
On vf-products of automata 
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In this paper we introduce a family of compositions and investigate it from 
the point of view of isomorphic completeness. Using results concerning well-known 
types of compositions, we give necessary and sufficient conditions for a system 
of automata to be isomorphically complete with respect to these products. 

By an automaton we mean a finite automaton without output. For any non-
void set X let us denote by X* the free monoid generated by X. Furthermore, 
denote by X+ the free semigroup generated by X. Considering an automaton 
A=(X, A, 5), the transition function 5 can be extended to AxX* —A in the 
following way: 5(a,X)=a and 5(a, p)=S(S(a, p'), x) for any a€A,p= p'x£X*, 
where X denotes the empty word of X*. Further on we shall use the notation apA 
for S(a,p). If there is no danger of confusion then we omit the index A in apA. 
Let M be an arbitrary nonvoid set. Denote by P(M) the set of all subsets of M. 

Let A,=(Xt, A,, 5,) 0 = 0 , ...,n—1) be a system of automata. Moreover let 
A' be a finite nonvoid set, cp a mapping of A0 X ... X A„ X X into J 0 X . . . X i , - i and 
y a mapping of {0, . . . , « — 1} into _P({0, ...,n — 1}) such that cp can be given in 
the form 

cp(a0,..., la„_i, x) = (cp0(a0, i, *), •••, <Pn-i(a<>, •••> a„-i> *)) 

where each cp, ( 0 ^ / S n —1) is independent of states, which have indices not con-

tained in the set y(t). We say that A = \X, J] A,, S\ is a vrproduct of A, 
\ t = 0 ' 

(t=0, —, n — 1) with respect to X, cp and y if ( t=0 , . . . , « — 1) and for 
n-l 

any (a0,..., an_i)€ ]J A, and x£X 
i=0 

8((a0, ...,a„_1),x) = 

= (<5oOo> <Po(ao> •••, an-1, •••> <>n-i(a„-i, (Pn-i(a0, •••, an-I, *)))• 
n-l 

For this product we use the notation JJ At(X, cp, y). 
f = 0 

It is clear that the v0-product is the same as the quasi-direct product. There-
fore, we consider the case / ̂  1 only. Furthermore, it is interesting to note that 
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if n=2, /=1 , v(0) = {l}, y(l) = {0} then we obtain the cross product (see [2]) as 
a special case of the vx-product. Finally, observe that the v,-product is rearrangable, 

n—i 
i.e. changing the order of components of a v,-product JJ A,{X, (p, y) and choosing 

1=o 
suitable mappings <p', y' we get such a v rproduct which is isomorphic to the 
original one. 

Let I be a system of automata. I is called isomorphically complete with re-
spect to the v( -product if any automaton can be embedded isomorphically into 
a vj -product of automata from I. Furthermore, I is called a minimal isomorphically 
complete system if I is isomorphically complete and for arbitrary the system 
I \ { A } is not isomorphically complete. 

For any natural number n ^ l denote by D n = ( X „ , {1, ...,«}, 5n) the auto-
maton for which X„— {xrs: l i r , i S n } and 

r i if t = r, 
S„0, *„) = otherwise 

for any . . . ,«} and xrs£X„. 
The following theorem holds for the vf-products if i fe l . 

Theorem 1. A system I of automata is isomorphically complete with respect 
to the v;-product (z'^l) if and only if for any natural number n ^ 1, there exists 
an automaton such that D„ can be embedded isomorphically into a v r 
product of A with a single factor. 

Proof. Theorem 1 can be proved in. a similar way as the corresponding state-
ment for the a,-products in [4]. The sufficiency follows from Theorem 2 in [4], 
but it is not difficult to see directly. In order to prove the necessity we show that 
for any n s 1 if D„ can be embedded isomorphically into a V;-product of automata 
from I then there exists an automaton A such that D 1 + , can be embedded 

[ № 
isomorphically into a v,-product of A with a single factor, where [ / « ] denotes 

£ + 1 
the largest integer less than or equal to f n . 

If n = 1 then the statement is obvious. Now let 1 and assume that D„ 
k 

can be embedded isomorphically "into a v rproduct B = JJ A,(X„, <p, y) of auto-
<=o 

mata A , = ( X , \ A„ St)£E (t=0, ..., k). Let us denote by p. such an isomorphism 
and for any f£{l , . . . ,«} denote by (a,0 , . . . , a,k) the image of t under fi. We dis-
tinguish two cases depending on the sets y(t) ( /=0 , .. . , k). If y(t)=0 for all 
i£{0, . . . , k} then B is a quasi-direct product. Since the quasi-direct product can 
be considered as a special a,-+i-product we have that D„ can be embedded iso-

k 
morphically into an a i + 1-product JJ A,(X„, <p) of automata from I. From this, 

t= i 
by the proof of Theorem 2 in [4], it follows that there exists an automaton A£2" 
such that D j t l can be embedded isomorphically into an a i + 1-product of A with 

I ' 
a single factor. Since an a i+1-product with a single factor is a v,-product with a 
single factor we have proved the statement for this case. 
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Now assume that for some 0, ..., fc}. By the rearrangability of 
v ¡-products, without loss of generality we may suppose that We show 
that D„ can be embedded isomorphically into a v i+1-product of automata from 
{A„, .. . , Afe} with at most i + l factors. If k ^ i then we are ready. Assume that 
k>i. We may suppose that there exist natural numbers r^s (1 = r , s=n) such 
that a r 0 ^ a i 0 since otherwise D„ can be embedded isomorphically into a v;-
product of automata from {A0, . . . , A J with k factors. Let y(0) = {y'j, . . . , jw). 
By the definition of the v,-product, we have that w ^ i and 

k 
(p0(a0, ...,ak,x) = (p0(ah, ...,ajw,x) for any (a0, ...,ak)£ JJ A, and x£Xn. 

( = 0 

We prove that the elements (ctl0, 
ath'•••'a'jJ 0 = 1, . . . ,«) are pairwise different. 

Indeed, assume that auQ=avn and au,=avt(t =j\, ...,jw) for some u^v (1S«, v^n). 
Then <p0(auh, ..., aujw, x) = (p0(avJl, ...,aVJw,x) for any x£Xn. Therefore, in the 
v(-product B the automaton A0 obtains the same input signal in the states a M 
and aco for any x£X„. Since fi is isomorphism, u^v and au0=av0, thus the 
automaton A0 goes from the state aM into the state czt0 and from the state ao0 
it goes into the state av0 for any xu,(t = 1, ...,ri). This implies av0=a,0(t = 1, ...,«) 
which contradicts our assumption a r0 ^ as0. Therefore, we have that the elements 
(at0, a,h, ..., a,jj (i = l,...,n) are pairwise different. Now take the following 
v i+1-product C = A 0 X A ; 1 X . . . X A J w { x „ , \ j / > y ) where for any i£{0, ..., w} y(t) = 
= {0, 1, ..., w) and 

(p0(ar0, ..., ark, x) if / = 0 and there exists l S r ^ n 
such that b0 = ar0, bs = arJs (s = l w), 

(pJt(ar0, ..., ark, x) if t ^ 0 and there exists 1 S r ^ n 
such that b0 = ar0, bs = arJs (s = 1, . . . , w), 

otherwise arbitrary input signal from X i f 
t = 0 and from X/t if t ^ 0, . 

ip,(b0, ..., bw, x) =< 

for all (b0, ..., bH,)€A0xAj.X...XAJsv and x£X„. It is not difficult to see that the 
correspondence n': t-*(at0, atjl, ..., atJJ) (i = l , ...,n) is an isomorphism of D„ 
into C. Therefore, we have that D„ can be embedded isomorphically into a v i+1-
product of automata from {A0, ..., Ak} with at most / + 1 factors. But a v i+1-
product with at most z + l factors is an a,+1-product and thus, in a similar way 
as in the first case, we obtain that D i + 1 can be embedded isomorphically into 

1 № 
a v rproduct of A, with a single factor for some 0 ̂ t s k . This ends the proof of 
Theorem 1. 

Observe that Dm can be embedded isomorphically into a v0-product of D„ 
with a single factor for any Using this fact, by Theorem 1, we get the following 

COROLLARY. There exists no system of automata which is isomorphically 
complete with respect to the v rproduct (i s 1) and minimal. 

In [1] F, Gecseg has introduced the concepts of the generalized a,-product and 
the simulation and characterized the isomorphically and homomorphically complete 
systems with respect to them. Further on we shall introduce the concept of the gene-
ralized v rproduct and investigate the isomorphically complete systems with respect 
to this product and the simulation. 
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We say that an automaton A~(X, A, §) isomorphically simulates B=(Y,B, S') 
if there exist one-to-one mappings p:B—A and x: Y-+X+ such that p(d'(b, y))= 
=5(p(b), x(y)) for any b£B and y£Y. The following obvious observation holds 
for the isomorphic simulation. 

Lemma 1. If A can be simulated isomorphically by B and B can be simulated 
isomorphically by C then C isomorphically simulates A. 

Let A,=(X,, A,, 5,) (t=0, . . . ,« —1) be a system of automata. Moreover let 
I be a finite nonvoid set, (p a mapping of A 0X.. . X ^ - i X l into 
and y a mapping of {0, ..., w —1} into P({0, ..., n — 1}) such that cp can be given 
in the form 

where each —1) is independent* of states, which have indices not contain-

ed in the set y(i). We say that A = |A', [J A,, <51 is a generalized v¡-product of 
V ( = 0 / 

A, (i =0, . . . , n—1) with respect to X, cp and y if |y(i)|=z ( i = 0 , ..., n—1) and for any 
n — 1 

(a0, ..., a„_i)€ IJ A, and x£X S((a0, ..., an^), x)=(80(a0, cp0(a0, ..., an_lt *)), ... 
t=o 

..., ¿„-i(a„-i, (p„-i(a0, ..., «„_!, x))). 
A system I of automata is called isomorphically S-complete with respect to the 

generalized -product if any automaton can be simulated isomorphically by a gene-
ralized Vj-product of automata from I . 

Observe that in the definitions of the simulation and the generalized v;-product 
all input words are different from the empty word. Therefore, further on, by an 
input word we mean a nonempty word. Also the following notation will be used. 
If k, s are integers and / is a natural number then k+s (mod /) denotes the least 
nonnegative residue of k + 5 modulo?. Furthermore, for any ra^l denote by 
Tn—(T„, {0, ..., n — 1}, <5„) the automaton for which T„ is the set of all transforma-
tions of {0, ..., n— 1} and S„(k,t) = t(k) for any ..., rc-1} and t£Tn. 

Lemma 2. If T„ can be simulated isomorphically by a generalized a0-product 
k 

]JAt(X,(p) then T„ can be simulated isomorphically by Aj for some {0, ..., k}. 
r=o 

Proof. Lemma 2 follows from the proof of Theorem 1 in [1]. Now we give 
another proof. Obviously it is enough to prove the statement for the generalized 
a0-product of two factors. Indeed, assume that T„ can be simulated isomorphically 
by the generalized a0-product A x B ( J , <p) under p and T. Let us denote by 
(a,,b,) the image of t under p (i =0 , ..., n — 1). If a0=a, for all t£ {1, ..., n — 1} 
then the elements bt (t — 0, . . . ,« — 1) are pairwise different. Now define the mapping 
x' in the following way: for any tu£Tn x'(tu) = cp^, y\)...cp^, ys) if x(tu) = y1...ys. 
Let us denote by p' the mapping determined by p'(t)=b, (t =0 , . . . ,« —1). It is 
not difficult to see that B isomorphically simulates T„ under p' and x'. Now 
assume that there exist natural numbers r^s (0=r, s=n~ 1) such that aT^as. 
In this case we show that the states a, (t = 0 , ..., n — 1) are pairwise different. 
Suppose that au=av for some u^v (0SM ,I )S«-1) . Let us denote by ti} the 
element of T„ for which ?;//) = j and tu(k) — k if k^i (&=0, 1, ..., n — 1) for all 
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i,j Now let iv£{0, ...,«— 1} be arbitrary. Then tuw(u) — w and 
tuÁv)=v. By isomorphic simulation, (au, bu)x(tuw)=(aw, bw) and (av,bv)x(tuw) = 
=(av,bv). Let x(tuw) = y1...ym. Then au<p0(y1)...<pQ(ym)=aw and av<p0(y1)...(p0(ym) = 
=av. Therefore, by au=a„, we obtain aw=aD. Since w was arbitrary we got 
that a,=av for all {0, ..., n — 1} which contradicts our assumption ar^as. 
Now we have that the states a, 0 = 0 , . . . ,« —1) are pairwise different. In this 
case it is not difficult to see that A isomorphically simulates T„ under p.' and T' 
where n'(t)=at (t =0 , ..., n - 1 ) and for any tu6 T„ x'(tu)=<p0 OO • • • <Po 0 0 if T(í„) = 
= yi-ys-

Lemma 3. If T„ can be simulated isomorphically by a generalized vx-product 
k r 

JJAt(X, (p, y) then T„ can be simulated by a generalized v rproduct JJB,(X, cp', y') 
1=0 1=0 
where r^k, Bt<E{A0, ..., Ak} and y'(t) = {t-l (mod (r+1))} for any i€{0, ...,r}. 

Proof. We proceed by induction on the number of components of the generalized 
Vi-product. If k = 0 then the statement is obvious. Now let 0 and assume that 
the statement is valid for any / less than k. Moreover, suppose that T„ can be 

k 
simulated isomorphically by a generalized v^product JJ A,(X, (p,y). Define the 

1 = 0 

binary relation g on the set {0, ...,k} as follows: igj if and only if i=j or 
y(/) = {j} or y(j) = {;} for any {0, ..., k). Denote by q the transitive closure 
of q. Then q is an equivalence relation on {0, ..., k). Depending on q, we shall 
distinguish three cases. 

First assume that the partition induced by § has at least two blocks. Let us 
denote by q(j) the block containing j. By the rearrangability of the v.-product, 
we may assume that g(0) = {0, ..., m — 1}. From this, using the fact that | J y(s) g 

í £ Í (0 
k 

Q g(t) holds for any i€{0, ..., k— 1}, we obtain that J] A,(X, <p, y) is isomorphic 
( = 0 

to a quasi-direct product of two automata C2 and. C2 where Cj is a generalized 
Vj-product of A0, ..., Am_x and C2 is a generalized v rproduct of Am, ..., Ak. 
Therefore, by Lemma 1, Lemma 2 and our induction hypothesis, we get that the 
statement is valid. 

Now let us suppose that the partition induced by § has one block only and 
k 

there exists an «6{0, ..., k} with u$\Jy(t). By the rearrangability of v.-product, 
( = 0 

k 
we may suppose that u=k. Then observe that [J A,(X, q>, y) is isomorphic to 

( = 0 

a generalized a0-product of two automata Cx and Ak where Cx is a generalized 
Vj-product of A0, ..., Afc_1. From this, by Lemma 1, Lemma 2 and induction 
hypothesis, the statement follows. 

k 
Finally, assume that the partition induced by q has one block only and (J y(t) = 

<=o 
= {0, ..., k}. Consider the mapping / determined as follows: for any i€{0, ...,k} 

f(t)=j if and only if j£y(t)- By the definition of g and our assumption on g, 
it can be seen that / is a cyclic permutation of the set (0, ..., k}. Now rearrange 



154 P. Domosi and B. Imreh 

k k 
JJAt(X,(p,y) in the form J] Afk-,-i(X, cp', y'). Then, by the rearrangability 

1=0 <=o l0> 

of Vj-product and Lemma 1, we obtain that T„ can be simulated isomorphically 
k 

by JJAfk-c-i(X, q>', y'). On the other hand, it is not difficult to see that 
k 

J ] Ajk-t-i(X, q>\ y') satisfies the condition of our statement. This ends the proof of 

Lemma 3. 

Now we are ready to study the generalized v^product. We have 
Theorem 2. A system I of automata is isomorphically S-complete with 

respect to the generalized v rproduct if and only if one of the following three con-
ditions is satisfied by I : 

(1) for any natural number n > 1 there exists an automaton in I having 
n different states a, (t =0 , ..., n — 1) and input words q, (t = 0 , . . . , « — 1) such that 
a,qt=ai+i(modn) (*=0, . . . ,« —1), 

(2) I contains an automaton which has two different states a, b and input 
words p,q,r such that ctp=br=a and aq=bp=b, 

(3) there exists an automaton in I which has two different states a, b and 
input words p,q,r such that ap^bp, apq=bpq=a and ar=b. 

Proof. In order to prove the sufficiency of conditions (1)—(3) we use the follow-
ing observation. 

For any automaton A=(X, A, ó), A can be simulated isomorphically by 
T„ with n ^ m a x (2, |,4|). Therefore, by Lemma 1, if for any n ^ 2 the automaton 
T„ can be simulated isomorphically by a generalized Vj-product of automata from 
I then I is isomorphically ¿'-complete with respect to the generalized Vj-product. 
On the other hand, take the following elements tl312 and t3 of T„ 

t^k) = k+l (modrc) (k=0, ..., n—1), 

m = 1, í2(l) = 0, t2(k) = k (k=2, ..., n - 1 ) , 
i3(0) = i3(l) = 0 and t3(k) = k (k=2, . . . , « - l ) . 

It can be proved (see [3]) that the mappings h,t2, ts generate the complete trans-
formation semigroup over the set {0, . . . ,n — 1}. Therefore, the automaton T„ 
can be simulated isomorphically by the automaton 12, t3}, {0, ..., n — 1}, 5'n) 
where <5¿=<5n|(0 n-i}x{t1,r2,í3}- From this we obtain that if for any n ^ 2 the 
automaton T¿ can be simulated isomorphically by a generalized vrproduct of auto-
mata from I then I is isomorphically S-complete with respect to the generalized 
Vi-product. 

First suppose that I satisfies (1). Then it is not difficult to see that for any 
automaton A there exists an automaton such that A can be simulated 
isomorphically by a generalized vrproduct of B with a single factor. 

Now assume that I satisfies (2) by Ad I . Let n S 5 be arbitrary and take the 
generalized vrproduct A"{X, q>, y) where 

X = {W(: 1 S i < n} U 

U{v¡: 0 S i < n}U{x¡: 1 < i < l s i < « - l }U{y , x, y, z, w} 
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<Pt(a> yd = P, <p,(b,yd = { 

and the mappings y and <p are defined in the following way: for any {0, . . . ,« -

y(t) = l (mod n), 

cPl(a,ui) = p, (pt(b, u.) = (i=1)...;„_1); 

rr if t = i, f r if 0 < i < i, 
= otherwise, otherwise (i = 0, ..., n-1), 

fr if i S i S / l - 1 , 
V,ia,xd = P. <Pt(b,x,) = {p otherw.se ( . = 2) 

<PoO, J;) = P. <Po(&> J.) = <1, 

(r if 1 ^ t < i, i 2, 

Ip otherwise (i = 1, ..., n — 2 and / S i ) 

f r if l S i S n - 2 , 
„ , ( « , « > ) = / > , < P t ( M ) = j p o t h e r w i s e > 

<p0(a,x)=p, <p0(b, x) = r, cpt{a, x) = (p,(b, x) = p (t ^ 1), 

<p0(a, z) = p, (Po(,b, z) = r, <Pi(a, z) = r, ^ ( b , z) = p, 

<p2(a, z) = (p2(b, z) = p, <pt(a, z) = p, (p,(b, z) = r [t > 2), 

<p0(a, w) = q, <p0(b, w) = p, <p,(a, w) = p, (p,(b,w) = r (i ^ 1), 

«¡Co(a. JO = <Po(b, y) = (P,(a, y) = V,(b, y) = P (t ^ 1). 

Take the mappings 
0 - ( 6 , a, . . . , a ) , 

fi: \ 
n - 1 - (a, a, ..., b), 

^ - ft. ... 
T: ?2 - M3 ... M^^ jZMi . . . » „ - i ^ M s ... u n ^ v 0 x a u 2 . . . w„_ij>x2; 

/3 - u3... «„-jj/iZ«!... «„.xw, 
where 

ft = «J . . . M„_2t>„-XM1 ••• 

q2 = Mi... w„_3i>„_2i;o«i... H„_2;t,1_1;>„_2M„_1j', 

1i = U1 ••• un-i-lvn-iv0xn-i + 2un-i + 3 ••• un-lxxn-i + 3Un-i+2 ••• Un-1 

U1 ••• un-iXn-i + lUn-i + 2 ••• un-iyn-ixn-i + 2un-i + l ••• Un-iy 

if 4 ^ i < n — 1 and 

= ... u ^ x x ^ ... un^v^xzu2... uB^yx2. 
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Now we show that T'„ can be simulated isomorphically by A"(X, <p, y) under 
p and r. The validity of the equations p(S'„(j, td)—8A"(p(j), t(/,)) ( / = 2 , 3 ) 
(j=0, . . . ,« — 1) can be checked by a simple computation. 

Introduce the following notation 

uf = 

b if j = /, j ^ n — i — 1 or / = 1 , j>n — i — 1 
or t > n — i — 1, / > j , 

a otherwise, 

lSi '<n—2, OSi —1 and O^y'Sn—1. It can be proved by induction on i that 
f iO ' )? i - f c=(Hj?>- .« i? - i ) f o r a n y y'6{0, . . . , n - l } and l S i < n - 2 . On the 
other hand (u%~3\ ..., M}r? ))?„-2i„-i=/i(7+1 (mod n)) for any {0, ..., n-1}. 
Therefore, rfS'JU, 1 (mod«))=(M<r3 ) , . . . ,u%Z?)?.- 2?. - i = • • • - i = 
—8An(fi(j), T(ix)) for any y€{0, . . . ,« — 1}. This ends the proof of the sufficiency 
of condition (2). 

Now suppose that £ satisfies (3) by A<E I . Then there exist states a^A of 
A and input words />, <7, r such that ap^bp, apq=bpq=a and ar=b. Observe 
that it is enough to prove the sufficiency of (3) for the case a $ {ap, bp}. Indeed, 
assume that a£{ap, bp}. We distinguish two cases. If b £ {ap, bp} then p is a per-
mutation of the set {a, b} and thus the automaton A has the property required 
in (2). If b${ap, bp} then introducing the notations a'=b, b'=a, p'=p, q'=qr, 
r'=pq we obtain that a'p'^b'p', a'p'q'=b'p'q'=a', a'r'=b' and a' i 
$ {a'p', b'p'}. Therefore, without loss of generality we may assume that a $ {ap, bp}. 
Now let « ^ 6 be arbitrary and take the generalized Vi-product A"(X, <p, y) where 
X={xu ..., x8} and the mappings y, <p are defined in the following way: for any 
i€{0 n-1} 

7(0 = { i - l ( m o d n)} 

(Pt(<*, = P1> <Pi(b,x1) = r, 

f p if t — 1, fp if t = 2, 
Vti.0, x i ) — [pgp otherwise, = 1 r p otherwise, 

<P,(ap, xs) = q, <p,(bp, x3) = qr, 

(pq if t = 1, 
1 p otherwise. 

(qp if b ap, (r if t = 1, 

a 
<P,{a,Xi) = p, cpt(blXi) = \ p otherwise> 

fqp if b ^ ap, ( 
(p,(a, x5) = if b = ap

 < p , ^ a p ' = q' Xs) = [ 

( q if t = 2, 
<p,(a, xe) = p, <p,(b,xB) = | 

qr if t j i 1, 

.p otherwise, 

(pq if b ap, (pq 
<p,(ap, x6) = ^ otherwise) <P,(bP, = Xe) 

if b = ap, 
otherwise, 
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(p,(a,x7) 

P 
qp 
rp 
VP 

if b 5*= ap, 
if b ap, 
if b = ap, 
if b = ap, 

<pt(ap, x j = q, <pt(bp, x,) = i 

<P,(ß>*8)={ P 

M P 

<p,(ap,x8) = 

<PÁbp,xs) = 

if t = 3, 
otherwise, 

(P,(b,xs) 

t = 3, 

Í = 3, 
3, 

if / = 2, 
otherwise, 

qp if t = 3, 
p if í = 4, 

rp otherwise, 

<?rp if ap, i = 4, 
p if i ^ ap, / = 5, 

(pt(b, x8) if ft = ap, 
an arbitrary input word otherwise, 

qrp if b = ap, t = 4, 
p if b = ap, t = 5, 

<Pt(b, x8) if b 5* ap, 
an arbitrary input word otherwise, 

and in all other cases cp, is defined arbitrarily. Take the following mappings 

0 (b, a, ..., a) k "*" 
¿I • I T * XJ ,XG X 3 XJ 

n - 1 — (a, ..., a, b) t3 • Xf X'j X™ 

Distinguishing the cases b=ap and b^ap it can be seen easily that 
№«U) ,h )=SA- tyU) ,< td ) for any j 6 (0 , . . . , n - l } and /£{1,2,3} which yields 
the sufficiency of (3). 

In order to prove the necessity assume that none of conditions (1)—(3) is 
satisfied by Z and I is isomorphically ^-complete with respect to the generalized 
Vj-product. Since I does not satisfy (1) there exists a natural number 2 such 
that I does not contain an automaton having the property required in (1) for any 

n^m. Let n>rrv-2' be an arbitrary fixed natural number. By the assumption 
on the isomorphic ^-completeness of I , there exists a generalized v^product 

B = n tp, y) of automata from I such that T„ can be simulated isomor-
i = 0 

phically by B under suitable p and T. By Lemma 3, we may suppose that y(t) = 
= {t—1 (mod &)} (t = 0 , . . . , k — 1). Let us denote by (a10, ..., a^ - i ) the image 
of / under p for any /£ {0, ..., n — 1}. Consider an arbitrary nonvoid subset 

k-1 
r={j\, ..., jr} of the set {0, ..., k—\). Define a relation nr on ]J At in the 

f=o 
following way: (a0, ..., ctk_j)nr(b0, ..., ¿>fcix) if and only if a, s_ ( r ) +„ ( m o d f c ) = 

3 Acta Cybernetica VI/2 
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= bi.-(?)+u(moAk) ( « = ! . •••> ( 2 ) ) , (•*=!, •••>'•) for any (a0, 
* - l k-1 

£ /7 A,. It is clear that nr is an equivalence relation on 77 Now let us de-
r=o _ 1=0 _ _ 

note by B the set {(¿r/0, x): and let nr=nrn(BxB). 
We shall show that (a0, ..., ak_x)nr (b0, ...,bk_1) implies (a0, ..., ak_1)z(t)nr, 

k-1 
(¿>o, . . . A - i M O for any tcT„ and (a0, ..., ^ . j ) , (b0, ..., 77 where 

<=0 
r' = {js+ |T(i)|(mod k): 1 ^ i S r } . Indeed, assume that (a0, ..., a t _ x ) nr(b0, ..., bk_1) 
and let t£T„ be arbitrary. Since Tn can be simulated isomorphically by B there 
exist tx, t2, t3£T„ such that 

(a„, . . . .a fc .OTiOrCi! ) = (b 0 , . . . , ^ - i ) T ( O T O I ) , 

(a0, ..., «»-iMOTfoMfg) = (¿o, ..., bk.J, 

(b 0 , . . . , ¿t-^TCOTCOtCig) = (a 0 , . . . , flt.j). 

Let R(F) = * I . T ( / 1 ) = X j + 1 . . . X j + u , = and T(/3) = Z1...Zh,. In t roduce 
the following notations 

q™ = <p,(«t-i(mod*), *i) 0 = 0, . . . , k - 1 ) , 

= ^(a.-Umodkl^-Kmodfe) ••• ^-Ir-Mmodk), *f) 0 = 0, . . . , k~ 1), (2 3a I S j + u), 

qiP = <p,(bt-Hmodk), x j (t = 0, .. . , k-1), 

q{P = <p,(b,_ 1 ( m o d k )qif l 1 ( m o d k ) . . . 9i (- i<-i(mod*/) 0 = 0 , . . . , k - 1 ) , (2 = Z =• j + u), 

Pit = <P, (a<-l(modk)<7l?-l(modfc) ••• <7j + ur-l(modfi)> -Vl) = °> •••> k~l), 

Pit — tyt fat — l(mod kytyu — l(mod k) ••• <7j + ut-l(modfc)i?lt-l(modfc) ••• Pi - It - l(mod k) > J'l) 
(t = 0, . . . , / c - l ) , (2 S l S D ) , 

rlt = tytiPt — l(modfc)l(mod fc) ••• + ut-1 (mod 10 > z l ) ( ' = 0, ..., Zc — 1), 
rlt = 'Pi (^r — 1 (mod/c)(7lf— l(modk) ••• t l j + tit-l(modk)rlt-l(modk) ••• '*i-lr-l(modfc)> zl) 

0 = 0, . . . , / c - l ) , ( 2 S / S W ) . 

Then, by the above equations, we have that for any ¿€{0, ..., k — 1} 

(i) atq<£> ...q?lM = biq™ ...qflut, 

0 0 a t q ^ .. . q?lu ,Vu . . . p t t t = b „ 

(iii) b,q{? ... qf}m rlt... rwt = a,. 

Now let us denote by ..., (b^, ..., the states (a0, ..., ak_x), 
(¿0, and (a«'», ...,4^), the states (a0, ..., ak_1)xl...xi, 
(bo, ..., bk_i)xl...xi (/ = 1, respectively. To prove our statement we show that 
(#o> •••, tf/i-i) 7ir(b0, ...,bk^) implies (<#>, ..., a^l^n^b^, ..., ¿¿'20 for any 
0 w h e r e r , = {./ s+j (mod k): l S s S r } . We proceed by induction on /'. 
(fif^0), ..., afc-iW0(6o0), ..., ¿ f J i ) obviously holds. Now assume that our statement 
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has been proved for / - 1 ( l ^ i ^ j ) . Then from ( 4 i _ 1 ) , •••, ... 
it follows that 

fli,-Cr) + / + i - l ( m o d f c ) — ^ - ( J ' t + Z + i - l f m o d / c ) ( ' = ! > • • • > ( " ) ) > fa == 1» ••• , r ) -

Therefore, by the definition of we have that 

f y , - ( £ " ) + / + i - l fmodk) = - + / + i - l(mod fc) ( ' = 2 , . . . , ( ? ) + l ) , ( i = l , . . . , r ) 

and thus a^_(T)+l+Kmoik) = b^_0+l+Kmoik)(l = l, ( s = l , r ) . 
Now, if aj|)+i(modt)=^+i(modt) for all l ^ s ^ r then we get that 

(¿4°, •••,<tkld7lri{boi), •••,Hii1) and so we are ready. In the opposite case there 
exists an index s€{ l , ...,/•} such that afs\i(modk)^b(/Jf i ( m o d k ) . Let us denote by 
/ the index js+i (mod k). Then ajl) ^bp. From this, by qi})=q\f, it follows 
that a}1-1)¿¿by-1* and a}'-1'»qf}>¿¿b}'-1)q\}\ Now let A = min (j+u-i, ( i r ) - l ) . 
Then, by 4-(D+/<modk)=fc/-(r>+i<mod*) = •••» ( " ) - ! )» w e have that q$lf = 
=<? ,%( / = 1, . . . , ( ? ) - 1 ) . Therefore, Now we show 
that aPq$lf...q}l\f=b}i)q$lf...qil\f. Indeed, if h = i+u-i then we get the 
required equality from (i). If h=($) — 1 then let us consider the sets Ml ( / = 0 , ...,h) 
defined by M0= {a}», £/>} and Ml=Ml_xq^ls (/ = 1, ..., h). If |Af,| = l for some 
/€{1,.. . ,A> then a P q V l f . . . q \ % = b P q { % . . . q \ % and thus 
=b}')4i+if---4i+hf • Therefore, it is enough to consider the case for which |M, |=2 
for all ¡e{0, ..., h). If Mg=Mt for some sh then Mgp=Ml where 

=<7'+9+1/-••?;+//• But in this case it can be seen easily that the automaton Ay-
has the property required in (2) which is a contradiction. Now consider the case for 
which \Mt\=2 for all /6{0, ..., h) and the sets M, ( / = 0 , ..., h) are pairwise differ-

h 
ent. It is not difficult to see that from (ii) and (iii) it follows that for any a, b£ | J Ml 

1=0 
there exists an input word p of Ay with ap=b. From this, by the definition m, 

h 
we obtain that (J Mt =m'<m. Thus we got that a set with cardinality m'(-^m) 

1=0 
has (J1) pairwise different subsets of two elements which is a contradiction. There-
fore, we have proved that a}** q$lf...q$hf=b}i) q$lf...q$hf. In this case, by 
(i), (ii), (iii), it can be seen easily that the automaton Ay with the states ¿ / i - 1 ) 

has the property required in (3) which is a contradiction. So we get a contradiction 
from the assumption a<ji>+i(modk)^b'ji]+i<moik) for some s£ (1, ..., r}. Therefore, 
aji)+K««i-*)=^)

+i(mod») for all s£{ 1, . . . , r} and thus («#>, ..., af*ljitri(bif>, ...,&£>,). 
From this, by i=j we obtain that (a0, ..., ak_1)x1...xJTirj(b0, ..., bk_1)x1...xj i.e. 
iaa, ...,ak^x(t)nrJb0, ...,bk^x(t). On the other hand (a0, ..., ak^1)x{t), 
(b0, ..., bk_1)z(t)£B and thus (a„, ..., ak^1)x(t)nr, (b0, ..., ¿>fc_1)r(i) which ends the 
proof of the statement. 

Since there exists a subset rQ {0, ..., k — 1} such that n 
where AB denotes the identity relation on B. Therefore, the set C = {i: f Q 
£{0 , ..., k — 1}, 7 V 0 , nr^AB} is nonempty. Then let us denote by r={j1,...,jr} 
such an element of C for which \r\ is maximal. Since n r 7 i A B there exist u ^ 

. . . ,« — 1} with p(u)nrp(v). Consider the element tx£Tn defined by t1(u)=v, 
h{v) = u and ?i(/)=/ if /6{0, ..., n —1}\{«, v}. By the isomorphic simulation, 

3' 
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we have that n(u)x(t1) = li(v), A<(uMOj=/i(") and n(l)x(tl)=n(l) j f / € { 0 , . . . , « - l } \ 
\{u, u}. On the other hand ¡i(u)nrp(v) and thus / (w)i(/1)7tr, ^(d)t(O , where 
^ = +11(01 (mod k): l^s^r}. Therefore, n(u)Tfr p(v). It is clear that the 
mapping ft:|r(OI(mod (/ = 0 , . . . , k — 1) i f , a permutation of the set 
{0, . . . ,A:-1} and thus \r\ = \r ' \ . By the maxima lit/ of \r \ we have that f ' Q f 
and thus r = T ' . This means that the mapping ft fixes the set F, i.e. ft(r) = F, 
where ft(F) denotes the set {f t ( i ) : igT}. On the other hand it is not difficult to 
see that ft fixes a subset M of the set {0, ..., fc — 1} i f a n d o n l y i f 

M = {/, /+11(01(mod k),...,/+(/-l)|r(OI(mod *)} 

for some z'£ {0, 1 , ..., g.c.d. (k, | T ( 0 | ) —1} or M is equal to an union of such sets, 
where g.c.d. (k, | t (O I ) denotes the greatest common divisor of the numbers k, | t ( 0 | 
and f=k/g.c.d(k, KOI)- Furthermore, it is clear that the considered sets m , = 
= {/, z'+|T(OI(mod k), ..., i + (/— 1) | t ( 0 I (mod k)} form a partition of {0, 1}. 

9 _ 
Thus assume that r = \ J m i t . Now consider the set B\{n(u), p(v)}. Since « S 3 

i = i 
there exists an element wg {0, . . . ,« — 1} such that n(w)£B\{fi(u), p(v)}. Let us 
denote by t2 a cyclic permutation from T„ with t2(u)=v and t2(v)=w. By the 
isomorphic simulation we have that /i(u)x(t^)=p(v) and n(v)x(t2)=fi(w). On the 
other hand pi(u)nr fi(v). Therefore, fi(u)x(t2) nr, ¡x(v)x(t2) where F ' = { J S + | T ( 0 | 

(mod k): l S i ^ r } . Since the mapping ft: t—1+ | f ( 0 | ( m o d k) (t = 0 , ..., k—1) 
is a permutation of {0, ..., k — 1} we obtain that | r | = | r ' | . Now we distinguish 
two cases. 

First assume that r = r ' . Then it is not difficult to see that ¡i (u) n r ¿¿(/) holds 
for any l£{0, . . . ,« — 1} which contradicts the maximality of | r | . 

g 
Now assume that F ^ T ' . Observe that r ' = \ J ()2(mit) and ft («?,-,) = 

r=i 
= /Mi t + |t«2)i(modg.c.d.(ifc,|t(r1)|)- Therefore, from | r | = | r ' | and J V r ' it follows that 
there exists an index ./£{0, ..., g.c.d. (k, | t (OI ) — 1} with rrijOF—Q and rrij Q F'. 
On the other hand p(v)nr,p(w) and thus p(v)x(O^r-Kw)T(0 where r " = f t ( r ' ) . 
By fi(v)x(tj)=fi(u) and n(w)x(t1)=fi(w) we obtain that n(ii)nT., //(w). Since 
ft fixes the sets mt (z' = 0, ..., g.c.d. (k, | x ( O I ) - l ) we have that rrijgF". Then 
jer' and j£F" and thus 

avj-(™) + l(modk) — aH7-(J")+/(mod/t) ( ! = 1> •••> («))> 

flW/-(£•)+/(modJfc) ~ a«/-(J') + /(modfc) ( ' = 1, •••, (")) . 

From this it follows that j £ r which is a contradiction. This ends the proof of the 
necessity. 

The next theorem holds for the generalized v r product if / > 1 . 

Theorem 3. A system I of automata is isomorphically ¿'-complete with respect 
to the generalized vf-product ( z > 1) i f a n d o n l y i f I contains an automaton which 
has two different states a, b and input words p,q such that ap=b and bq=a. 

Proof. The necessity is obvious. Conversely, assume that I satisfies the con-
dition of Theorem 3 by A. Let « S 3 be arbitrary and take the generalized v2-product 
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A \X ,q>,y) where X = {xlt ..., x6} and the mappings y, <p are defined in the 
following way: for any i€{0, ..., n — 1} 

7(0 = {t, i - l ( m o d n ) } , 

(p,(a, a, = pq, cpt{a, b, x j = q, (p,(b, a, x j = p, 

<p0(a, a, x2) = (p0(b, a, x2) = p, cp0(a, b, x2) = q, cp^a, a, x2) = pq, <px{a, b, x2) = q, 

fpq if v = a, 
[qp if v = b, (i = 2, ..., n - 1 ) , 
i f 

(pi(b, a, x2) = p, (pt(u, v, x2) = \ 

<p,(u, v, x3) = I 
pq if v = a, 

<P,(u, v, x3) = 

qp if v = b, (t = 0,1), 

p if v = a, u= b, 
pq if v = a, u = a, 
qp if v a (t = 2, ..., n — 1), 

(po(a, a, x4) = <pa(b, a, x4) = pq, (p0(a,b, x4) = qp, (p0(b, b, x4) = q, 

fpq if v = a, 
q>t(u, v, x4) = 1 

I qp if v = b, {t = 1, ... ,n — 1), 

(p,{u, V, x5) = r 
t<5 

rpq if v = a, 
[qp if v = b, (t = 0,1), 

q if u = v = b, 
(pt{u, v, x5) = qp if u = a, v = b, 

pq if v = a, (t = 2, ...,n-\), 
<p0(a, a, Xq) = (Po(b, a, x6) = p, <p0(a, b, x6) = qp, 
(piia, a, x6) = (px(b, a, x6) = pq, <px(a, b, xe) = q, 

pq if v = a, 
qp if v = b, (t = 2, ..., n — 1). 

cp,{u, v, xe) = I 

In the remaining cases <pt{u, v, Xj) is an arbitrary input word from {p, q). Now 
consider the mappings: 

0 - {b, a, ..., a), t1-"X1, 
¡x\ 1 —(a,b,...,a), r: t2 x2x3~3x4x5, 

• t3 - xexn
3

 3 X 4 X 5 . 

n - 1 — (a, a, ..., b), 
It is not difficult to see that the automaton T„ can be simulated isomorphically by 
An(X, cp, y) under p and T. 
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