On \boldsymbol{v}_{i}-products of automata

By P. Dömösi* and B. Imren**

In this paper we introduce a family of compositions and investigate it from the point of view of isomorphic completeness. Using results concerning well-known types of compositions, we give necessary and sufficient conditions for a system of automata to be isomorphically complete with respect to these products.

By an automaton we mean a finite automaton without output. For any nonvoid set X let us denote by X^{*} the free monoid generated by X. Furthermore, denote by X^{+}the free semigroup generated by X. Considering an automaton $\mathrm{A}=(X, A, \delta)$, the transition function δ can be extended to $A \times X^{*} \rightarrow A$ in the following way: $\delta(a, \lambda)=a$ and $\delta(a, p)=\delta\left(\delta\left(a, p^{\prime}\right), x\right)$ for any $a \in A, p=p^{\prime} x \in X^{*}$, where λ denotes the empty word of X^{*}. Further on we shall use the notation $a p_{\mathrm{A}}$ for $\delta(a, p)$. If there is no danger of confusion then we omit the index \mathbf{A} in $a p_{\mathrm{A}}$. Let M be an arbitrary nonvoid set. Denote by $P(M)$ the set of all subsets of M.

Let $\mathbf{A}_{t}=\left(X_{t}, A_{t}, \delta_{t}\right)(t=0, \ldots, n-1)$ be a system of automata. Moreover let X be a finite nonvoid set, φ a mapping of $A_{0} \times \ldots \times A_{n-1} \times X$ into $X_{0} \times \ldots \times X_{n-1}$ and γ a mapping of $\{0, \ldots, n-1\}$ into $P(\{0, \ldots, n-1\})$ such that φ can be given in the form

$$
\varphi\left(a_{0}, \ldots, a_{n-1}, x\right)=\left(\varphi_{0}\left(a_{0}, \ldots, a_{n-1}, x\right), \ldots, \varphi_{n-1}\left(a_{0}, \ldots, a_{n-1}, x\right)\right)
$$

where each $\varphi_{t}(0 \leqq t \leqq n-1)$ is independent of states, which have indices not contained in the set $\gamma(t)$. We say that $\mathbf{A}=\left(X, \prod_{t=0}^{n-1} A_{t}, \delta\right)$ is a v_{i}-product of \mathbf{A}_{t} ($t=0, \ldots, n-1$) with respect to X, φ and γ if $|\gamma(t)| \leqq i(t=0, \ldots, n-1)$ and for any $\left(a_{0}, \ldots, a_{n-1}\right) \in \prod_{t=0}^{n-1} A_{t}$ and $x \in X$

$$
\begin{gathered}
\delta\left(\left(a_{0}, \ldots, a_{n-1}\right), x\right)= \\
=\left(\delta_{0}\left(a_{0}, \varphi_{0}\left(a_{0}, \ldots, a_{n-1}, x\right)\right), \ldots, \delta_{n-1}\left(a_{n-1}, \varphi_{n-1}\left(a_{0}, \ldots, a_{n-1}, x\right)\right)\right) .
\end{gathered}
$$

For this product we use the notation $\prod_{t=0}^{n-1} \mathbf{A}_{t}(X, \varphi, \gamma)$.
It is clear that the v_{0}-product is the same as the quasi-direct product. Therefore, we consider the case $i \geqq 1$ only. Furthermore, it is interesting to note that
if $n=2, i=1, \gamma(0)=\{1\}, \gamma(1)=\{0\}$ then we obtain the cross product (see [2]) as a special case of the v_{1}-product. Finally, observe that the v_{i}-product is rearrangable, i.e. changing the order of components of a v_{i}-product $\prod_{t=0}^{n-1} \mathbf{A}_{t}(X, \varphi, \gamma)$ and choosing suitable mappings $\varphi^{\prime}, \gamma^{\prime}$ we get such a v_{i}-product which is isomorphic to the original one.

Let Σ be a system of automata. Σ is called isomorphically complete with respect to the v_{i}-product if any automaton can be embedded isomorphically into a v_{i}-product of automata from Σ. Furthermore, Σ is called a minimal isomorphically complete system if Σ is isomorphically complete and for arbitrary $\mathbf{A} \in \Sigma$ the system $\Sigma \backslash\{A\}$ is not isomorphically complete.

For any natural number $n \geqq 1$ denote by $\mathrm{D}_{n}=\left(X_{n},\{1, \ldots, n\}, \delta_{n}\right)$ the automaton for which $X_{n}=\left\{x_{r s}: 1 \leqq r, s \leqq n\right\}$ and

$$
\delta_{n}\left(t, x_{r s}\right)= \begin{cases}s & \text { if } t=r \\ t & \text { otherwise }\end{cases}
$$

for any $t \in\{1, \ldots, n\}$ and $x_{r s} \in X_{n}$.
The following theorem holds for the v_{i}-products if $i \geqq 1$.
Theorem 1. A system Σ of automata is isomorphically complete with respect to the v_{i}-product ($i \geqq 1$) if and only if for any natural number $n \geqq 1$, there exists an automaton $A \in \Sigma$ such that \mathbf{D}_{n} can be embedded isomorphically into a v_{i} product of \mathbf{A} with a single factor.

Proof. Theorem 1 can be proved in a similar way as the corresponding statement for the α_{i}-products in [4]. The sufficiency follows from Theorem 2 in [4], but it is not difficult to see directly. In order to prove the necessity we show that for any $n \geqq 1$ if \mathbf{D}_{n} can be embedded isomorphically into a v_{i}-product of automata from Σ then there exists an automaton $\mathbf{A} \in \Sigma$ such that $\mathbf{D}_{\left[{ }^{i+1} \sqrt{n}\right]}$ can be embedded isomorphically into a v_{i}-product of \mathbf{A} with a single factor, where $[\sqrt[i+1]{n}]$ denotes the largest integer less than or equal to $\sqrt[i+1]{n}$.

If $n=1$ then the statement is obvious. Now let $n>1$ and assume that \mathbf{D}_{n} can be embedded isomorphically into a v_{i}-product $\mathbf{B}=\prod_{t=0}^{k} \mathbf{A}_{i}\left(X_{n}, \varphi, \gamma\right)$ of automata $\mathbf{A}_{t}=\left(X_{t}^{\prime}, A_{t}, \delta_{t}\right) \in \Sigma(t=0, \ldots, k)$. Let us denote by μ such an isomorphism and for any $t \in\{1, \ldots, n\}$ denote by $\left(a_{t 0}, \ldots, a_{t k}\right)$ the image of t under μ. We distinguish two cases depending on the sets $\gamma(t)(t=0, \ldots, k)$. If $\gamma(t)=\emptyset$ for all $t \in\{0, \ldots, k\}$ then \mathbf{B} is a quasi-direct product. Since the quasi-direct product can be considered as a special α_{i+1}-product we have that D_{n} can be embedded isomorphically into an α_{i+1}-product $\prod_{t=1}^{k} \mathbf{A}_{t}\left(X_{n}, \varphi\right)$ of automata from Σ. From this, by the proof of Theorem 2 in [4], it follows that there exists an automaton $\mathbf{A} \in \Sigma$ such that $\mathbf{D}_{\left[\begin{array}{l}+1 \\ n\end{array}\right]}$ can be embedded isomorphically into an α_{i+1}-product of \mathbf{A} with a single factor. Since an α_{i+1}-product with a single factor is a v_{i}-product with a single factor we have proved the statement for this case.

Now assume that $\gamma(t) \neq \emptyset$ for some $t \in\{0, \ldots, k\}$. By the rearrangability of v_{i}-products, without loss of generality we may suppose that $\gamma(0) \neq \emptyset$. We show that D_{n} can be embedded isomorphically into a v_{i+1}-product of automata from $\left\{\mathbf{A}_{0}, \ldots, \mathbf{A}_{k}\right\}$ with at most $i+1$ factors. If $k \leqq i$ then we are ready. Assume that $k>i$. We may suppose that there exist natural numbers $r \neq s(1 \leqq r, s \leqq n$) such that $a_{r 0} \neq a_{s 0}$ since otherwise \mathbf{D}_{n} can be embedded isomorphically into a v_{i} product of automata from $\left\{\mathbf{A}_{0}, \ldots, \mathbf{A}_{k}\right\}$ with k factors. Let $\gamma(0)=\left\{j_{1}, \ldots, j_{w}\right\}$. By the definition of the v_{i}-product, we have that $w \leqq i$ and

$$
\varphi_{0}\left(a_{0}, \ldots, a_{k}, x\right)=\varphi_{0}\left(a_{j_{1}}, \ldots, a_{j_{w}}, x\right) \text { for any }\left(a_{0}, \ldots, a_{k}\right) \in \prod_{t=0}^{k} A_{t} \text { and } x \in X_{n}
$$

We prove that the elements $\left(a_{t 0}, a_{t j_{1}}, \ldots, a_{t j_{w}}\right)(t=1, \ldots, n)$ are pairwise different. Indeed, assume that $a_{u 0}=a_{v 0}$ and $a_{u t}=a_{v t}\left(t=j_{1}, \ldots, j_{w}\right)$ for some $u \neq v(1 \leqq u, v \leqq n)$. Then $\varphi_{0}\left(a_{u j_{1}}, \ldots, a_{u j_{w}}, x\right)=\varphi_{0}\left(a_{v j_{1}}, \ldots, a_{v j_{w}}, x\right)$ for any $x \in X_{n}$. Therefore, in the v_{i}-product \mathbf{B} the automaton \mathbf{A}_{0} obtains the same input signal in the states $a_{u 0}$ and $a_{v 0}$ for any $x \in X_{n}$. Since μ is isomorphism, $u \neq v$ and $a_{u 0}=a_{v 0}$, thus the automaton \mathbf{A}_{0} goes from the state $a_{u 0}$ into the state $a_{t 0}$ and from the state $a_{v 0}$ it goes into the state $a_{v 0}$ for any $x_{u t}(t=1, \ldots, n)$. This implies $a_{v 0}=a_{t 0}(t=1, \ldots, n)$ which contradicts our assumption $a_{r 0} \neq a_{s 0}$. Therefore, we have that the elements $\left(a_{t 0}, a_{t i_{1}}, \ldots, a_{t j_{w}}\right)(t=1, \ldots, n)$ are pairwise different. Now take the following v_{i+1}-product $\mathbf{C}=\mathbf{A}_{0} \times \mathbf{A}_{j_{1}} \times \ldots \times \mathbf{A}_{j_{w}}\left(X_{n}, \psi, \bar{\gamma}\right)$ where for any $t \in\{0, \ldots, w\} \bar{\gamma}(t)=$ $=\{0,1, \ldots, w\}$ and

$$
\psi_{t}\left(b_{0}, \ldots, b_{w}, x\right)=\left\{\begin{array}{c}
\varphi_{0}\left(a_{r 0}, \ldots, a_{r k}, x\right) \text { if } t=0 \text { and there exists } 1 \leqq r \leqq n \\
\text { such that } b_{0}=a_{r 0}, b_{s}=a_{r j_{s}}(s=1, \ldots, w), \\
\varphi_{j_{r}}\left(a_{r 0}, \ldots, a_{r k}, x\right) \text { if } t \neq 0 \text { and there exists } 1 \leqq r \leqq n \\
\text { such that } b_{0}=a_{r 0}, b_{s}=a_{r j_{s}}(s=1, \ldots, w), \\
\text { otherwise arbitrary input signal from } X_{0}^{\prime} \text { if } \\
t=0 \text { and from } X_{j_{t}}^{\prime} \text { if } t \neq 0,
\end{array}\right.
$$

for all $\left(b_{0}, \ldots, b_{w}\right) \in A_{0} \times A_{j_{1}} \times \ldots \times A_{j_{w}}$ and $x \in X_{n}$. It is not difficult to see that the correspondence $\mu^{\prime}: t \rightarrow\left(a_{t 0}, a_{t j_{1}}, \ldots, a_{t j_{w}}\right)(t=1, \ldots, n)$ is an isomorphism of \mathbf{D}_{n} into \mathbf{C}. Therefore, we have that \mathbf{D}_{n} can be embedded isomorphically into a $v_{i+1^{-}}$ product of automata from $\left\{\mathbf{A}_{0}, \ldots, \mathbf{A}_{k}\right\}$ with at most $i+1$ factors. But a $v_{i+1}{ }^{-}$ product with at most $i+1$ factors is an α_{i+1}-product and thus, in a similar way as in the first case, we obtain that $\mathbf{D}_{\left[\begin{array}{l}i+1 \\ n\end{array}\right]}$ can be embedded isomorphically into a v_{i}-product of \mathbf{A}_{t} with a single factor for some $0 \leqq t \leqq k$. This ends the proof of Theorem 1 .

Observe that \mathbf{D}_{m} can be embedded isomorphically into a v_{0}-product of \mathbf{D}_{n} with a single factor for any $m \leqq n$. Using this fact, by Theorem 1 , we get the following

Corollary. There exists no system of automata which is isomorphically complete with respect to the v_{i}-product ($i \geqq 1$) and minimal.

In [1] F. Gécseg has introduced the concepts of the generalized α_{i}-product and the simulation and characterized the isomorphically and homomorphically complete systems with respect to them. Further on we shall introduce the concept of the generalized v_{i}-product and investigate the isomorphically complete systems with respect to this product and the simulation.

We say that an automaton $\mathbf{A}=(X, A, \delta)$ isomorphically simulates $\mathbf{B}=\left(Y, B, \delta^{\prime}\right)$ if there exist one-to-one mappings $\mu: B \rightarrow A$ and $\tau: Y \rightarrow X^{+}$such that $\mu\left(\delta^{\prime}(b, y)\right)=$ $=\delta(\mu(b), \tau(y))$ for any $b \in B$ and $y \in Y$. The following obvious observation holds for the isomorphic simulation.

Lemma 1. If \mathbf{A} can be simulated isomorphically by \mathbf{B} and \mathbf{B} can be simulated isomorphically by \mathbf{C} then \mathbf{C} isomorphically simulates \mathbf{A}.

Let $\mathbf{A}_{t}=\left(X_{i}, A_{t}, \delta_{t}\right)(t=0, \ldots, n-1)$ be a system of automata. Moreover let X be a finite nonvoid set, φ a mapping of $A_{0} \times \ldots \times A_{n-1} \times X$ into $X_{0}^{+} \times \ldots \times X_{n-1}^{+}$ and γ a mapping of $\{0, \ldots, n-1\}$ into $P(\{0, \ldots, n-1\})$ such that φ can be given in the form

$$
\varphi\left(a_{0}, \ldots, a_{n-1}, x\right)=\left(\varphi_{0}\left(a_{0}, \ldots, a_{n-1}, x\right), \ldots, \varphi_{n-1}\left(a_{0}, \ldots, a_{n-1}, x\right)\right)
$$

where each $\varphi_{t}(0 \leqq t \leqq n-1)$ is independent of states, which have indices not contained in the set $\gamma(t)$. We say that $\mathbf{A}=\left(X, \prod_{t=0}^{n-1} A_{i}, \delta\right)$ is a generalized v_{i}-product of $\mathbf{A}_{t}(t=0, \ldots, n-1)$ with respect to X, φ and γ if $|\gamma(t)| \leqq i(t=0, \ldots, n-1)$ and for any $\left(a_{0}, \ldots, a_{n-1}\right) \in \prod_{t=0}^{n-1} A_{i}$ and $x \in X \quad \delta\left(\left(a_{0}, \ldots, a_{n-1}\right), x\right)=\left(\delta_{0}\left(a_{0}, \varphi_{0}\left(a_{0}, \ldots, a_{n-1}, x\right)\right), \ldots\right.$ $\left.\ldots, \delta_{n-1}\left(a_{n-1}, \varphi_{n-1}\left(a_{0}, \ldots, a_{n-1}, x\right)\right)\right)$.

A system Σ of automata is called isomorphically S-complete with respect to the generalized v_{i}-product if any automaton can be simulated isomorphically by a generalized v_{i}-product of automata from Σ.

Observe that in the definitions of the simulation and the generalized v_{i}-product all input words are different from the empty word. Therefore, further on, by an input word we mean a nonempty word. Also the following notation will be used. If k, s are integers and t is a natural number then $k+s(\bmod t)$ denotes the least nonnegative residue of $k+s$ modulo t. Furthermore, for any $n \geqq 1$ denote by $\mathrm{T}_{n}=\left(T_{n},\{0, \ldots, n-1\}, \delta_{n}\right)$ the automaton for which T_{n} is the set of all transformations of $\{0, \ldots, n-1\}$ and $\delta_{n}(k, t)=t(k)$ for any $k \in\{0, \ldots, n-1\}$ and $t \in T_{n}$.

Lemma 2. If \mathbf{T}_{n} can be simulated isomorphically by a generalized α_{0}-product $\prod_{t=0}^{k} \mathbf{A}_{t}(X, \varphi)$ then \mathbf{T}_{n} can be simulated isomorphically by \mathbf{A}_{j} for some $j \in\{0, \ldots, k\}$.

Proof. Lemma 2 follows from the proof of Theorem 1 in [1]. Now we give another proof. Obviously it is enough to prove the statement for the generalized α_{0}-product of two factors. Indeed, assume that T_{n} can be simulated isomorphically by the generalized α_{0}-product $\mathbf{A} \times \mathbf{B}(X, \varphi)$ under μ and τ. Let us denote by (a_{t}, b_{t}) the image of t under $\mu(t=0, \ldots, n-1)$. If $a_{0}=a_{t}$ for all $t \in\{1, \ldots, n-1\}$ then the elements $b_{t}(t=0, \ldots, n-1)$ are pairwise different. Now define the mapping τ^{\prime} in the following way: for any $t_{u} \in T_{n} \tau^{\prime}\left(t_{u}\right)=\varphi_{1}\left(a_{0}, y_{1}\right) \ldots \varphi_{1}\left(a_{0}, y_{s}\right)$ if $\tau\left(t_{u}\right)=y_{1} \ldots y_{s}$. Let us denote by μ^{\prime} the mapping determined by $\mu^{\prime}(t)=b_{t}(t=0, \ldots, n-1)$. It is not difficult to see that \mathbf{B} isomorphically simulates \mathbf{T}_{n} under μ^{\prime} and τ^{\prime}. Now assume that there exist natural numbers $r \neq s(0 \leqq r, s \leqq n-1)$ such that $a_{r} \neq a_{s}$. In this case we show that the states $a_{t}(t=0, \ldots, n-1)$ are pairwise different. Suppose that $a_{u}=a_{v}$ for some $u \neq v \quad(0 \leqq u, v \leqq n-1)$. Let us denote by $t_{i j}$ the element of T_{n} for which $t_{i j}(i)=j$ and $t_{i j}(k)=k$ if $k \neq i(k=0,1, \ldots, n-1)$ for all
$i, j(0 \leqq i, j \leqq n-1)$. Now let $w \in\{0, \ldots, n-1\}$ be arbitrary. Then $t_{\mu w}(u)=w$ and $t_{u w}(v)=v$. By isomorphic simulation, $\left(a_{u}, b_{u}\right) \tau\left(t_{u w}\right)=\left(a_{w}, b_{w}\right)$ and $\left(a_{v}, b_{v}\right) \tau\left(t_{u w}\right)=$ $=\left(a_{v}, b_{v}\right)$. Let $\tau\left(t_{u w}\right)=y_{1} \ldots y_{m}$. Then $a_{u} \varphi_{0}\left(y_{1}\right) \ldots \varphi_{0}\left(y_{m}\right)=a_{w}$ and $a_{v} \varphi_{0}\left(y_{1}\right) \ldots \varphi_{0}\left(y_{m}\right)=$ $=a_{v}$. Therefore, by $a_{u}=a_{v}$, we obtain $a_{w}=a_{v}$. Since w was arbitrary we got that $a_{t}=a_{v}$ for all $t \in\{0, \ldots, n-1\}$ which contradicts our assumption $a_{r} \neq a_{s}$. Now we have that the states $a_{t}(t=0, \ldots, n-1)$ are pairwise different. In this case it is not difficult to see that \mathbf{A} isomorphically simulates \mathbf{T}_{n} under μ^{\prime} and τ^{\prime} where $\mu^{\prime}(t)=a_{t}(t=0, \ldots, n-1)$ and for any $t_{u} \in T_{n} \tau^{\prime}\left(t_{u}\right)=\varphi_{0}\left(y_{1}\right) \ldots \varphi_{0}\left(y_{s}\right)$ if $\tau\left(t_{u}\right)=$ $=y_{1} \ldots y_{s}$.

Lemma 3. If \mathbf{T}_{n} can be simulated isomorphically by a generalized v_{1}-product $\prod_{t=0}^{k} \mathbf{A}_{t}(X, \varphi, \gamma)$ then \mathbf{T}_{n} can be simulated by a generalized v_{1}-product $\prod_{t=0}^{r} \mathbf{B}_{t}\left(X, \varphi^{\prime}, \gamma^{\prime}\right)$ where $r \leqq k, \mathbf{B}_{t} \in\left\{\mathbf{A}_{0}, \ldots, \mathbf{A}_{k}\right\}$ and $\gamma^{\prime}(t)=\{t-1(\bmod (r+1))\}$ for any $t \in\{0, \ldots, r\}$.

Proof. We proceed by induction on the number of components of the generalized v_{1}-product. If $k=0$ then the statement is obvious. Now let $k>0$ and assume that the statement is valid for any l less than k. Moreover, suppose that \mathbf{T}_{n} can be simulated isomorphically by a generalized v_{1}-product $\prod_{t=0}^{k} \mathbf{A}_{t}(X, \varphi, \gamma)$. Define the binary relation ϱ on the set $\{0, \ldots, k\}$ as follows: $i \varrho j$ if and only if $i=j$ or $\gamma(i)=\{j\}$ or $\gamma(j)=\{i\}$ for any $i, j \in\{0, \ldots, k\}$. Denote by $\hat{\varrho}$ the transitive closure of ϱ. Then $\hat{\varrho}$ is an equivalence relation on $\{0, \ldots, k\}$. Depending on $\hat{\varrho}$, we shall distinguish three cases.

First assume that the partition induced by $\hat{\varrho}$ has at least two blocks. Let us denote by $\hat{\varrho}(j)$ the block containing j. By the rearrangability of the v_{i}-product, we may assume that $\hat{\varrho}(0)=\{0, \ldots, m-1\}$. From this, using the fact that $\bigcup_{s \in \hat{Q}(t)} \gamma(s) \subseteq$ $\cong \hat{\varrho}(t)$ holds for any $t \in\{0, \ldots, k-1\}$, we obtain that $\prod_{t=0}^{k} \mathbf{A}_{i}(X, \varphi, \gamma)$ is isomorphic to a quasi-direct product of two automata \mathbf{C}_{1} and. \mathbf{C}_{2} where \mathbf{C}_{1} is a generalized v_{1}-product of $\mathbf{A}_{0}, \ldots, \mathbf{A}_{m-1}$ and \mathbf{C}_{2} is a generalized v_{1}-product of $\mathbf{A}_{m}, \ldots, \mathbf{A}_{k}$. Therefore, by Lemma 1, Lemma 2 and our induction hypothesis, we get that the statement is valid.

Now let us suppose that the partition induced by $\hat{\varrho}$ has one block only and there exists an $u \in\{0, \ldots, k\}$ with $u \notin \bigcup_{t=0}^{k} \gamma(t)$. By the rearrangability of v_{i}-product, we may suppose that $u=k$. Then observe that $\prod_{t=0}^{k} \mathbf{A}_{t}(X, \varphi, \gamma)$ is isomorphic to a generalized α_{0}-product of two automata \mathbf{C}_{1} and \mathbf{A}_{k} where \mathbf{C}_{1} is a generalized v_{1}-product of $\mathbf{A}_{0}, \ldots, \mathbf{A}_{k-1}$. From this, by Lemma 1, Lemma 2 and induction hypothesis, the statement follows.

Finally, assume that the partition induced by $\hat{\varrho}$ has one block only and $\bigcup_{t=0}^{k} \gamma(t)=$ $=\{0, \ldots, k\}$. Consider the mapping f determined as follows: for any $t \in\{0, \ldots, k\}$ $f(t)=j$ if and only if $j \in \gamma(t)$. By the definition of $\hat{\varrho}$ and our assumption on ϱ, it can be seen that f is a cyclic permutation of the set $\{0, \ldots, k\}$. Now rearrange
$\prod_{t=0}^{k} \mathbf{A}_{t}(X, \varphi, \gamma)$ in the form $\prod_{t=0}^{k} \mathbf{A}_{f_{(0)}^{k-1}}\left(X, \varphi^{\prime}, \gamma^{\prime}\right)$. Then, by the rearrangability of v_{i}-product and Lemma 1, we obtain that T_{n} can be simulated isomorphically by $\prod_{t=0}^{k} \mathbf{A}_{f_{(0)}^{k-t-1}}\left(X, \varphi^{\prime}, \gamma^{\prime}\right)$. On the other hand, it is not difficult to see that $\prod_{t=0}^{k} \mathbf{A}_{f_{(0)}^{k t-1}}\left(X, \varphi^{\prime}, \gamma^{\prime}\right)$ satisfies the condition of our statement. This ends the proof of Lemma 3.

Now we are ready to study the generalized v_{1}-product. We have
Theorem 2. A system Σ of automata is isomorphically S-complete with respect to the generalized v_{1}-product if and only if one of the following three conditions is satisfied by Σ :
(1) for any natural number $n>1$ there exists an automaton in Σ having n different states $a_{t}(t=0, \ldots, n-1)$ and input words $q_{t}(t=0, \ldots, n-1)$ such that $a_{t} q_{t}=a_{t+1(\bmod n)}(t=0, \ldots, n-1)$,
(2) Σ contains an automaton which has two different states a, b and input words p, q, r such that $a p=b r=a$ and $a q=b p=b$,
(3) there exists an automaton in Σ which has two different states a, b and input words p, q, r such that $a p \neq b p, a p q=b p q=a$ and $a r=b$.

Proof. In order to prove the sufficiency of conditions (1)-(3) we use the following observation.

For any automaton $\mathbf{A}=(X, A, \delta), \mathbf{A}$ can be simulated isomorphically by \mathbf{T}_{n} with $n \geqq \max (2,|A|)$. Therefore, by Lemma 1 , if for any $n \geqq 2$ the automaton \mathbf{T}_{n} can be simulated isomorphically by a generalized v_{1}-product of automata from Σ then Σ is isomorphically S-complete with respect to the generalized v_{1}-product. On the other hand, take the following elements t_{1}, t_{2} and t_{3} of T_{n}

$$
\begin{aligned}
& t_{1}(k)=k+1(\bmod n) \quad(k=0, \ldots, n-1) \\
& t_{2}(0)=1, t_{2}(1)=0, \quad t_{2}(k)=k \quad(k=2, \ldots, n-1), \\
& t_{3}(0)=t_{3}(1)=0 \quad \text { and } \quad t_{3}(k)=k \quad(k=2, \ldots, n-1) .
\end{aligned}
$$

It can be proved (see [3]) that the mappings t_{1}, t_{2}, t_{3} generate the complete transformation semigroup over the set $\{0, \ldots, n-1\}$. Therefore, the automaton \mathbf{T}_{n} can be simulated isomorphically by the automaton $\mathbf{T}_{n}^{\prime}=\left(\left\{t_{1}, t_{2}, t_{3}\right\},\{0, \ldots, n-1\}, \delta_{n}^{\prime}\right)$ where $\delta_{n}^{\prime}=\delta_{n} \mid\{0, \ldots, n-1\} \times\left\{t_{1}, t_{2}, t_{3}\right\}$. From this we obtain that if for any $n \geqq 2$ the automaton \mathbf{T}_{n}^{\prime} can be simulated isomorphically by a generalized v_{1}-product of automata from Σ then Σ is isomorphically S-complete with respect to the generalized v_{1}-product.

First suppose that Σ satisfies (1). Then it is not difficult to see that for any automaton \mathbf{A} there exists an automaton $\mathbf{B} \in \Sigma$ such that \mathbf{A} can be simulated isomorphically by a generalized v_{1}-product of \mathbf{B} with a single factor.

Now assume that Σ satisfies (2) by $\mathbf{A} \in \Sigma$. Let $n \geqq 5$ be arbitrary and take the generalized v_{1}-product $\mathbf{A}^{n}(X, \varphi, \gamma)$ where

$$
\begin{gathered}
X=\left\{u_{i}: 1 \leqq i<n\right\} \cup \\
\cup\left\{v_{i}: 0 \leqq i<n\right\} \cup\left\{x_{i}: 1<i<n\right\} \cup\left\{y_{i}: 1 \leqq i<n-1\right\} \cup\{v, x, y, z, w\}
\end{gathered}
$$

and the mappings γ and φ are defined in the following way: for any $t \in\{0, \ldots, n-1\}$

$$
\begin{aligned}
& \gamma(t)=t-1(\bmod n), \\
& \varphi_{i}\left(a, u_{i}\right)=p, \quad \varphi_{i}\left(b, u_{i}\right)= \begin{cases}q & \text { if } t=i, \\
p & \text { otherwise } \quad(i=1, \ldots, n-1),\end{cases} \\
& \varphi_{t}\left(a, v_{i}\right)=\left\{\begin{array}{ll}
r & \text { if } t=i, \\
p & \text { otherwise }
\end{array} \quad \varphi_{t}\left(b, v_{i}\right)= \begin{cases}r & \text { if } 0<t<i, \\
p & \text { otherwise } \quad(i=0, \ldots, n-1),\end{cases} \right. \\
& \varphi_{t}\left(a, x_{i}\right)=p, \quad \varphi_{t}\left(b, x_{i}\right)= \begin{cases}r & \text { if } i \leqq t \leqq n-1, \\
p & \text { otherwise }(i=2, \ldots, n-1),\end{cases} \\
& \varphi_{0}\left(a, y_{i}\right)=p, \quad \varphi_{0}\left(b, y_{i}\right)=q, \\
& \varphi_{t}\left(a, y_{i}\right)=p, \quad \varphi_{t}\left(b, y_{i}\right)= \begin{cases}r & \text { if } 1 \leqq t<i, \quad i \neq 2, \\
p & \text { otherwise } \quad(i=1, \ldots, n-2 \quad \text { and } t \geqq 1)\end{cases} \\
& \varphi_{t}(a, v)=p, \quad \varphi_{t}(b, v)= \begin{cases}r & \text { if } 1 \leqq t \leqq n-2, \\
p & \text { otherwise },\end{cases} \\
& \varphi_{0}(a, x)=p, \quad \varphi_{0}(b, x)=r, \quad \varphi_{t}(a, x)=\varphi_{t}(b, x)=p \quad(t \geqq 1), \\
& \varphi_{0}(a, z)=p, \quad \varphi_{0}(b, z) \doteq r, \quad \varphi_{1}(a, z)=r, \quad \varphi_{1}(b, z)=p, \\
& \varphi_{2}(a, z)=\varphi_{2}(b, z)=p, \quad \varphi_{t}(a, z)=p, \quad \varphi_{t}(b, z)=r \quad(t>2), \\
& \varphi_{0}(a, w)=q, \quad \varphi_{0}(b, w)=p, \quad \varphi_{t}(a, w)=p, \quad \varphi_{t}(b, w)=r \quad(t \geqq 1), \\
& \varphi_{0}(a, y)=q, \quad \varphi_{0}(b, y)=\varphi_{t}(a, y)=\varphi_{t}(b, y)=p \quad(t \geqq 1) .
\end{aligned}
$$

Take the mappings

$$
\begin{aligned}
& 0 \rightarrow(b, a, \ldots, a), \\
& \vdots \\
& n-1 \rightarrow(a, a, \ldots, b),
\end{aligned}
$$

$$
\begin{aligned}
t_{1} & \rightarrow q_{1} \ldots q_{n-1}, \\
\tau: t_{2} & \rightarrow u_{3} \ldots u_{n-1} y_{1} z u_{1} \ldots u_{n-1} y x_{2} u_{3} \ldots u_{n-1} v_{0} x_{3} u_{2} \ldots u_{n-1} y x_{z}, \\
t_{3} & \rightarrow u_{3} \ldots u_{n-1} y_{1} z u_{1} \ldots u_{n-1} w,
\end{aligned}
$$

where

$$
\begin{aligned}
q_{1}= & u_{1} \ldots u_{n-2} v_{n-1} u_{1} \ldots u_{n-1} v y, \\
q_{2}= & u_{1} \ldots u_{n-3} v_{n-2} v_{0} u_{1} \ldots u_{n-2} x_{n-1} y_{n-2} u_{n-1} y, \\
q_{3}= & u_{1} \ldots u_{n-4} v_{n-3} v_{0} x_{n-1} x u_{n-1} u_{1} \ldots u_{n-3} x_{n-2} u_{n-1} y_{n-3} x_{n-1} u_{n-2} u_{n-1} y, \\
q_{i}= & u_{1} \ldots u_{n-i-1} v_{n-i} v_{0} x_{n-i+2} u_{n-i+3} \ldots u_{n-1} x x_{n-i+3} u_{n-i+2} \ldots u_{n-1} \\
& u_{1} \ldots u_{n-i} x_{n-i+1} u_{n-i+2} \ldots u_{n-1} y_{n-i} x_{n-i+2} u_{n-i+1} \ldots u_{n-1} y
\end{aligned}
$$

if $4 \leqq i<n-1$ and

$$
q_{n-1}=v_{1} x_{2} u_{4} \ldots u_{n-1} x x_{4} u_{3} \ldots u_{n-1} v_{0} x_{3} u_{2} \ldots u_{n-1} y x_{2} .
$$

Now we show that \mathbf{T}_{n}^{\prime} can be simulated isomorphically by $\mathbf{A}^{n}(X, \varphi, \gamma)$ under μ and τ. The validity of the equations $\mu\left(\delta_{n}^{\prime}\left(j, t_{l}\right)\right)=\delta_{\mathrm{A}^{n}}\left(\mu(j), \tau\left(t_{l}\right)\right) \quad(l=2,3)$ ($j=0, \ldots, n-1$) can be checked by a simple computation.

Introduce the following notation

$$
u_{j t}^{(i)}=\left\{\begin{array}{c}
b \text { if } j=t, j \leqq n-i-1 \text { or } t=1, j>n-i-1 \\
\text { or } t>n-i-1, \quad t>j, \\
a \quad \text { otherwise, }
\end{array}\right.
$$

$1 \leqq i<n-2,0 \leqq t \leqq n-1$ and $0 \leqq j \leqq n-1$. It can be proved by induction on i that $\mu(j) q_{1} \ldots q_{i}=\left(u_{j 0}^{(i)}, \ldots, u_{j n-1}^{(i)}\right)$ for any $j \in\{0, \ldots, n-1\}$ and $1 \leqq i<n-2$. On the other hand $\left(u_{j 0}^{(n-3)}, \ldots, u_{n-1}^{(n-3)}\right) q_{n-2} q_{n-1}=\mu(j+1(\bmod n))$ for any $j \in\{0, \ldots, n-1\}$. Therefore, $\mu\left(\delta_{n}^{\prime}\left(j, t_{1}\right)\right)=\mu(j+1(\bmod n))=\left(u_{j 0}^{n-3)}, \ldots, u_{j n-1}^{(n-3)}\right) q_{n-2} q_{n-1}=\mu(j) q_{1} \ldots q_{n-1}=$ $=\delta_{\mathrm{A}^{n}}\left(\mu(j), \tau\left(t_{1}\right)\right)$ for any $j \in\{0, \ldots, n-1\}$. This ends the proof of the sufficiency of condition (2).

Now suppose that Σ satisfies (3) by $\mathbf{A} \subseteq \Sigma$. Then there exist states $a \neq b$ of A and input words. p, q, r such that $a p \neq b p, a p q=b p q=a$ and $a r=b$. Observe that it is enough to prove the sufficiency of (3) for the case $a \notin\{a p, b p\}$. Indeed, assume that $a \in\{a p, b p\}$. We distinguish two cases. If $b \in\{a p, b p\}$ then p is a permutation of the set $\{a, b\}$ and thus the automaton \mathbf{A} has the property required in (2). If $b \notin\{a p, b p\}$ then introducing the notations $a^{\prime}=b, b^{\prime}=a, p^{\prime}=p, q^{\prime}=q r$, $r^{\prime}=p q$ we obtain that $a^{\prime} \neq b^{\prime}, a^{\prime} p^{\prime} \neq b^{\prime} p^{\prime}, a^{\prime} p^{\prime} q^{\prime}=b^{\prime} p^{\prime} q^{\prime}=a^{\prime}, a^{\prime} r^{\prime}=b^{\prime}$ and $a^{\prime} \notin$ $\notin\left\{a^{\prime} p^{\prime}, b^{\prime} p^{\prime}\right\}$. Therefore, without loss of generality we may assume that $a \notin\{a p, b p\}$. Now let. $n \geqq 6$ be arbitrary and take the generalized v_{1}-product $\mathbf{A}^{n}(X, \varphi, \gamma)$ where $X=\left\{x_{1}, \ldots, x_{8}\right\}$ and the mappings γ, φ are defined in the following way: for any $t \in\{0, \ldots, n-1\}$

$$
\begin{aligned}
& \gamma(t)=\{t-1(\bmod n)\} \\
& \varphi_{t}\left(a, x_{1}\right)=p q, \quad \varphi_{t}\left(b, x_{1}\right)=r, \\
& \varphi_{t}\left(a, x_{2}\right)=\left\{\begin{array}{ll}
p & \text { if } t=1, \\
p q p & \text { otherwise },
\end{array} \quad \varphi_{t}\left(b, x_{2}\right)= \begin{cases}p & \text { if } t=2, \\
r p & \text { otherwise },\end{cases} \right. \\
& \varphi_{t}\left(a p, x_{3}\right)=q, \quad \varphi_{t}\left(b p, x_{3}\right)=q r, \\
& \varphi_{t}\left(a, x_{4}\right)=p, \quad \varphi_{t}\left(b, x_{4}\right)= \begin{cases}p q & \text { if } t=1, \\
p & \text { otherwise },\end{cases} \\
& \varphi_{t}\left(a, x_{5}\right)=\left\{\begin{array}{ll}
q p & \text { if } b \neq a p, \\
p & \text { if } b=a p,
\end{array} \quad \varphi_{t}\left(a p, x_{5}\right)=q, \quad \varphi_{t}\left(b p, x_{5}\right)=\left\{\begin{array}{lll}
r & \text { if } t=1, \\
q r & \text { if } t \neq 1,
\end{array}\right.\right. \\
& \varphi_{t}\left(a, x_{6}\right)=p, \quad \varphi_{t}\left(b, x_{6}\right)= \begin{cases}q & \text { if } t=2, \\
p & \text { otherwise },\end{cases} \\
& \varphi_{t}\left(a p, x_{6}\right)=\left\{\begin{array}{ll}
p q & \text { if } b \neq a p, \\
\varphi_{t}\left(b, x_{6}\right) & \text { otherwise, }
\end{array} \quad \varphi_{t}\left(b p, x_{6}\right)= \begin{cases}p q & \text { if } b=a p, \\
\varphi_{t}\left(b, x_{6}\right) & \text { otherwise },\end{cases} \right.
\end{aligned}
$$

$$
\begin{gathered}
\varphi_{t}\left(a, x_{7}\right)=\left\{\begin{array}{lll}
p & \text { if } \quad b \neq a p, & t=3, \\
q p & \text { if } \quad b \neq a p, & t \neq 3, \\
r p & \text { if } \quad b=a p, & t=3, \\
q r p & \text { if } \quad b=a p, & t \neq 3,
\end{array}\right. \\
\varphi_{t}\left(a p, x_{7}\right)=q, \quad \varphi_{t}\left(b p, x_{7}\right)= \begin{cases}r & \text { if } t=2, \\
q r & \text { otherwise, }\end{cases} \\
\varphi_{t}\left(a, x_{8}\right)=\left\{\begin{array}{lll}
p & \text { if } t=3, \\
p q p & \text { otherwise, }
\end{array} \quad \varphi_{t}\left(b, x_{8}\right)=\left\{\begin{aligned}
q p & \text { if } t=3, \\
p & \text { if } t=4, \\
r p & \text { otherwise },
\end{aligned}\right.\right. \\
\varphi_{t}\left(a p, x_{8}\right)= \begin{cases}q r p & \text { if } b \neq a p, \\
p & \text { if } b \neq a p, \\
\varphi_{t}\left(b, x_{8}\right) & \text { if } \quad b=a p, \\
\text { an arbitrary input word otherwise },\end{cases} \\
\varphi_{t}\left(b p, x_{8}\right)= \begin{cases}q r p & \text { if } b=a p, \quad t=4, \\
p & \text { if } b=a p, \\
\varphi_{t}\left(b, x_{8}\right) & \text { if } b \neq a p, \\
\text { an arbitrary input word otherwise, },\end{cases}
\end{gathered}
$$

and in all other cases φ_{t} is defined arbitrarily. Take the following mappings

$$
\begin{aligned}
& \mu: \begin{array}{c}
0 \\
\vdots \\
n-1 \rightarrow(b, a, \ldots, a) \\
\\
n, \ldots, a, b)
\end{array} \begin{array}{r}
t_{1} \rightarrow x_{1}, \\
\tau: \\
t_{2} \rightarrow x_{4} x_{5} x_{6} x_{7} x_{8} x_{3} x_{1}^{n-4}, \\
t_{3} \rightarrow x_{2} x_{3} x_{1}^{n-2} .
\end{array} .
\end{aligned}
$$

Distinguishing the cases $b=a p$ and $b \neq a p$ it can be seen easily that $\mu\left(\delta_{n}^{\prime}(j), t_{l}\right)=\delta_{\mathrm{A}^{n}}\left(\mu(j), \tau\left(t_{l}\right)\right)$ for any $j \in\{0, \ldots, n-1\}$ and $l \in\{1,2,3\}$ which yields the sufficiency of (3).

In order to prove the necessity assume that none of conditions (1)-(3) is satisfied by Σ and Σ is isomorphically S-complete with respect to the generalized v_{1}-product. Since Σ does not satisfy (1) there exists a natural number $m>2$ such that Σ does not contain an automaton having the property required in (1) for any $n \geqq m$. Let $n>m{ }^{\binom{m}{2}}$ be an arbitrary fixed natural number. By the assumption on the isomorphic S-completeness of Σ, there exists a generalized ν_{1}-product $\mathbf{B}=\prod_{t=0}^{k-1} \mathbf{A}_{t}(X, \varphi, \gamma)$ of automata from Σ such that \mathbf{T}_{n} can be simulated isomorphically by \mathbf{B} under suitable μ and τ. By Lemma 3, we may suppose that $\gamma(t)=$ $=\{t-1(\bmod k)\}(t=0, \ldots, k-1)$. Let us denote by $\left(a_{10}, \ldots, a_{1 k-1}\right)$ the image of l under μ for any $l \in\{0, \ldots, n-1\}$. Consider an arbitrary nonvoid subset $\Gamma=\left\{j_{1}, \ldots, j_{r}\right\}$ of the set $\{0, \ldots, k-1\}$. Define a relation π_{r} on $\prod_{t=0}^{k-1} A_{t}$ in the following way: $\left(a_{0}, \ldots, a_{k-1}\right) \pi_{\Gamma}\left(\dot{b}_{0}, \ldots, b_{k-1}\right)$ if \cdot and only if $a_{j_{s}-\left(\frac{m}{2}\right)+u(\bmod k)}=$

[^0]$=b_{j_{s}-\binom{m}{2}+u(\bmod k)}\left(u=1, \ldots,\binom{m}{2}\right),(s=1, \ldots, r)$ for any $\left(a_{0}, \ldots, a_{k-1}\right),\left(b_{0}, \ldots, b_{k-1}\right) \in$ $\epsilon \prod_{t=0}^{k-1} A_{t}$. It is clear that π_{r} is an equivalence relation on $\prod_{t=0}^{k-1} A_{t}$. Now let us denote by \bar{B} the set $\left\{\left(a_{t 0}, \ldots, a_{l k-1}\right): 0 \leqq l \leqq n-1\right\}$ and let $\bar{\pi}_{\Gamma}=\pi_{\Gamma} \cap(\bar{B} \times \bar{B})$.

We shall show that $\left(a_{0}, \ldots, a_{k-1}\right) \bar{\pi}_{\Gamma}\left(b_{0}, \ldots, b_{k-1}\right)$ implies $\left(a_{0}, \ldots, a_{k-1}\right) \tau(t) \bar{\pi}_{\Gamma}$, $\left(b_{0}, \ldots, b_{k-1}\right) \tau(t)$ for any $t \in T_{n}$ and $\left(a_{0}, \ldots, a_{k-1}\right),\left(b_{0}, \ldots, b_{k-1}\right) \in \prod_{t=0}^{k-1} A_{t}$, where $\Gamma^{\prime}=\left\{j_{s}+|\tau(t)|(\bmod k): 1 \leqq s \leqq r\right\}$. Indeed, assume that $\left(a_{0}, \ldots, a_{k-1}\right) \bar{\pi}_{r}\left(b_{0}, \ldots, b_{k-1}\right)$ and let $t \in T_{n}$ be arbitrary. Since \mathbf{T}_{n} can be simulated isomorphically by \mathbf{B} there exist $t_{1}, t_{2}, t_{3} \in T_{n}$ such that

$$
\begin{aligned}
& \left(a_{0}, \ldots, a_{k-1}\right) \tau(t) \tau\left(t_{1}\right)=\left(b_{0}, \ldots, b_{k-1}\right) \tau(t) \tau\left(t_{1}\right) \\
& \left(a_{0}, \ldots, a_{k-1}\right) \tau(t) \tau\left(t_{1}\right) \tau\left(t_{2}\right)=\left(b_{0}, \ldots, b_{k-1}\right) \\
& \left(b_{0}, \ldots, b_{k-1}\right) \tau(t) \tau\left(t_{1}\right) \tau\left(t_{3}\right)=\left(a_{0}, \ldots, a_{k-1}\right)
\end{aligned}
$$

Let $\tau(t)=x_{1} \ldots x_{j}, \tau\left(t_{1}\right)=x_{j+1} \ldots x_{j+u}, \tau\left(t_{2}\right)=y_{1} \ldots y_{v}$ and $\tau\left(t_{3}\right)=z_{1} \ldots z_{w}$. Introduce the following notations

$$
\begin{gathered}
q_{1 t}^{(1)}=\varphi_{t}\left(a_{t-1(\bmod k)}, x_{1}\right) \quad(t=0, \ldots, k-1), \\
q_{l t}^{(1)}=\varphi_{t}\left(a_{t-1(\bmod k)} q_{1 t-1(\bmod k)}^{(1)} \ldots q_{l-1 t-1(\bmod k)}^{(1)}, x_{l}\right) \quad(t=0, \ldots, k-1), \quad(2 \leqq l \leqq j+u), \\
q_{1 t}^{(2)}=\varphi_{t}\left(b_{t-1(\bmod k)}, x_{1}\right) \quad(t=0, \ldots, k-1), \\
q_{l t}^{(2)}=\varphi_{t}\left(b_{t-1(\bmod k)} q_{1 t-1(\bmod k)}^{(2)} \ldots q_{l-1 t-1(\bmod k)}^{(2)}, x_{l}\right) \quad(t=0, \ldots, k-1), \quad(2 \leqq l \leqq j+u), \\
p_{1 t}=\varphi_{t}\left(a_{t-1(\bmod k)} q_{1 t-1(\bmod k)}^{(1)} \ldots q_{j+u t-1(\bmod k)}^{(1)}, y_{1}\right) \quad(t=0, \ldots, k-1), \\
p_{t t}=\varphi_{t}\left(a_{t-1(\bmod k)}^{(1)} q_{1 t-1(\bmod k)} \ldots q_{j+u t-1(\bmod k)}^{(1)} p_{1 t-1(\bmod k)} \ldots p_{t-1 t-1(\bmod k)}, y_{l}\right) \\
\\
(t=0, \ldots, k-1), \quad(2 \leqq l \leqq v), \\
r_{1 t}=\varphi_{t}\left(b_{t-1(\bmod k)} q_{1 t-1(\bmod k)}^{(2)} \ldots q_{j+u t-1(\bmod k)}^{(2)}, z_{1}\right) \quad(t=0, \ldots, k-1), \\
r_{l t}=\varphi_{t}\left(b_{t-1(\bmod k)}^{\prime} q_{1 t-1(\bmod k)}^{(2)} \ldots q_{j+u t-1(\bmod k)}^{(2)} r_{1 t-1(\bmod k)} \ldots r_{l-1 t-1(\bmod k)}, z_{l}\right) \\
\\
(t=0, \ldots, k-1), \quad(2 \leqq l \leqq w) .
\end{gathered}
$$

Then, by the above equations, we have that for any $t \in\{0, \ldots, k-1\}$

$$
\begin{gather*}
a_{t} q_{1 t}^{(1)} \ldots q_{j+u t}^{(1)}=b_{t} q_{1 t}^{(2)} \ldots q_{j+u t}^{(2)} \tag{i}\\
a_{t} q_{1 t}^{(1)} \ldots q_{j+u t}^{(1)} p_{1 t} \ldots p_{v t}=b_{t} \tag{ii}\\
b_{t} q_{1 t}^{(2)} \ldots q_{j+u t}^{(2)} r_{1 t} \ldots r_{w t}=a_{t} . \tag{iii}
\end{gather*}
$$

Now let us denote by $\left(a_{0}^{(0)}, \ldots, a_{k-1}^{(0)}\right),\left(b_{0}^{(0)}, \ldots, b_{k-1}^{(0)}\right)$ the states $\left(a_{0}, \ldots, a_{k-1}\right)$, $\left(b_{0}, \ldots, b_{k-1}\right)$ and $\left(a_{0}^{(i)}, \ldots, a_{k-1}^{(i)}\right),\left(b_{0}^{(i)}, \ldots, b_{k-1}^{(i)}\right)$ the states $\left(a_{0}, \ldots, a_{k-1}\right) x_{1} \ldots x_{i}$, $\left(b_{0}, \ldots, b_{k-1}\right) x_{1} \ldots x_{i}(i=1, \ldots, j)$, respectively. To prove our statement we show that $\left(a_{0}, \ldots, a_{k-1}\right) \quad \bar{\pi}_{\Gamma}\left(b_{0}, \ldots, b_{k-1}\right)$ implies $\left(a_{0}^{(i)}, \ldots, a_{k-1}^{(i)}\right) \pi_{\Gamma_{t}}\left(b_{0}^{(i)}, \ldots, b_{k-1}^{(i)}\right)$ for any $0 \leqq i \leqq j$, where $\Gamma_{i}=\left\{j_{s}+i(\bmod k): 1 \leqq s \leqq r\right\}$. We proceed by induction on i. $\left(a_{0}^{(0)}, \ldots, a_{k-1}^{(0)}\right) \pi_{\Gamma_{0}}\left(b_{0}^{(0)}, \ldots, b_{k-1}^{(0)}\right)$ obviously holds. Now assume that our statement
has been proved for $i-1(1 \leqq i \leqq j)$. Then from $\left(a_{0}^{(i-1)}, \ldots, a_{k-1}^{(i-1)}\right) \pi_{r_{i-1}}\left(b_{0}^{(i-1)}, \ldots\right.$ $\ldots, b_{k-1}^{(i-1)}$) it follows that

$$
a_{j_{s}-\left(c_{2}^{m}\right)+l+i-1(\bmod k)}^{(i-1)}=b_{j_{s}-\left(l_{2}^{m}\right)+l+i-1(\bmod k)}^{(i-1)} \quad\left(l=1, \ldots,\binom{m}{2}\right), \quad(s=1, \ldots, r) .
$$

Therefore, by the definition of $q_{t t}^{(1)}, q_{l t}^{(2)}$ we have that
and thus $a_{j_{s}-\left(\left(_{2}^{m}\right)+l+i(\bmod k)\right.}^{(i)}=b_{j_{s}-\left(C_{2}^{m}\right)+l+i(\bmod k)}^{(i)}\left(l=1, \ldots,\binom{m}{2}-1\right),(s=1, \ldots, r)$.
Now, if $a_{j_{s}+i(\bmod k)}^{(i)}=b_{j_{s}+i(\bmod k)}^{(i)}$ for all $1 \leqq s \leqq r$ then we get that ($\left.a_{0}^{(i)}, \ldots, a_{k-1}^{(i)}\right) \pi_{r_{i}}\left(b_{0}^{(i)}, \ldots, b_{k-1}^{(i)}\right)$ and so we are ready. In the opposite case there exists an index $s \in\{1, \ldots, r\}$ such that $a_{j_{s}+i(\bmod k)}^{(i)} \neq b_{j_{s}+i(\bmod k)}^{(i)}$. Let us denote by f the index $j_{s}+i(\bmod k)$. Then $a_{f}^{(i)} \neq b_{f}^{(i)}$. From this, by $q_{i f}^{(1)}=q_{i f}^{(2)}$, it follows that $a_{f}^{(i-1)} \neq b_{f}^{(i-1)}$ and $a_{f}^{(i-1)} q_{i f}^{(1)} \neq b_{f}^{(i-1)} q_{i f}^{(1)}$. Now let $h=\min \left(j+u-i,\binom{m}{2}-1\right)$. Then, by $a_{f-\left(2_{2}^{(i)}\right)+l(\bmod k)}^{(i)}=b_{f-\left(2_{2}^{m}\right)+l(\bmod k)}^{(i)}\left(l=1, \ldots,\binom{m}{2}-1\right)$, we have that $q_{i+l f}^{(1)}=$ $=q_{i+l f}^{(2)}\left(l=1, \ldots,\binom{m}{2}-1\right)$. Therefore, $q_{i+1 f}^{(1)} \ldots q_{i+h f}^{(1)}=q_{i+1 f}^{(2)} \ldots q_{i+h f}^{(2)}$. Now we show that $a_{f}^{(i)} q_{i+1 f}^{(1)} \ldots q_{i+h f}^{(1)}=b_{f}^{(i)} q_{i+1 f}^{(1)} \ldots q_{i+h f}^{(1)}$. Indeed, if $h=i+u-i$ then we get the required equality from (i). If $h=\binom{m}{2}-1$ then let us consider the sets $M_{l}(l=0, \ldots, h)$ defined by $M_{0}=\left\{a_{f}^{(i)}, b_{f}^{(i)}\right\}$ and $M_{l}=M_{l-1} q_{i+l f}^{(1)}(l=1, \ldots, h)$. If $\left|M_{l}\right|=1$ for some $l \in\{1, \ldots, h\}$ then $a_{f}^{(i)} q_{i+1 f}^{(1)} \ldots q_{i+l f}^{(1)}=b_{f}^{(i)} q_{i+1 f}^{(1)} \ldots q_{i+l f}^{(1)}$ and thus $a_{f}^{(i)} q_{i+1 f}^{(1)} \ldots q_{i+h f}^{(1)}=$ $=b_{f}^{(i)} q_{i+1 f}^{(1)} \ldots q_{i+h f}^{(1)}$. Therefore, it is enough to consider the case for which $\left|M_{l}\right|=2$ for all $l \in\{0, \ldots, h\}$. If $M_{g}=M_{l}$ for some $0 \leqq g<l \leqq h$ then $M_{g} p=M_{l}$ where $p=q_{i+g+1 f \ldots}^{(1)} \ldots q_{i+l f}^{(1)}$. But in this case it can be seen easily that the automaton \mathbf{A}_{f} has the property required in (2) which is a contradiction. Now consider the case for which $\left|M_{l}\right|=2$ for all $l \in\{0, \ldots, h\}$ and the sets $M_{l}(l=0, \ldots, h)$ are pairwise different. It is not difficult to see that from (ii) and (iii) it follows that for any $a, b \in \bigcup_{t=0}^{h} M_{t}$ there exists an input word p of \mathbf{A}_{f} with $a p=b$. From this, by the definition m, we obtain that $\left|\bigcup_{l=0}^{h} M_{l}\right|=m^{\prime}<m$. Thus we got that a set with cardinality $m^{\prime}(<m)$ has $\binom{m}{2}$ pairwise different subsets of two elements which is a contradiction. Therefore, we have proved that $a_{f}^{(i)} q_{i+1 f}^{(1)} \ldots q_{i+h f}^{(1)}=b_{f}^{(i)} q_{i+1 f \ldots}^{(1)} q_{i+h f}^{(1)}$. In this case, by (i), (ii), (iii), it can be seen easily that the automaton \mathbf{A}_{f} with the states $a_{f}^{(i-1)}, b_{f}^{(i-1)}$ has the property required in (3) which is a contradiction. So we get a contradiction from the assumption $a_{j_{s}+i(\bmod k)}^{(i)} \neq b_{j_{s}+i(\bmod k)}^{(i)}$ for some $s \in\{1, \ldots, r\}$. Therefore, $a_{j_{s}+i(\bmod k)}^{(i)}=b_{j_{s}+i(\bmod k)}^{(i)}$ for all $s \in\{1, \ldots, r\}$ and thus $\left(a_{0}^{(i)}, \ldots, a_{k-1}^{(i)}\right) \pi_{\Gamma_{i}}\left(b_{0}^{(i)}, \ldots, b_{k-1}^{(i)}\right)$. From this, by $i=j$ we obtain that $\left(a_{0}, \ldots, a_{k-1}\right) x_{1} \ldots x_{j} \pi_{r_{j}}\left(b_{0}, \ldots, b_{k-1}\right) x_{1} \ldots x_{j}$ i.e. $\left(a_{0}, \ldots, a_{k-1}\right) \tau(t) \pi_{\Gamma^{\prime}}\left(b_{0}, \ldots, b_{k-1}\right) \tau(t)$. On the other hand $\left(a_{0}, \ldots, a_{k-1}\right) \tau(t)$, $\left(b_{0}, \ldots, b_{k-1}\right) \tau(t) \in \widetilde{B}$ and thus $\left(a_{0}, \ldots, a_{k-1}\right) \tau(t) \bar{\pi}_{\Gamma^{\prime}}\left(b_{0}, \ldots, b_{k-1}\right) \tau(t)$ which ends the proof of the statement.

Since $n>m^{\left(\frac{m}{2}\right)}$ there exists a subset $\Gamma \subseteq\{0, \ldots, k-1\}$ such that $\bar{\pi}_{\Gamma} \neq \Delta_{B}$, where Δ_{B} denotes the identity relation on $\overline{\bar{B}}$. Therefore, the set $C=\{\Gamma: \Gamma \subseteq$ $\left.\subseteq\{0, \ldots, k-1\}, \Gamma \neq \emptyset, \bar{\pi}_{\Gamma} \neq \Delta_{B}\right\}$ is nonempty. Then let us denote by $\Gamma=\left\{j_{1}, \ldots, j_{r}\right\}$ such an element of C for which $|\Gamma|$ is maximal. Since $\bar{\pi}_{\Gamma} \neq \Delta_{B}$ there exist $u \neq$ $\neq v \in\{0, \ldots, n-1\}$ with $\mu(u) \bar{\pi}_{\Gamma} \mu(v)$. Consider the element $t_{1} \in T_{n}$ defined by $t_{1}(u)=v$, $t_{1}(v)=u$ and $t_{1}(l)=l$ if $l \in\{0, \ldots, n-1\} \backslash\{u, v\}$. By the isomorphic simulation,
we have that $\mu(u) \tau\left(t_{1}\right)=\mu(v), \mu(v) \tau\left(t_{1}\right)=\mu(u)$ and $\mu(l) \tau\left(t_{1}\right)=\mu(l)$ if $l \subseteq\{0, \ldots, n-1\} \backslash$ $\backslash\{u, v\}$. On the other hand $\mu(u) \bar{\pi}_{\Gamma} \mu(v)$ and thus $\rho(u) \tau\left(t_{1}\right) \bar{\pi}_{\Gamma}, \mu(v) \tau\left(t_{1}\right)$, where $\Gamma^{\prime}=\left\{j_{s}+\left|\tau\left(t_{1}\right)\right|(\bmod k): 1 \leqq s \leqq r\right\}$. Therefore, $\mu(u) \bar{\pi}_{\Gamma^{\prime}} \mu(v)$. It is clear that the mapping $\beta_{1}: t \rightarrow t+\left|\tau\left(t_{1}\right)\right|(\bmod k)(t=0, \ldots, k-1)$ is. a permutation of the set $\{0, \ldots, k-1\}$ and thus $|\Gamma|=\left|\Gamma^{\prime}\right|$. By the maxima'ity of $|\Gamma|$ we have that $\Gamma^{\prime} \subseteq \Gamma$ and thus $\Gamma=\Gamma^{\prime}$. This means that the mapping $\not \beta^{\prime}$ fixes the set Γ, i.e. $\beta_{1}(\Gamma)=\Gamma$, where $\beta_{1}(\Gamma)$ denotes the set $\left\{\beta_{1}(t): t \in \Gamma\right\}$. On the other hand it is not difficult to see that β_{1} fixes a subset M of the set $\{0, \ldots, k-1\}$ if and only if

$$
M=\left\{i, i+\left|\tau\left(t_{1}\right)\right|(\bmod k), \ldots, i+(f-1)\left|\tau\left(t_{1}\right)\right|(\bmod k)\right\}
$$

for some $i \in\left\{0,1, \ldots\right.$, g.c.d. $\left.\left(k,\left|\tau\left(t_{1}\right)\right|\right)-1\right\}$ or M is equal to an union of such sets, where g.c.d. $\left(k,\left|\tau\left(t_{1}\right)\right|\right)$ denotes the greatest common divisor of the numbers $k,\left|\tau\left(t_{1}\right)\right|$ and $f=k / \mathrm{g} . \mathrm{c} . \mathrm{d}\left(k,\left|\tau\left(t_{1}\right)\right|\right)$. Furthermore, it is clear that the considered sets $m_{i}=$ $=\left\{i, i+\left|\tau\left(t_{1}\right)\right|(\bmod k), \ldots, i+(f-1)\left|\tau\left(t_{1}\right)\right|(\bmod k)\right\}$ form a partition of $\{0, \ldots, k-1\}$. Thus assume that $\Gamma=\bigcup_{t=1}^{g} m_{i^{*}}$. Now consider the set $\bar{B} \backslash\{\mu(u), \mu(v)\}$. Since $n \geqq 3$ there exists an element $w \in\{0, \ldots, n-1\}$ such that $\mu(w) \in \bar{B} \backslash\{\mu(u), \mu(v)\}$. Let us denote by t_{2} a cyclic permutation from T_{n} with $t_{2}(u)=v$ and $t_{2}(v)=w$. By the isomorphic simulation we have that $\mu(u) \tau\left(t_{2}\right)=\mu(v)$ and $\mu(v) \tau\left(t_{2}\right)=\mu(w)$. On the other hand $\mu(u) \bar{\pi}_{\Gamma} \mu(v)$. Therefore, $\mu(u) \tau\left(t_{2}\right) \bar{\pi}_{\Gamma^{\prime}} \mu(v) \tau\left(t_{2}\right)$ where $\Gamma^{\prime}=\left\{j_{s}+\left|\tau\left(t_{2}\right)\right|\right.$ $(\bmod k): 1 \leqq s \leqq r\}$. Since the mapping $\beta_{2}: t \rightarrow t+\left|\tau\left(t_{2}\right)\right|(\bmod k)(t=0, \ldots, k-1)$ is a permutation of $\{0, \ldots, k-1\}$ we obtain that $|\Gamma|=\left|\Gamma^{\prime}\right|$. Now we distinguish two cases.

First assume that $\Gamma=\Gamma^{\prime}$. Then it is not difficult to see that $\mu(u) \bar{\pi}_{\Gamma} \mu(l)$ holds for any $l \in\{0, \ldots, n-1\}$ which contradicts the maximality of $|\Gamma|$.

Now assume that $\Gamma \neq \Gamma^{\prime}$. Observe that $\Gamma^{\prime}=\bigcup_{t=1}^{g} \beta_{2}\left(m_{i_{t}}\right)$ and $\beta_{2}\left(m_{i_{t}}\right)=$
 there exists an index $j \in\left\{0, \ldots\right.$, g.c.d. $\left.\left(k,\left|\tau\left(t_{1}\right)\right|\right)-1\right\}$ with $m_{j} \cap \Gamma=\emptyset$ and $m_{j} \subseteq \Gamma^{\prime}$. On the other hand $\mu(v) \bar{\pi}_{\Gamma^{\prime}} \mu(w)$ and thus $\mu(v) \tau\left(t_{1}\right) \bar{\pi}_{\Gamma^{\prime \prime}} \mu(w) \tau\left(t_{1}\right)$ where $\Gamma^{\prime \prime}=\beta_{1}\left(\Gamma^{\prime}\right)$. By $\mu(v) \tau\left(t_{1}\right)=\mu(u)$ and $\mu(w) \tau\left(t_{1}\right)=\mu(w)$ we obtain that $\mu(u) \bar{\pi}_{r^{\prime \prime}} \mu(w)$. Since β_{1} fixes the sets $m_{i}\left(i=0, \ldots\right.$, g.c.d. $\left.\left(k,\left|\tau\left(t_{1}\right)\right|\right)-1\right)$ we have that $m_{j} \subseteq \Gamma^{\prime \prime}$. Then $j \in \Gamma^{\prime}$ and $j \in \Gamma^{\prime \prime}$ and thus

$$
\begin{array}{ll}
a_{v j-\left(\left(_{2}^{m}\right)+l(\bmod k)\right.}=a_{w j-\binom{m}{m}+l(\bmod k)} \quad\left(l=1, \ldots,\binom{m}{2}\right), \\
a_{w j-\left(\frac{m}{m}\right)+l(\bmod k)}=a_{\nu j-\binom{m}{2}+l(\bmod k)} \quad\left(l=1, \ldots,\binom{m}{2}\right) .
\end{array}
$$

From this it follows that $j \in \Gamma$ which is a contradiction. This ends the proof of the necessity.

The next theorem holds for the generalized v_{i}-product if $i>1$.
Theorem 3. A system Σ of automata is isomorphically S-complete with respect to the generalized v_{i}-product ($i>1$) if and only if Σ contains an automaton which has two different states a, b and input words p, q such that $a p=b$ and $b q=a$.

Proof. The necessity is obvious. Conversely, assume that Σ satisfies the condition of Theorem 3 by \boldsymbol{A}. Let $n \geqq 3$ be arbitrary and take the generalized ν_{2}-product
$\mathrm{A}^{n}(X, \varphi, \gamma)$ where $X=\left\{x_{1}, \ldots, x_{6}\right\}$ and the mappings γ, φ are defined in the following way: for any $t \in\{0, \ldots, n-1\}$

$$
\begin{aligned}
& \gamma(t)=\{t, t-1(\bmod n)\}, \\
& \varphi_{t}\left(a, a, x_{1}\right)=p q, \varphi_{t}\left(a, b, x_{1}\right)=q, \varphi_{t}\left(b, a, x_{1}\right)=p, \\
& \varphi_{0}\left(a, a, x_{2}\right)=\varphi_{0}\left(b, a, x_{2}\right)=p, \varphi_{0}\left(a, b, x_{2}\right)=q, \varphi_{1}\left(a, a, x_{2}\right)=p q, \varphi_{1}\left(a, b, x_{2}\right)=q, \\
& \varphi_{1}\left(b, a, x_{2}\right)=p, \quad \varphi_{t}\left(u, v, x_{2}\right)= \begin{cases}p q & \text { if } \quad v=a, \\
q p & \text { if } \quad v=b, \quad(t=2, \ldots, n-1),\end{cases} \\
& \varphi_{t}\left(u, v, x_{3}\right)= \begin{cases}p q & \text { if } \quad v=a, \\
q p & \text { if } \quad v=b, \quad(t=0,1),\end{cases} \\
& \varphi_{t}\left(u, v, x_{3}\right)=\left\{\begin{array}{lll}
p & \text { if } v=a, \quad u=b, \\
p q & \text { if } v=a, & u=a, \\
q p & \text { if } v \neq a & (t=2, \ldots, n-1),
\end{array}\right. \\
& \varphi_{0}\left(a, a, x_{4}\right)=\varphi_{0}\left(b, a, x_{4}\right)=p q, \quad \varphi_{0}\left(a, b, x_{4}\right)=q p, \quad \varphi_{0}\left(b, b, x_{4}\right)=q, \\
& \varphi_{t}\left(u, v, x_{4}\right)= \begin{cases}p q & \text { if } \quad v=a, \\
q p & \text { if } \quad v=b, \quad(t=1, \ldots, n-1),\end{cases} \\
& \varphi_{t}\left(u, v, x_{5}\right)=\left\{\begin{array}{lll}
p q & \text { if } \quad v=a, \\
q p & \text { if } \quad v=b, \quad(t=0,1),
\end{array}\right. \\
& \varphi_{t}\left(u, v, x_{5}\right)= \begin{cases}q & \text { if } \quad u=v=b, \\
q p & \text { if } \quad u=a, \quad v=b, \\
p q & \text { if } \quad v=a, \quad(t=2, \ldots, n-1),\end{cases} \\
& \varphi_{0}\left(a, a, x_{6}\right)=\varphi_{0}\left(b, a, x_{6}\right)=p, \varphi_{0}\left(a, b, x_{6}\right)=q p, \\
& \varphi_{1}\left(a, a, x_{6}\right)=\varphi_{1}\left(b, a, x_{6}\right)=p q, \quad \varphi_{1}\left(a, b, x_{6}\right)=q, \\
& \varphi_{t}\left(u, v, x_{6}\right)= \begin{cases}p q & \text { if } \quad v=a, \\
q p & \text { if } \quad v=b, \quad(t=2, \ldots, n-1) .\end{cases}
\end{aligned}
$$

In the remaining cases $\varphi_{t}\left(u, v, x_{j}\right)$ is an arbitrary input word from $\{p, q\}$. Now consider the mappings:

$$
\begin{aligned}
& 0 \rightarrow(b, a, \ldots, a), \quad t_{1} \rightarrow x_{1}, \\
& \mu: 1 \rightarrow(a, b, \ldots, a), \quad \tau: t_{2} \rightarrow x_{2} x_{3}^{n-3} x_{4} x_{5}, \\
& \vdots \quad t_{3} \rightarrow x_{6} x_{3}^{n-3} x_{4} x_{5} .
\end{aligned}
$$

It is not difficult to see that the automaton \mathbf{T}_{n}^{\prime} can be simulated isomorphically by $\mathbf{A}^{n}(X, \varphi, \gamma)$ under μ and τ.

References

1] Gécseg, F., On products of abstract automata, Acta Sci. Math. (Szeged), v. 38, 1976, pp. 21-43.
[2] Gluskov, V. М., Абстрактная теория автоматов, Успехи Мат. Наук, v. 16:5(101), 1961, pp. 3-62.
[3] Gluskov, V. M., О полноте систем операции в электронных вычислительных машин, Кибернетика, v. 2, 1968, pp. 1-5.
[4] Імreh, B., On α_{i}-products of automata, Acta Cybernet., v. 3, 1978, pp. 301-307.
(Received Oct. 16, 1982)

[^0]: 3 Acta Cybernetica VI/2

