, ..., b)€EAgXA;,X...XA4;, and x€X,. It is notdifficult to see that the
correspondence 't t—~(ap, G4j;, -..» 4;,) (=1, ...,n) is an isomorphism of D,
into C. Therefore, we have that D, can be embedded isomorphically into a v;,,-
product of automata from {A,, ..., A,} with at most i+1 factors. But a v; .-
product with at most i+1 factors is an a;,;-product and thus, in a similar way
as in the first case, we obtain that D,,,  can be embedded isomorphically into

a vi-product of A, with a single factor for some O=¢=k. This ends the proof of
Theorem 1.

Observe that D,, can be embedded isomorphically into a v,-product of D,
with a single factor for any m=n. Using this fact, by Theorem 1, we get the following

CoroLLARY. There exists no system of automata which is isomorphically
complete with respect to the v;-product (=1) and minimal.

In [1] F. Gécseg has introduced the concepts of the generalized «;-product and
the simulation and characterized the isomorphically and homomorphically complete
systems with respect to them. Further on we shall introduce the concept of the gene-
ralized v;-product and investigate the isomorphically complete systems with respect
to this product and the simulation.
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We say that an automaton A=(X, A, 6) isomorphically simulates B=(Y, B, &)
if there exist one-to-one mappings p:B—~A and 1: Y—X* such that p(6'(, y))=
=6(u(b), 1(»)) for any b€B and y€Y. The following obvious observation holds
for the isomorphic simulation.

Lemma 1. If A can be simulated isomorphically by B and B can be simulated
isomorphically by C then C isomorphically simulates A.

Let A,=(X,, 4,,8) (t=0,...,n—1) be a system of automata. Moreover let
X be a finite nonvoid set, ¢ a mapping of AyX...XA4,_1 XX into Xg" X... XX
and y a mapping of {0, ...,n—1} into P({0, ..., n—1}) such that ¢ can be given
in the form

(g ooy @y, X)=(0o (@0, oo @y_15 X); ooy P (@ps -y Gp1, X))
where each ¢,(0=t=n-1) is independent of states, which have indices not contain-
ed in the set y(r). We say that A:[X, ﬁl A,, 6) is a generalized v;-product of
A, (t=0,..., n—1) with respect to X, ¢ and }t’zlof ly(¢)|=i (¢t =0, ...,n—1) and for any
@@ ---» a"_l)éth A, and x€X 6((ap, --., @y-1), X)=(66(d0> @y, -..s Gy_y, X)); ...

s 6n—l(an—1’ (pn—l(ao’ <o @y, X)))

A system X of automata is called isomorphically S-complete with respect to the
generalized v;-product if any automaton can be simulated isomorphically by a gene-
ralized v;-product of automata from ZX.

Observe that in the definitions of the simulation and the generalized v;-product
all input words are different from the empty word. Therefore, further on, by an
input word we mean a nonempty word. Also the following notation will be used. -
If k,s are integers and ¢ is a natural number then k+s(mod ¢) denotes the least
nonnegative residue of k+s modulo z. . Furthermore, for any n=1 denote by
T,=(T,, {0, ...,n—1}, 8,) the automaton for which T, is the set of all transforma-
tions of {0,...,n—1} and §,(k,t)=t(k) for any k€{0,..,n—1} and t€T,.

Lemma 2. If T, can be simulated isomorphically by a generalized «4-product
k
IT A(X, ¢) then T, can be simulated isomorphically by A; for some j€{0, ..., k}.
t=90

Proof. Lemma 2 follows from the proof of Theorem 1 in [1]. Now we give
another proof. Obviously it is enough to prove the statement for the generalized
ay-product of two factors. Indeed, assume that T, can be simulated isomorphically
by the generalized oy-product AXB(X, ¢) under p and 1. Let us denote by
(a,, b)) the image of ¢ under pu (t=0,...,n—1). If g,=a, for all te{l,...,n—1}
then the elements b, (t =0, ..., n—1) are pairwise different. Now define the mapping
7’ in the following way: for any 1, T, t'(t)=¢i(dy, y1)-.-01(ay, y5) if Tt)=y1...ps.
Let us denote by u’ the mapping determined by up'(¢)=b, (¢=0,...,n—1). It is
not difficult to see that B isomorphically simulates T, under p’ and 1’. Now
assume that there exist natural numbers r##s (0=r, s=n-1) such that a,>a;.
In this case we show that the states a, (t=0,...,n—1) are pairwise different.
Suppose that a,=a, for some u#v (0=u,v=n—1). Let us denote by ¢;; the
element of T, for which #,;(i))=j and f;(k)=k if k=i (k=0,1,...,n—1) for all
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i,j (0=i,j=n—1). Now let w¢c{0,...,n—1} be arbitrary. Then ¢, (#)=w and
t.(v)=v. By isomorphic simulation, (a,,b,)t(¢,.)=(a.,b,) and (a,,b,)t(t,.)=
=(a,, b,). Let 1(t,,)=Y1-.-Vm- Then a,@4(y1)...@o(Ym)=a,, and a,@o(y1)...0(ym) =
=aq,. Therefore, by a,=a,, we obtain a,=a,. Since w was arbitrary we got
that a,=a, for all t€{0,...,n—1} which contradicts our assumption a,#a,.
Now we have that the states a, (t=0,...,n—1) are pairwise different. In this
case it is not difficult to see that A isomorphically simulates T, under x” and 7’
where p'(ty=a, (¢=0, ...,n—1) and forany 2,€T, 7' (t)=0¢(y1)...0o(ys) if 7(t,)=
=Y1- Vs

Lemma 3. If T, can be simulated isomorphically by a generalized v,-product
]] A,(X, ¢, y) then T, can be simulated by a generalized v,-product ]] B,(X, ¢’, v")
where r=k,B,c{A,, ..., A;} and y(1)={t—1 (mod (r+1))} for any 16{0 , T}

Proof. We proceed by induction on the number of components of the generalized
v,-product. If k=0 then the statement is obvious. Now let k>0 and assume that
the statement is valid for any / less than k. Moreover, suppose that T, can be

simulated isomorphically by a generalized v;-product ]] A,(X, @, 7). Define the

binary relation ¢ on the set {0, ..., k} as follows: lQ_] 1f and only if i=j or
y(@)={j} or y(j)={i} for any i,j€{0, ..., k}. Denote by ¢ the transitive closure
of o. Then § is an equivalence relation on {0, ..., k}. Depending on @, we shall
distinguish three cases.

First assume that the partition induced by ¢ has at least two blocks. Let us
denote by §(j) the block containing j. By the rearrangability of the v;-product,
we may assume that 9(0)={0, ..., m—1}. From this, using the fact that (J y(s)&

seé(t)
€ 6(¢) holds for any 1¢{0, ..., k—1}, we obtain that ]] A, (X, @, y) is isomorphic

to a quasi-direct product of two automata C; and. C2 where C, is a generalized
v-product of A,,...,A,_, and C, is a generalized v,-product of A, ..., A,.
Therefore, by Lemma 1, Lemma 2 and our induction hypothesis, we get that the
statement is valid.

Now let us suppose that the partition induced by ¢ has one block only and

k
there exists an u€{0, ..., k} with u¢ U y(¢). By the rearrangability of v;-product,

we may suppose that u=k. Then observe that ]] A(X, ¢,y) is isomorphic to

a generalized oy-product of two automata C, and Ak where C, is a generalized
v;-product of A,, ..., A,_,. From this, by Lemma 1, Lemma 2 and induction
hypothesis, the statement follows.

Finally, assume that the partition induced by ¢ has one block only and U (@)=

={0, ..., k}. Consider the mapping f determined as follows: for any te{O }
f)y=j lf and only if j€y(r). By the definition of § and our assumption on o,
it can be seen that f is a cyclic permutation of the set {0, ..., k}. Now rearrange
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k K

ITAX, ¢,y) in the form [] Af(ko-)t—l(X, ¢’, 7). Then, by the rearrangability

t=0 =0

of v;-product and Lemma 1, we obtain that T, can be simulated isomorphically
K

by [T Af(ls;t—l(X, ¢’,7"). On the other hand, it is not difficult to see that
=0 .

k
IT Af&;,-l(X, ¢’, 7)) satisfies the condition of our statement. This ends the proof of
t=0
Lemma 3.
Now we are ready to study the generalized v,-product. We have

Theorem 2. A system X of automata is isomorphically S-complete with
respect to the generalized v,-product if and only if one of the following three con-
ditions is satisfied by X: :

(1) for any natural number n=1 there exists an automaton in X having
n different states q, (t— n—1) and input words g, (¢t =0, ...,n—1) such that
aq:= at+1(modn) (t_ _1)

(2) Z contains an automaton which has two different states a, b and mput
words p, g, r such that ap=br=a and aq=bp=b,

(3) there exists an automaton in X which has two different states a,b and
input words p, g, r such that ap=bp, apg=bpg=a and ar=b.

Proof. In order to prove the sufficiency of conditions (1)—(3) we use the follow-
ing observation.

For any automaton A=(X, 4,d), A can be simulated isomorphically by
T, with nz=max (2, |4[). Therefore, by Lemma 1, if for any n=2 the automaton
T, can be simulated isomorphically by a generalized v,-product of automata from
XY then X isisomorphically S-complete with respect to the generalized v,-product.
On the other hand, take the following elements 1,,?, and ¢; of T,

t,(k) = k+1(mod n) (k=0, ...,n—1),
100 =1, (1) =0, t,(k) =k (k=2,...,n—1),
10 =t1,(1) =0 and t,(k) =k (k=2,...,n—1).

It can be proved (see [3]) that the mappings ¢, ¢,, ¢; generate the complete trans-
formation semigroup over the set {0,...,n—1}. Therefore, the automaton T,
can be simulated isomorphically by the automaton T,=({#, t2, t:}, {0, ..., n—1}, 5;)
where 8,=0,l(,..,n-1)x{ts, 12,15y FTOM this we obtain that if for any n>2 the
automaton T, can be simulated isomorphically by a generalized v,-product of auto-
mata from E then Z is isomorphically S-complete with respect to the generalized
v,-product.

First suppose that X satisfies (1). Then it is not difficult to see that for any
automaton A there exists an automaton B€ X such that A can be simulated
isomorphically by a generalized v,-product of B with a single factor.

Now assume that X satisfies (2) by A€ 2. Let n=5 be arbitrary and take the
generalized v,-product A"(X, ¢, y) where

X={u:1=i<n}U
Ufp: 0=si<njU{x: l<i<njU{y: 1=i<n—1}U{o, x, y, z, w}
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and the mappings y and ¢ are defined in the following way: forany 7€ {0, ..., n—1}
y(¢) = t—1(mod n),
g if t=i,
@i(a, u) = P, @b, ) = {p otherwise (i=1,...,n—1),

r- if t=1i, r if 0<t=<i,

ouan) = o/b.0) =]

p otherwise, p otherwise (i=0,...,n—1),

r if i=tr=n-1,
¢:(a,x) = p, @b, x) = {p otherwise i=2...,n=1),
eoa, y)=p, @b, y) =4,
r if 1=st<i, i#2,
¢:(a, ) =p, @b, y)= {p otherwise (i=1,...,n—2 and t=1)
r if 1=t=n-2,
(9, 0) = P, V(p'(b’ v) = {p otherwise,
@o(a,x) =p, @o(b,x)=r, @a,x)=¢/b,x)=p (=1,
@o(a,2) =p, @o(b,2)=r, ¢1(@a,2)=7r, @i(b,2)=p,
02(a,2) = @o(b, 2) =p, ¢, (a,2)=p, ¢(b2)=71 (t>2),
@o(a, W) =g, @o(b,w)=p, @a,w)=p, @ bw)y=r (t=1),
00(a, ) =g, @o(b, ) =0, (a,y)=,(b,y)=p (=1).
Take the mappings
0 —~(b,a,...,a),
[
n-1-(,a,...,b),
L~ Gyoa,s
T by = Us oo Uy 1 Y1ZUy oo Uy YXolg ... Uy _q0g XUy ... Upy_1 VX5,

t3 - u3 eae u,,._lylzul e u,,_lw,
where

G1= Uy ... Up—oUp_1Uy ... Uy 10Y,
Gy = Uy ... Up—3UpaVgly ... Up_2Xp—1YVp—2Up-1Ds
G = Uy ... Up_ gV, 3V Xp_1 XUy 1Yy . Up 3 Xy olUp—1 Vn—3Xp—1Up=olpn—1)s
G = Uy .. Up—j—1Up—iVoXp—itoln—i4g e Upo1 XXy j1aUpy—iro ... Up—1
Up oo Uy i Xp—jrUp—ig2 - un—lynv—ixn—i+2un—i+1 R
if 4=i<n—1 and

. qn—l = le2u4 s un_lxx,1u3 P u"_lvox3u2 “ee un_lyxz-
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Now we show that T, can be simulated isomorphically by A"(X, ¢,7) under
u and t. The validity of the equations  u(6,(J, 1)) = a(u(/), (1)) (1=2,3)
(j=0, ...,n—1) can be checked by a simple computation.

Introduce the following notation

b if j=t, j=n—i—1 or t=1, j>n—i-1
ufd = or t=n—i—-1, t=>}],
a otherwise,

l§i<n—2, 0=t=n—1 and 0=j=n—1. It can be proved by induction on i that
p(N G qi=@, ..., u)_y) for any j€{0,..,n—1} and 1=i<n—2. On the
other hand (ul3- 3) 7}t 1) Y, A 1—/1(]+1 (mod n)) for any j€{0,...,n—1}
Therefore, p(6,(j, )= u( +1(m0dn))—(u‘" RPN 7Yt )T Y e N
-—6A..(p( 7), 1(ty)) for any j€{0,...,n—1}. This ends the proof of the sufficiency
of condition (2).

Now suppose that X satisfies (3) by A<Z. Then there exist states a=b of
A and input words p, q,r such that ap=bp, apg=bpg=a and ar=b>b. Observe
that it is enough to prove the sufficiency of (3) for the case a¢ {ap, bp}. Indeed,
assume that ac¢ {ap, bp}. We distinguish two cases. If be{ap, bp} then p is a per-
mutation of the set {g, b} and thus the automaton A has the property required
in (2). If bé¢{ap, bp} then introducing the notations a'=b, b'=a, p’=p, q’'=¢r,
r'=pq we obtain that &' =b’, a'p’=b’p’, a'p'q=b'p’q¢=d, a'r'=b" and a'¢
¢{a’p’, b’p’}. Therefore, without loss of generality we may assume that a ¢ {ap, bp}.
Now let. n=6 be arbitrary and take the generalized v,-product A"(X, ¢, y) where
X={x,, ..., xs} and the mappings y, ¢ are defined in the following way: for any

te{0, ....n—1}
y(?) = {—1(mod n)}
o.(a, x)) =pq, @b, x))=r,
p if t=1, {p if t=2,
¢i(a, x) = {Pqp otherwise, 710 %) = rp otherwise,
@.(ap, x3) = ¢, ¢,(bp, X3) = qr,
pqg if t=1,
¢(a %) = p,  ¢u(b, xg) = { otherwise,
qp ]f b # ap’ r if t = 1,
o, x5) = {p if b=ap, @@PX) =4 ¢(bpx)= {qr i o1,
b {q if t=2,
q’t(aa xﬁ) =D (pt( ’ xs) - P otherwise,
{pq if b ap, b {pq if b= ap,
:(ap, xg) = o,(b, x;) otherwise, (P_'( P Xo) = ¢.(b, x¢) otherwise,
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P if bs#ap, t=23,

_Jap if b#ap, t#3,

¢:(a, x) = rp if b=ap, t=3,
grp if b=ap, t#3

r if t=2,

oan ) =g ebpr={ o

p if 1=3 gp if 1=3,

ou(a, %) = | > abx={p if 1=4
' pgp otherwise, rp otherwise,
qrp if bs#ap, t=4,
_ipr if bsxap, t=35,
P X0 =165, x) if b= ap,
an arbitrary input word otherwise,
(qrp if b=ap, t=4,
_lp if b=ap, t=5,
PP %) =106, %) if b= ap,
an arbitrary input word otherwise,

and in all other cases ¢, is defined arbitrarily. Take the following mappings

0 —-(,a,..,a L~ X,
uro T2ty — XgX5Xg X Xg X X1 %,
n—1-(a,..,a,b) ty = XpXa X372,

Distinguishing the cases b=ap and bs#ap it can be seen easily that
p(6,()), 1)=08s(u(), ©(1;)) for any j€{0,...,n—1} and [€{1,2,3} which yields
the sufficiency of (3). '

In order to prove the necessity assume that none of conditions (1)—(3) is
satisfied by X~ and X is isomorphically S-complete with respect to the generalized
v;-product. Since Z does not satisfy (1) there exists a natural number m=>2 such
that Z does not contain an automaton having the property required in (1) for any

m
n=m. Let n>m(2) be an arbitrary fixed natural number. By the assumption

on the isomorphic S-completeness of X, there exists a generalized v,-product
k=1

B= ]I A(X, ¢,y) of automata from X such that T, can be simulated isomor-
t

=0
phically by B under suitable ¢ and 7. By Lemma 3, we may suppose that y(t)=
={t—1(mod k)} (¢t=0,...,k—1). Let us denote by (g, ...,a,-;) the image
of I under p for any [/€{0,...,n—1}. Consider an arbitrary nonvoid subset
k—1
r={j,...,j,} of the set {0,...,k—1}. Define a relation n, on [] A, in the
. ’ . t=0
following way: (do, ..., @—)7r(o, ..., b2y if -and only if @ _(m;ymoaty=

3 Acta Cybernetica VI/2
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—b =@+ umodiy =1, ..., @), (s=1, ...,r) for any (g, ..., @_1), (bg, --.. by _,)€
k-1
€ ]] A,. Ttis clear that r is an equivalence relation on [ A4,. Now let us de-

1=0
note by B the set {(ay, ..., di_1): 0=I/=n—1} and let a,=n;N(BXB).
We shall show that (a,, ..., @._)@r (b, ..., by_,) implies (g, .. > G i)y

(by, ..., by_)t(t) for any teT, and (ay, ..., a_1), (bg, -.-s Dy 1)6]] A,, where

I’'={j.+t()|(mod k): 1 =s=r}. Indeed, assume that (a,, ..., a;_,) nr(bo, ey bi_1)
and let t€T, be arbitrary. Since T, can be simulated isomorphlcally by B there
exist t, t;, ;€ 7T, such that

@, vy A1) T(DT(H) = (byy ..., DT (D) T(11),
(aOs veey ak—l)r(t)r(ll)r(tz) = (boa sees bk—l),
(by, s DT (DT (1D T(t3) = (ag, ..., Ax-1)

Let t(t)=x;..xj, t(t})=X;41...-Xj14» T(t}=x1...y, and 1(t)=2,...z,,. Introduce
the following notatlons

9P = 0@ 1(moarys X)) (¢ =0, ..., k=1),
g = ‘Px(at—l(modk)q{rl) 2modk) - A 1—1(modry> X)) (=0, ..., k—1), 2=1=j+u),
7P = 0, (b —1imoary> X1) (=0, ..., k—1),
P = ‘Pr(bx—l(modk)‘h:—l(modk) ql(g)lt—l(modk), x) (t=0,.., k=1, @Q=l=j+u),
Pu = (pt(at—l(modk)ql(})—l(modk) ‘1§'l+)m—1(modk)’ w @=0,..,k=1),
D = (pt(ar—l(modk)ql(tl)—l(modk) q}?u:—l(modk)l’n—l(modk) <os Pi-1t—1(mod k) > »
(t=0,..,k~-1), 2=Il=v),
Fu= (pt(bt—l(modk)q{tz)—l(modk) q,(‘2+)u:—1(modk), zp) (=0,.,k=-1),
P = q,t(bt'-l(modk)qg)—l(modk) qj('z-!?ut-l(mod KT 1e—1(modk) ++- T1~1~1(mod k) > z)
(t=0,...,k=1), @=I=w).
Then, by the above equations, we have that for any #¢{0, ..., k—1}

(l) atq{}) Q}qu = btql(z) qﬁ?un
(i) aqfd ... @uPy - Pu = by,
(iii) bl ... gDl P = 4.
Now let us denote by (a, ..., af2,), (b, ..., b)) the states (ap, ..., @ _,),
(bys ---s b)) and (ag", ey q,ﬁ'll), ®8, ... “)1) the states (ag, ..., d,_1)X;...X;,
(bgy -os By )X x; (=1, .., ), respectlvely To prove our statemen‘g we show that
@, ...r @) Trlbg, ..., bpy) implies (af?, ..., a )7, (b, ..., 62) for any

0<1S], where I';= {Js+1(mod k):1=s=r}. We proceed by induction on .
@®, ...,a®pnr, (b“” . b{®,) obviously holds. Now assume that our statement
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has been proved for i—1 (1=i=j). Then from (a{~Y, ..., af"P)n,,_ (D, ...
bfi-D) it follows that

(i~1) —1) _ o
aJ;—(2)+I+| —1(mod k) ™™ bj:—(i")+l+i—1(modk) (l - 1, “ery (gl))s (S - 19 sersy _7‘).

Therefore, by the definition of ¢, ¥ we have that
qii,—(;‘)+l+i—-1(modk) = qij,—-(;")+l+|'—1(modk) (l =2,.., (34")+1), (=1,

and thus @i e /4 imedry =B 411 imoary ([ =1, ooy @) =1), 5=1, ..., 7).

Now, 1f & imoary=bPvimoary for all 1=s=r then we get that
@, ..., aP ) (b, ..., b)) and so we are ready. In the opposite case there
exists an index se{l ,r} such that @, ;ax)#bi? ) imoary. Let us denote by
f the index Js+z(mod k). Then a");éb") From this, by q(l)—q(z), it follows
that afi~ 1)¢b(' Y and afi~ 1)q(“¢b(' 1)q(l) Now let A=min (j+u—1, ™-1).
Then by af @ +,(m°dk)_bf_(g.) + imod k) (I 1,..,(~—1), we have that ¢, =

P (=1, —1) Therefore ¥y q(l),,f g% s...98%,;. Now we show
that aq,.. q“) =b g ,...q!Y,. Indeed, if h=i+u—i then we get the
required equality from ). If k=(")—1 then let us consider the sets M, (I=0, ..., k)
defined by  My={af?, b} and M,=M,_ g%, (=1, ..., k). If [M}|=1 for some
le{l, ..., h} then (l)q(l)lf q(l)lf_b(l) PrseaPy and thus a(')q(l)lf -4f =
=b{ (1)1, gy Therefore, it is enough to consider the case for which |M)|=2
for all 1e{0,....,h}. If M,=M, for some O0=g<I/=h then M,p=M, where
=4 1s-. q,+, ;- But in thrs case it can be seen easily that the automaton A,
has the property required in (2) which is a contradiction. Now consider the case for
which [My|=2 forall /€{0, ..., A} and the sets M, (=0, ..., h) are pairwise diﬁ'er-

ent. Itis not difficult to see that from (ii) and (iii) it follows that for any a, b¢ U M,
there exists an mput word p of A, with ap=b. From this, by the deﬁnltlon m,

om
has (§) pairwise different subsets of two elements which is a contradiction. There-
fore, we have proved that af?q{:,..q% =0 g c..q%,,. In this case, by
@, (n) (iii), it can be seen eas11y that the automaton A, with the states af="), b" D
has the property requlred in (3) which i 1s a contradlctlon So we get a contradlctlon
from the assumption @$, i(moar) 0Pt itmeary for some se{l, ... r}. _Therefore,
}s+z(modk)_b}s+l(modk) fOI‘ all SE{I r} and thus (a(‘) . (l) 1) nl‘ (bé‘)’ cy bl?-)-l)'
From this, by i=j we obtain that (ao, v QX1 X nrj(bo,. .,bk_l)xl...xj ie.
(@o, ..os ax_)T(@) 7 (byy ..., br_)t(t). On the other hand (a9, --.r @ _)T(2),
(by, ..., by_y)7(1)€B and thus (@5 s )T (@) T (by, ..., by_y)7(t) Which ends the
proof of the statement.

we obtain that =m’<m. Thus we got that a set with cardinality m’(<m)

Since n>m®) there exists a subset ref{o,...,k—1} such that 7ys=A4pg,
where 4 B denotes the identity relation on B. Therefore the set C={I":TC<
{0, ..., k—1}, I'sp, mr~Ag} is nonempty. Then let us denote by I'={j,.. A

such an element of C for which |I'| is maximal. Since #i.#=Ap there exist us=
#v€{0, ..., n—1} with p(u)7rpu(v). Consider the element t,€ T, defined by ¢,(u)=v,
tw=u and n()=! if 1€{0,...,n—I\{u, v}. By the isomorphic simulation,

3*
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we have that p(u)(t,)=p), p@)r(@t)=p@) and p()r(r)=u(l) if 1¢{0,...,n—1}\
\{#, v}. On the other hand u(u)7 pu(v) and thus ;(u)t(t) 7y p(v)r(t,), where
I'={j,+]x(t)|(mod k): 1=s=r}. Therefore, p@)ar u(w). It is clear that the
mapping B,:t—~t+jt(t)|(mod k) (¢=0,...,k—1) is a permutation of the set
{0, ..., k—1} and thus |[|=|I'|. By the maximality of |I'| we have that I"CTI
and thus I'=I". This means that the mapping B, fixes the set I', i.e. (=T,
where B,(I') denotes the set {f,(t):z¢I'}. On tke other hand it is not difficult to
see that B, fixes a subset M of the set {0, ..., k—1} if and only if

M = {i,i+|[t(t)|(mod k), ..., i+(f— D]z (t,)|(mod k)}

for some i€{0, 1, ..., g.c.d. (k, {t(1,)[)— 1} or M is equal to an union of such sets,
where g.c.d. (k, |‘t(t1)|) denotes the greatest common divisor of the numbers k, |t(2,)]
and f=k/g.c.d (k, [t¢(t)]). Furthermore, it is clear that the considered sets m;=
={i, i+ |1(tp)|(mod k), ..., i+ (f—1)|z(z,)|(mod k)} form a partition of {0, ..., k— 1}

'Thus assume that I'= U m;,.. Now consider the set B\ {u(u), u(v)}. Since n=3

there exists an element wE{O ., n—1} such that p(w)e B\ {u(v), u(v)}. Let us
denote by - ¢, a cyclic permutatlon from T, with #(@)=v and t,(v)=w. By the
isomorphic simulation we have that pu(u)t(t))=p() and p)r(t;)=p(w). On the
other hand pu(u)7; u(v). Therefore, u(u)t(ty) 7 p(v)r(t) where I'"={j .+ |t(t)]
(mod k): 1=s=r}. Since the mapping B,: t—~t+|t(ty)|(mod k) (¢=0,...,k—1)
is a permutation of {0, ..., k—1} we obtain that |I'|=[I""|. Now we distinguish
two cases.

First assume that I'=I". Then it is not difficult to see that u(u)7, u(/) holds
for any I¢{0, ..., n—1} which contradicts the maximality of [I].

Now assume that I's¢I’. Observe that I''= U Bum;) and  B.(my)=

=, 4 |e(ia) | (modg,c.d. Gk, [e(rpp)- L herefore, from r\=|r l and I'=#TI” it follows that
there exists an index j¢{0, ..., g.c.d. (k [t(t)])—1} with m;N\ =@ and m; &I
On the other hand p(v)nr,p(w) and thus p(v)t(t)7r- u(w)r(tl) where I'” ﬁl(F ).
By u@®rt(t)=un) and p(w)r(tl) u(w) we obtain that up(u)7,. p(w). Since
B, fixes the sets m; (i=0, ..., g.c.d. (k, |t(;)[)—1) we have that m;STI'”. Then
Jje€r’ and jer” and thus

Qi (P)+1mod k) = Frj— (PV+I(mod k) I=1,..,E)
Ay @y +imod k) = Aujmry+imoary (=1, ..., (F)).

From this it follows that je¢I' which is a contradiction. This ends the proof of the
necessity.
The next theorem holds for the generalized v;-product if i>1.

Theorem 3. A system X of automata is isomorphically S-complete with respect
to the generalized v;-product (i>1) if and only if X contains an automaton which
has two different states a,b and input words p, g such that ap=b and bg=a.

Proof. The necessity is obvious. Conversely, assume that X satisfies the con-
dition of Theorem 3 by A. Let n=3 be arbitrary and take the generalized v,-product
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AYX, »,y) where X={x,...,xs} and the mappings 7, ¢ are defined in the
following way: for any t€{0,...,n—1 .
(0 = {t, t—1(mod n)},
¢.(a, a, x;) = pq, ¢.(a, b, x;) = g, ¢,(b, a, x;) = p, .
@o(a, a, X2) = @o(b, a, x2) = p, 9o(a, b, x2) = g, ¢:1(a, a, x2) = pg, ¢1(a, b, x;) = q,

b {pq if v=a,
(pl( » Ay x2) =D (pt(ua v, xZ) - qp if v = b, (t — 2, s n—l),
pqg if v=a,

<Pr(”’”’x3)={qp if v=b, (t=0,1),

p if v=a, u=5s,
¢, (U, v, x5) =\pq if v=a, u=a,
gp if v#2a (#=2,..,n—1)
®o(a, a, X)) = @o(b, a, X)) = pg, @o(a, b, x0) = gp, @o(b, b, xy) = ¢,
{pq if v=a,
¢t(u, v, X4)_ qp if 1)=b, (t= 1,.--,”-1),
pq if v=a,
gp if v=b, (t=0,1),
g if u=v=25,
o (u,v,x) =1gqp if u=a, v=>b,
pq if v=a (=2,..,n-1),
®o(a, a, xg) = @o(b, a, Xg) = P, @o(a, b, x¢) = qp,
@1(a, a, xg) = ¢1(b, a, x¢) = pq, ¢1(a, b, x5) = g,
pqg if v=aq,
gp if v=b, (¢=2,...,n—1).

o, (u, v, x;5) = {

(1, v, Xg) = {

In the remaining cases @,(u, v, x;) is an arbitrary input word from {p, g}. Now
consider the mappings:
0 —-(,a,...,a), ty > Xy,
p: v —>(a,b,...,0q), t:ty—>xx873x,.x;,
: ty > Xg X8 3 x, X5.
n—1-(a,a,..., b)),

It is not difficult to see that the automaton T, can be simulated isomorbhically by
A"(X, ¢,7) under u and 7.
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