On v_i -products of automata

By P. DÖMÖSI* and B. IMREH**

In this paper we introduce a family of compositions and investigate it from the point of view of isomorphic completeness. Using results concerning well-known types of compositions, we give necessary and sufficient conditions for a system of automata to be isomorphically complete with respect to these products.

By an *automaton* we mean a finite automaton without output. For any nonvoid set X let us denote by X^* the free monoid generated by X. Furthermore, denote by X^+ the free semigroup generated by X. Considering an automaton $\mathbf{A}=(X, A, \delta)$, the transition function δ can be extended to $A \times X^* \to A$ in the following way: $\delta(a, \lambda) = a$ and $\delta(a, p) = \delta(\delta(a, p'), x)$ for any $a \in A, p = p' x \in X^*$, where λ denotes the empty word of X^* . Further on we shall use the notation ap_A for $\delta(a, p)$. If there is no danger of confusion then we omit the index A in ap_A . Let M be an arbitrary nonvoid set. Denote by P(M) the set of all subsets of M.

Let $A_i = (X_i, A_i, \delta_i)$ (t=0, ..., n-1) be a system of automata. Moreover let X be a finite nonvoid set, φ a mapping of $A_0 \times ... \times A_{n-1} \times X$ into $X_0 \times ... \times X_{n-1}$ and γ a mapping of $\{0, ..., n-1\}$ into $P(\{0, ..., n-1\})$ such that φ can be given in the form

$$\varphi(a_0, ..., a_{n-1}, x) = (\varphi_0(a_0, ..., a_{n-1}, x), ..., \varphi_{n-1}(a_0, ..., a_{n-1}, x))$$

where each φ_t $(0 \le t \le n-1)$ is independent of states, which have indices not contained in the set $\gamma(t)$. We say that $\mathbf{A} = \left(X, \prod_{t=0}^{n-1} A_t, \delta\right)$ is a v_i -product of \mathbf{A}_t $(t=0, \ldots, n-1)$ with respect to X, φ and γ if $|\gamma(t)| \le i$ $(t=0, \ldots, n-1)$ and for any $(a_0, \ldots, a_{n-1}) \in \prod_{t=0}^{n-1} A_t$ and $x \in X$

$$\delta((a_0, \ldots, a_{n-1}), x) =$$

$$= (\delta_0(a_0, \varphi_0(a_0, ..., a_{n-1}, x)), ..., \delta_{n-1}(a_{n-1}, \varphi_{n-1}(a_0, ..., a_{n-1}, x))).$$

For this product we use the notation $\prod_{t=0}^{n-1} \mathbf{A}_t(X, \varphi, \gamma)$.

It is clear that the v_0 -product is the same as the quasi-direct product. Therefore, we consider the case $i \ge 1$ only. Furthermore, it is interesting to note that if $n=2, i=1, \gamma(0) = \{1\}, \gamma(1) = \{0\}$ then we obtain the cross product (see [2]) as a special case of the v_1 -product. Finally, observe that the v_i -product is rearrangable, i.e. changing the order of components of a v_i -product $\prod_{t=0}^{n-1} A_t(X, \varphi, \gamma)$ and choosing suitable mappings φ', γ' we get such a v_i -product which is isomorphic to the original one.

Let Σ be a system of automata. Σ is called *isomorphically complete* with respect to the v_i -product if any automaton can be embedded isomorphically into a v_i -product of automata from Σ . Furthermore, Σ is called a *minimal* isomorphically complete system if Σ is isomorphically complete and for arbitrary $A \in \Sigma$ the system $\Sigma \setminus \{A\}$ is not isomorphically complete.

For any natural number $n \ge 1$ denote by $\mathbf{D}_n = (X_n, \{1, ..., n\}, \delta_n)$ the automaton for which $X_n = \{x_{rs}: 1 \le r, s \le n\}$ and

$$\delta_n(t, x_{rs}) = \begin{cases} s & \text{if } t = r, \\ t & \text{otherwise} \end{cases}$$

for any $t \in \{1, \ldots, n\}$ and $x_{rs} \in X_n$.

The following theorem holds for the v_i -products if $i \ge 1$.

Theorem 1. A system Σ of automata is isomorphically complete with respect to the v_i -product $(i \ge 1)$ if and only if for any natural number $n \ge 1$, there exists an automaton $A \in \Sigma$ such that D_n can be embedded isomorphically into a v_i -product of A with a single factor.

Proof. Theorem 1 can be proved in a similar way as the corresponding statement for the α_i -products in [4]. The sufficiency follows from Theorem 2 in [4], but it is not difficult to see directly. In order to prove the necessity we show that for any $n \ge 1$ if \mathbf{D}_n can be embedded isomorphically into a v_i -product of automata from Σ then there exists an automaton $\mathbf{A} \in \Sigma$ such that \mathbf{D}_{i+1} can be embedded $[\sqrt[i]{\eta_i}]$

isomorphically into a v_i -product of **A** with a single factor, where $\begin{bmatrix} i & 1 \\ v & n \end{bmatrix}$ denotes the largest integer less than or equal to $\frac{i+1}{\sqrt{n}}$.

If n=1 then the statement is obvious. Now let n>1 and assume that \mathbf{D}_n can be embedded isomorphically into a v_i -product $\mathbf{B} = \prod_{i=0}^{k} \mathbf{A}_i(X_n, \varphi, \gamma)$ of automata $\mathbf{A}_i = (X'_i, A_i, \delta_i) \in \Sigma$ (t=0, ..., k). Let us denote by μ such an isomorphism and for any $t \in \{1, ..., n\}$ denote by $(a_{i0}, ..., a_{ik})$ the image of t under μ . We distinguish two cases depending on the sets $\gamma(t)$ (t=0, ..., k). If $\gamma(t) = \emptyset$ for all $t \in \{0, ..., k\}$ then **B** is a quasi-direct product. Since the quasi-direct product can be considered as a special α_{i+1} -product $\prod_{i=1}^{k} \mathbf{A}_i(X_n, \varphi)$ of automata from Σ . From this, by the proof of Theorem 2 in [4], it follows that there exists an automaton $\mathbf{A} \in \Sigma$ such that $\mathbf{D}_{t+1}^{(r+1)}$ can be embedded isomorphically into an α_{i+1} -product with a single factor. Since an α_{i+1} -product with a single factor is a v_i -product with a single factor we have proved the statement for this case.

Now assume that $\gamma(t) \neq \emptyset$ for some $t \in \{0, ..., k\}$. By the rearrangability of v_i -products, without loss of generality we may suppose that $\gamma(0) \neq \emptyset$. We show that \mathbf{D}_n can be embedded isomorphically into a v_{i+1} -product of automata from $\{\mathbf{A}_0, ..., \mathbf{A}_k\}$ with at most i+1 factors. If $k \leq i$ then we are ready. Assume that k > i. We may suppose that there exist natural numbers $r \neq s$ $(1 \leq r, s \leq n)$ such that $a_{r0} \neq a_{s0}$ since otherwise \mathbf{D}_n can be embedded isomorphically into a v_i -product of automata from $\{\mathbf{A}_0, ..., \mathbf{A}_k\}$ with k factors. Let $\gamma(0) = \{j_1, ..., j_w\}$. By the definition of the v_i -product, we have that $w \leq i$ and

$$\varphi_0(a_0, ..., a_k, x) = \varphi_0(a_{j_1}, ..., a_{j_w}, x)$$
 for any $(a_0, ..., a_k) \in \prod_{t=0} A_t$ and $x \in X_n$.

We prove that the elements $(a_{i0}, a_{ij_1}, ..., a_{ij_w})$ (t=1, ..., n) are pairwise different. Indeed, assume that $a_{u0} = a_{v0}$ and $a_{ut} = a_{vt}$ $(t=j_1, ..., j_w)$ for some $u \neq v$ $(1 \leq u, v \leq n)$. Then $\varphi_0(a_{uj_1}, ..., a_{uj_w}, x) = \varphi_0(a_{vj_1}, ..., a_{vj_w}, x)$ for any $x \in X_n$. Therefore, in the v_i -product **B** the automaton A_0 obtains the same input signal in the states a_{u0} and a_{v0} for any $x \in X_n$. Since μ is isomorphism, $u \neq v$ and $a_{u0} = a_{v0}$, thus the automaton A_0 goes from the state a_{u0} into the state a_{i0} and from the state a_{v0} it goes into the state a_{v0} for any x_{ut} (t=1, ..., n). This implies $a_{v0} = a_{t0}$ (t=1, ..., n)which contradicts our assumption $a_{r0} \neq a_{s0}$. Therefore, we have that the elements $(a_{t0}, a_{tj_1}, ..., a_{tj_w})$ (t=1, ..., n) are pairwise different. Now take the following v_{i+1} -product $\mathbf{C} = \mathbf{A}_0 \times \mathbf{A}_{j_1} \times ... \times \mathbf{A}_{j_w} (X_n, \psi, \bar{\gamma})$ where for any $t \in \{0, ..., w\}$ $\bar{\gamma}(t) =$ $= \{0, 1, ..., w\}$ and

$$\psi_t(b_0, \dots, b_w, x) = \begin{cases} \varphi_0(a_{r0}, \dots, a_{rk}, x) & \text{if } t = 0 \text{ and there exists } 1 \leq r \leq n \\ & \text{such that } b_0 = a_{r0}, \quad b_s = a_{rj_s} \quad (s = 1, \dots, w), \\ \varphi_{j_t}(a_{r0}, \dots, a_{rk}, x) & \text{if } t \neq 0 \text{ and there exists } 1 \leq r \leq n \\ & \text{such that } b_0 = a_{r0}, \quad b_s = a_{rj_s} \quad (s = 1, \dots, w), \\ & \text{otherwise arbitrary input signal from } X'_0 & \text{if} \\ & t = 0 \text{ and from } X'_{j_t} & \text{if } t \neq 0, \end{cases}$$

for all $(b_0, ..., b_w) \in A_0 \times A_{j_1} \times ... \times A_{j_w}$ and $x \in X_n$. It is not difficult to see that the correspondence $\mu': t \to (a_{i0}, a_{ij_1}, ..., a_{ij_w})$ (t = 1, ..., n) is an isomorphism of \mathbf{D}_n into **C**. Therefore, we have that \mathbf{D}_n can be embedded isomorphically into a v_{i+1} -product of automata from $\{\mathbf{A}_0, ..., \mathbf{A}_k\}$ with at most i+1 factors. But a v_{i+1} -product with at most i+1 factors is an α_{i+1} -product and thus, in a similar way as in the first case, we obtain that \mathbf{D}_{i+1} can be embedded isomorphically into a v_i -product of \mathbf{A}_i with a single factor for some $0 \le t \le k$. This ends the proof of

a v_i -product of \mathbf{A}_i with a single factor for some $0 \le i \le k$. This ends the proof of Theorem 1.

Observe that \mathbf{D}_m can be embedded isomorphically into a v_0 -product of \mathbf{D}_n with a single factor for any $m \leq n$. Using this fact, by Theorem 1, we get the following

COROLLARY. There exists no system of automata which is isomorphically complete with respect to the v_i -product $(i \ge 1)$ and minimal.

In [1] F. Gécseg has introduced the concepts of the generalized α_i -product and the simulation and characterized the isomorphically and homomorphically complete systems with respect to them. Further on we shall introduce the concept of the generalized v_i -product and investigate the isomorphically complete systems with respect to this product and the simulation.

We say that an automaton $A = (X, A, \delta)$ isomorphically simulates $B = (Y, B, \delta')$ if there exist one-to-one mappings $\mu: B \to A$ and $\tau: Y \to X^+$ such that $\mu(\delta'(b, y)) = = \delta(\mu(b), \tau(y))$ for any $b \in B$ and $y \in Y$. The following obvious observation holds for the isomorphic simulation.

Lemma 1. If A can be simulated isomorphically by B and B can be simulated isomorphically by C then C isomorphically simulates A.

Let $A_i = (X_i, A_i, \delta_i)$ (t = 0, ..., n-1) be a system of automata. Moreover let X be a finite nonvoid set, φ a mapping of $A_0 \times ... \times A_{n-1} \times X$ into $X_0^+ \times ... \times X_{n-1}^+$ and γ a mapping of $\{0, ..., n-1\}$ into $P(\{0, ..., n-1\})$ such that φ can be given in the form

$$\varphi(a_0, \ldots, a_{n-1}, x) = (\varphi_0(a_0, \ldots, a_{n-1}, x), \ldots, \varphi_{n-1}(a_0, \ldots, a_{n-1}, x))$$

where each $\varphi_t(0 \le t \le n-1)$ is independent of states, which have indices not contained ed in the set $\gamma(t)$. We say that $\mathbf{A} = \left(X, \prod_{i=0}^{n-1} A_i, \delta\right)$ is a generalized v_i -product of \mathbf{A}_t (t=0,...,n-1) with respect to X, φ and γ if $|\gamma(t)| \le i$ (t=0,...,n-1) and for any $(a_0,...,a_{n-1}) \in \prod_{t=0}^{n-1} A_t$ and $x \in X$ $\delta((a_0,...,a_{n-1}), x) = (\delta_0(a_0,\varphi_0(a_0,...,a_{n-1},x)), ...$ $\dots, \delta_{n-1}(a_{n-1},\varphi_{n-1}(a_0,...,a_{n-1},x)))$.

A system Σ of automata is called *isomorphically S-complete* with respect to the generalized v_i -product if any automaton can be simulated isomorphically by a generalized v_i -product of automata from Σ .

Observe that in the definitions of the simulation and the generalized v_i -product all input words are different from the empty word. Therefore, further on, by an input word we mean a nonempty word. Also the following notation will be used. If k, s are integers and t is a natural number then $k+s \pmod{t}$ denotes the least nonnegative residue of k+s modulo t. Furthermore, for any $n \ge 1$ denote by $T_n = (T_n, \{0, ..., n-1\}, \delta_n)$ the automaton for which T_n is the set of all transformations of $\{0, ..., n-1\}$ and $\delta_n(k, t) = t(k)$ for any $k \in \{0, ..., n-1\}$ and $t \in T_n$.

Lemma 2. If \mathbf{T}_n can be simulated isomorphically by a generalized α_0 -product $\prod_{i=0}^{k} \mathbf{A}_i(X, \varphi)$ then \mathbf{T}_n can be simulated isomorphically by \mathbf{A}_j for some $j \in \{0, ..., k\}$.

Proof. Lemma 2 follows from the proof of Theorem 1 in [1]. Now we give another proof. Obviously it is enough to prove the statement for the generalized α_0 -product of two factors. Indeed, assume that \mathbf{T}_n can be simulated isomorphically by the generalized α_0 -product $\mathbf{A} \times \mathbf{B}(X, \varphi)$ under μ and τ . Let us denote by (a_t, b_t) the image of t under μ (t=0, ..., n-1). If $a_0=a_t$ for all $t \in \{1, ..., n-1\}$ then the elements b_t (t=0, ..., n-1) are pairwise different. Now define the mapping τ' in the following way: for any $t_u \in T_n \tau'(t_u) = \varphi_1(a_0, y_1) \dots \varphi_1(a_0, y_s)$ if $\tau(t_u) = y_1 \dots y_s$. Let us denote by μ' the mapping determined by $\mu'(t) = b_t$ (t=0, ..., n-1). It is not difficult to see that **B** isomorphically simulates \mathbf{T}_n under μ' and τ' . Now assume that there exist natural numbers $r \neq s$ $(0 \leq r, s \leq n-1)$ such that $a_r \neq a_s$. In this case we show that the states a_t (t=0, ..., n-1) are pairwise different. Suppose that $a_u = a_v$ for some $u \neq v$ $(0 \leq u, v \leq n-1)$. Let us denote by t_{ij} the element of T_n for which $t_{ij}(i) = j$ and $t_{ij}(k) = k$ if $k \neq i$ (k=0, 1, ..., n-1) for all

í

i, *j* $(0 \le i, j \le n-1)$. Now let $w \in \{0, ..., n-1\}$ be arbitrary. Then $t_{uw}(u) = w$ and $t_{uw}(v) = v$. By isomorphic simulation, $(a_u, b_u)\tau(t_{uw}) = (a_w, b_w)$ and $(a_v, b_v)\tau(t_{uw}) = (a_v, b_v)$. Let $\tau(t_{uw}) = y_1 \dots y_m$. Then $a_u \varphi_0(y_1) \dots \varphi_0(y_m) = a_w$ and $a_v \varphi_0(y_1) \dots \varphi_0(y_m) = a_v$. Therefore, by $a_u = a_v$, we obtain $a_w = a_v$. Since *w* was arbitrary we got that $a_t = a_v$ for all $t \in \{0, ..., n-1\}$ which contradicts our assumption $a_r \neq a_s$. Now we have that the states a_t (t=0, ..., n-1) are pairwise different. In this case it is not difficult to see that A isomorphically simulates T_n under μ' and τ' where $\mu'(t) = a_t$ (t=0, ..., n-1) and for any $t_u \in T_n \tau'(t_u) = \varphi_0(y_1) \dots \varphi_0(y_s)$ if $\tau(t_u) = y_1 \dots y_s$.

Lemma 3. If \mathbf{T}_n can be simulated isomorphically by a generalized v_1 -product $\prod_{i=0}^{k} \mathbf{A}_i(X, \varphi, \gamma)$ then \mathbf{T}_n can be simulated by a generalized v_1 -product $\prod_{i=0}^{r} \mathbf{B}_i(X, \varphi', \gamma')$ where $r \leq k$, $\mathbf{B}_t \in \{\mathbf{A}_0, ..., \mathbf{A}_k\}$ and $\gamma'(t) = \{t-1 \pmod{(r+1)}\}$ for any $t \in \{0, ..., r\}$.

Proof. We proceed by induction on the number of components of the generalized v_1 -product. If k=0 then the statement is obvious. Now let k>0 and assume that the statement is valid for any l less than k. Moreover, suppose that \mathbf{T}_n can be simulated isomorphically by a generalized v_1 -product $\prod_{i=0}^{k} \mathbf{A}_i(X, \varphi, \gamma)$. Define the binary relation ϱ on the set $\{0, ..., k\}$ as follows: $i\varrho j$ if and only if i=j or $\gamma(i)=\{j\}$ or $\gamma(j)=\{i\}$ for any $i, j \in \{0, ..., k\}$. Denote by $\hat{\varrho}$ the transitive closure of ϱ . Then $\hat{\varrho}$ is an equivalence relation on $\{0, ..., k\}$. Depending on $\hat{\varrho}$, we shall distinguish three cases.

First assume that the partition induced by $\hat{\varrho}$ has at least two blocks. Let us denote by $\hat{\varrho}(j)$ the block containing *j*. By the rearrangability of the v_i -product, we may assume that $\hat{\varrho}(0) = \{0, ..., m-1\}$. From this, using the fact that $\bigcup_{s \in \hat{\varrho}(t)} \gamma(s) \subseteq \hat{\varrho}(t)$ holds for any $t \in \{0, ..., k-1\}$, we obtain that $\prod_{t=0}^{k} \mathbf{A}_t(X, \varphi, \gamma)$ is isomorphic to a quasi-direct product of two automata \mathbf{C}_1 and \mathbf{C}_2 where \mathbf{C}_1 is a generalized v_1 -product of $\mathbf{A}_0, ..., \mathbf{A}_{m-1}$ and \mathbf{C}_2 is a generalized v_1 -product of $\mathbf{A}_m, ..., \mathbf{A}_k$. Therefore, by Lemma 1, Lemma 2 and our induction hypothesis, we get that the statement is valid.

Now let us suppose that the partition induced by $\hat{\varrho}$ has one block only and there exists an $u \in \{0, ..., k\}$ with $u \notin \bigcup_{t=0}^{k} \gamma(t)$. By the rearrangability of v_i -product, we may suppose that u=k. Then observe that $\prod_{i=0}^{k} \mathbf{A}_i(X, \varphi, \gamma)$ is isomorphic to a generalized α_0 -product of two automata \mathbf{C}_1 and \mathbf{A}_k where \mathbf{C}_1 is a generalized v_1 -product of $\mathbf{A}_0, ..., \mathbf{A}_{k-1}$. From this, by Lemma 1, Lemma 2 and induction hypothesis, the statement follows.

Finally, assume that the partition induced by $\hat{\varrho}$ has one block only and $\bigcup_{t=0}^{t=0} \gamma(t) = \{0, ..., k\}$. Consider the mapping f determined as follows: for any $t \in \{0, ..., k\}$ f(t)=j if and only if $j \in \gamma(t)$. By the definition of $\hat{\varrho}$ and our assumption on $\hat{\varrho}$, it can be seen that f is a cyclic permutation of the set $\{0, ..., k\}$. Now rearrange

 $\prod_{i=0}^{k} \mathbf{A}_{i}(X, \varphi, \gamma) \text{ in the form } \prod_{i=0}^{k} \mathbf{A}_{f_{(0)}^{k-t-1}}(X, \varphi', \gamma'). \text{ Then, by the rearrangability of } v_{i}\text{-product and Lemma 1, we obtain that } \mathbf{T}_{n} \text{ can be simulated isomorphically } by \prod_{i=0}^{k} \mathbf{A}_{f_{(0)}^{k-t-1}}(X, \varphi', \gamma'). \text{ On the other hand, it is not difficult to see that } \prod_{i=0}^{k} \mathbf{A}_{f_{(0)}^{k-t-1}}(X, \varphi', \gamma') \text{ satisfies the condition of our statement. This ends the proof of Lemma 3.}$

Now we are ready to study the generalized v_1 -product. We have

Theorem 2. A system Σ of automata is isomorphically S-complete with respect to the generalized v_1 -product if and only if one of the following three conditions is satisfied by Σ :

(1) for any natural number n>1 there exists an automaton in Σ having *n* different states a_t (t=0, ..., n-1) and input words q_t (t=0, ..., n-1) such that $a_tq_t=a_{t+1 \pmod{n}}$ (t=0, ..., n-1),

(2) Σ contains an automaton which has two different states a, b and input words p, q, r such that ap=br=a and aq=bp=b,

(3) there exists an automaton in Σ which has two different states a, b and input words p, q, r such that $ap \neq bp, apq = bpq = a$ and ar = b.

Proof. In order to prove the sufficiency of conditions (1)—(3) we use the following observation.

For any automaton $A = (X, A, \delta)$, A can be simulated isomorphically by T_n with $n \ge \max(2, |A|)$. Therefore, by Lemma 1, if for any $n \ge 2$ the automaton T_n can be simulated isomorphically by a generalized v_1 -product of automata from Σ then Σ is isomorphically S-complete with respect to the generalized v_1 -product. On the other hand, take the following elements t_1, t_2 and t_3 of T_n

$$t_1(k) = k+1 \pmod{n} \quad (k=0, \dots, n-1),$$

$$t_2(0) = 1, t_2(1) = 0, t_2(k) = k \quad (k=2, \dots, n-1),$$

$$t_3(0) = t_3(1) = 0 \quad \text{and} \quad t_3(k) = k \quad (k=2, \dots, n-1).$$

It can be proved (see [3]) that the mappings t_1, t_2, t_3 generate the complete transformation semigroup over the set $\{0, ..., n-1\}$. Therefore, the automaton \mathbf{T}_n can be simulated isomorphically by the automaton $\mathbf{T}'_n = (\{t_1, t_2, t_3\}, \{0, ..., n-1\}, \delta'_n)$ where $\delta'_n = \delta_n|_{\{0, ..., n-1\} \times \{t_1, t_2, t_3\}}$. From this we obtain that if for any $n \ge 2$ the automaton \mathbf{T}'_n can be simulated isomorphically by a generalized v_1 -product of automata from Σ then Σ is isomorphically S-complete with respect to the generalized v_1 -product.

First suppose that Σ satisfies (1). Then it is not difficult to see that for any automaton **A** there exists an automaton $\mathbf{B} \in \Sigma$ such that **A** can be simulated isomorphically by a generalized v_1 -product of **B** with a single factor.

Now assume that Σ satisfies (2) by $A \in \Sigma$. Let $n \ge 5$ be arbitrary and take the generalized v_1 -product $A^n(X, \varphi, \gamma)$ where

$$X = \{u_i \colon 1 \le i < n\} \cup$$
$$\cup \{v_i \colon 0 \le i < n\} \cup \{x_i \colon 1 < i < n\} \cup \{y_i \colon 1 \le i < n-1\} \cup \{v, x, y, z, w\}$$

and the mappings γ and φ are defined in the following way: for any $t \in \{0, ..., n-1\}$

$$\begin{split} \gamma(t) &= t - 1 \pmod{n}, \\ \varphi_t(a, u_i) &= p, \quad \varphi_t(b, u_i) = \begin{cases} q & \text{if } t = i, \\ p & \text{otherwise } (i = 1, ..., n - 1), \end{cases} \\ \varphi_t(a, v_i) &= \begin{cases} r & \text{if } t = i, \\ p & \text{otherwise, } & \varphi_t(b, v_i) = \begin{cases} r & \text{if } 0 < t < i, \\ p & \text{otherwise } (i = 0, ..., n - 1), \end{cases} \\ \varphi_t(a, x_i) &= p, \quad \varphi_t(b, x_i) = \begin{cases} r & \text{if } i \leq t \leq n - 1, \\ p & \text{otherwise } (i = 2, ..., n - 1), \end{cases} \\ \varphi_0(a, y_i) &= p, \quad \varphi_0(b, y_i) = q, \end{cases} \\ \varphi_t(a, y_i) &= p, \quad \varphi_t(b, y_i) = \begin{cases} r & \text{if } 1 \leq t < i, \quad i \neq 2, \\ p & \text{otherwise } (i = 1, ..., n - 2 \text{ and } t \geq 1) \end{cases} \\ \varphi_t(a, v) &= p, \quad \varphi_t(b, v) = \begin{cases} r & \text{if } 1 \leq t \leq n - 2, \\ p & \text{otherwise, } \end{cases} \\ \varphi_0(a, x) &= p, \quad \varphi_0(b, x) = r, \quad \varphi_1(a, x) = \varphi_t(b, x) = p, \end{cases} \\ \varphi_0(a, z) &= p, \quad \varphi_0(b, z) = r, \quad \varphi_1(a, z) = r, \quad \varphi_1(b, z) = p, \end{cases} \\ \varphi_2(a, z) &= \varphi_2(b, z) = p, \quad \varphi_t(a, x) = p, \quad \varphi_t(b, x) = r \quad (t \geq 1), \\ \varphi_0(a, w) &= q, \quad \varphi_0(b, w) = p, \quad \varphi_t(a, w) = p, \quad \varphi_t(b, w) = r \quad (t \geq 1), \end{cases} \\ \varphi_0(a, y) &= q, \quad \varphi_0(b, y) = \varphi_t(a, y) = \varphi_t(b, y) = p \quad (t \geq 1). \end{cases}$$

$$\begin{array}{c} 0 \rightarrow (b, a, ..., a), \\ \mu \colon \vdots \\ n-1 \rightarrow (a, a, ..., b), \end{array}$$

$$t_{1} \rightarrow q_{1} \dots q_{n-1},$$

$$\tau: t_{2} \rightarrow u_{3} \dots u_{n-1} y_{1} z u_{1} \dots u_{n-1} y x_{2} u_{3} \dots u_{n-1} v_{0} x_{3} u_{2} \dots u_{n-1} y x_{2},$$

$$t_{3} \rightarrow u_{3} \dots u_{n-1} y_{1} z u_{1} \dots u_{n-1} w,$$

where

$$q_{1} = u_{1} \dots u_{n-2}v_{n-1}u_{1} \dots u_{n-1}v_{y},$$

$$q_{2} = u_{1} \dots u_{n-3}v_{n-2}v_{0}u_{1} \dots u_{n-2}x_{n-1}y_{n-2}u_{n-1}y,$$

$$q_{3} = u_{1} \dots u_{n-4}v_{n-3}v_{0}x_{n-1}xu_{n-1}u_{1}\dots u_{n-3}x_{n-2}u_{n-1}y_{n-3}x_{n-1}u_{n-2}u_{n-1}y,$$

$$q_{i} = u_{1} \dots u_{n-i-1}v_{n-i}v_{0}x_{n-i+2}u_{n-i+3}\dots u_{n-1}xx_{n-i+3}u_{n-i+2}\dots u_{n-1}u_{n-1}y,$$

$$u_{1} \dots u_{n-i}x_{n-i+1}u_{n-i+2}\dots u_{n-1}y_{n-i}x_{n-i+2}u_{n-i+1}\dots u_{n-1}y$$

,

if
$$4 \leq i < n-1$$
 and

$$q_{n-1} = v_1 x_2 u_4 \dots u_{n-1} x x_4 u_3 \dots u_{n-1} v_0 x_3 u_2 \dots u_{n-1} y x_2.$$

P. Dömösi and B. Imreh

Now we show that T'_n can be simulated isomorphically by $A^n(X, \varphi, \gamma)$ under μ and τ . The validity of the equations $\mu(\delta'_n(j, t_l)) = \delta_{A^n}(\mu(j), \tau(t_l))$ (l=2, 3) (j=0, ..., n-1) can be checked by a simple computation.

Introduce the following notation

$$u_{jt}^{(i)} = \begin{cases} b & \text{if } j = t, \ j \le n - i - 1 & \text{or } t = 1, \ j > n - i - 1 \\ & \text{or } t > n - i - 1, \ t > j, \\ a & \text{otherwise,} \end{cases}$$

 $1 \le i < n-2, \ 0 \le t \le n-1$ and $0 \le j \le n-1$. It can be proved by induction on *i* that $\mu(j)q_1...q_i=(u_{j0}^{(i)},...,u_{jn-1}^{(i)})$ for any $j \in \{0,...,n-1\}$ and $1 \le i < n-2$. On the other hand $(u_{j0}^{(n-3)},...,u_{jn-1}^{(n-3)})q_{n-2}q_{n-1}=\mu(j+1 \pmod{n})$ for any $j \in \{0,...,n-1\}$. Therefore, $\mu(\delta_n(j,t_1))=\mu(j+1 \pmod{n})=(u_{j0}^{(n-3)},...,u_{jn-1}^{(n-3)})q_{n-2}q_{n-1}=\mu(j)q_1...q_{n-1}=$ $=\delta_{A^n}(\mu(j),\tau(t_1))$ for any $j \in \{0,...,n-1\}$. This ends the proof of the sufficiency of condition (2).

Now suppose that Σ satisfies (3) by $A \in \Sigma$. Then there exist states $a \neq b$ of A and input words p, q, r such that $ap \neq bp$, apq=bpq=a and ar=b. Observe that it is enough to prove the sufficiency of (3) for the case $a \notin \{ap, bp\}$. Indeed, assume that $a \in \{ap, bp\}$. We distinguish two cases. If $b \in \{ap, bp\}$ then p is a permutation of the set $\{a, b\}$ and thus the automaton A has the property required in (2). If $b \notin \{ap, bp\}$ then introducing the notations a'=b, b'=a, p'=p, q'=qr, r'=pq we obtain that $a' \neq b'$, $a'p' \neq b'p'$, a'p'q'=b'p'q'=a', a'r'=b' and $a' \notin \{a'p', b'p'\}$. Therefore, without loss of generality we may assume that $a \notin \{ap, bp\}$. Now let $n \ge 6$ be arbitrary and take the generalized v_1 -product $A^n(X, \varphi, \gamma)$ where $X = \{x_1, ..., x_8\}$ and the mappings γ, φ are defined in the following way: for any $t \in \{0, ..., n-1\}$

$$\gamma(t) = \{t - 1 \pmod{n}\}$$

$$\varphi_t(a, x_1) = pq, \quad \varphi_t(b, x_1) = r,$$

 $\varphi_t(a, x_2) = \begin{cases} p & \text{if } t = 1, \\ pqp & \text{otherwise,} \end{cases} \quad \varphi_t(b, x_2) = \begin{cases} p & \text{if } t = 2, \\ rp & \text{otherwise,} \end{cases}$ $\varphi_t(ap, x_3) = q, \quad \varphi_t(bp, x_3) = qr,$

$$\varphi_t(a, x_4) = p, \quad \varphi_t(b, x_4) = \begin{cases} pq & \text{if } t = 1, \\ p & \text{otherwise,} \end{cases}$$

 $\varphi_t(a, x_5) = \begin{cases} qp & \text{if } b \neq ap, \\ p & \text{if } b = ap, \end{cases} \quad \varphi_t(ap, x_5) = q, \quad \varphi_t(bp, x_5) = \begin{cases} r & \text{if } t = 1, \\ qr & \text{if } t \neq 1, \end{cases}$ $\varphi_t(a, x_6) = p, \quad \varphi_t(b, x_6) = \begin{cases} q & \text{if } t = 2, \\ p & \text{otherwise,} \end{cases}$

 $\varphi_t(ap, x_6) = \begin{cases} pq & \text{if } b \neq ap, \\ \varphi_t(b, x_6) & \text{otherwise,} \end{cases} \quad \varphi_t(bp, x_6) = \begin{cases} pq & \text{if } b = ap, \\ \varphi_t(b, x_6) & \text{otherwise,} \end{cases}$

$$\varphi_t(a, x_7) = \begin{cases} p & \text{if } b \neq ap, \quad t = 3, \\ qp & \text{if } b \neq ap, \quad t \neq 3, \\ rp & \text{if } b = ap, \quad t \neq 3, \\ qrp & \text{if } b = ap, \quad t \neq 3, \end{cases}$$
$$\varphi_t(ap, x_7) = q, \quad \varphi_t(bp, x_7) = \begin{cases} r & \text{if } t = 2, \\ qr & \text{otherwise}, \end{cases}$$
$$\varphi_t(a, x_8) = \begin{cases} p & \text{if } t = 3, \\ pqp & \text{otherwise}, \end{cases}$$
$$\varphi_t(b, x_8) = \begin{cases} qp & \text{if } t = 3, \\ p & \text{if } t = 4, \\ rp & \text{otherwise}, \end{cases}$$

$$\varphi_t(ap, x_8) = \begin{cases} qrp & \text{if } b \neq ap, t = 4, \\ p & \text{if } b \neq ap, t = 5, \\ \varphi_t(b, x_8) & \text{if } b = ap, \\ \text{an arbitrary input word otherwise,} \end{cases}$$

$$\varphi_t(bp, x_8) = \begin{cases} qrp & \text{if } b = ap, \ t = 4, \\ p & \text{if } b = ap, \ t = 5, \\ \varphi_t(b, x_8) & \text{if } b \neq ap, \\ \text{an arbitrary input word otherwise} \end{cases}$$

and in all other cases φ_t is defined arbitrarily. Take the following mappings

$$\begin{array}{cccc} 0 \to (b, a, ..., a) & t_1 \to x_1, \\ \mu & \vdots & & \tau \colon t_2 \to x_4 x_5 x_6 x_7 x_8 x_3 x_1^{n-4}, \\ n-1 \to (a, ..., a, b) & t_3 \to x_2 x_3 x_1^{n-2}. \end{array}$$

Distinguishing the cases b=ap and $b\neq ap$ it can be seen easily that $\mu(\delta'_n(j), t_l) = \delta_{A^n}(\mu(j), \tau(t_l))$ for any $j \in \{0, ..., n-1\}$ and $l \in \{1, 2, 3\}$ which yields the sufficiency of (3).

In order to prove the necessity assume that none of conditions (1)—(3) is satisfied by Σ and Σ is isomorphically S-complete with respect to the generalized v_1 -product. Since Σ does not satisfy (1) there exists a natural number m>2 such that Σ does not contain an automaton having the property required in (1) for any $n \ge m$. Let $n > m^{\binom{m}{2}}$ be an arbitrary fixed natural number. By the assumption on the isomorphic S-completeness of Σ , there exists a generalized v_1 -product $\mathbf{B} = \prod_{r=0}^{k-1} \mathbf{A}_r(X, \varphi, \gamma)$ of automata from Σ such that \mathbf{T}_n can be simulated isomorphically by **B** under suitable μ and τ . By Lemma 3, we may suppose that $\gamma(t) =$ $= \{t-1 \pmod{k}\}$ (t=0, ..., k-1). Let us denote by $(a_{10}, ..., a_{1k-1})$ the image of l under μ for any $l \in \{0, ..., n-1\}$. Consider an arbitrary nonvoid subset $\Gamma = \{j_1, ..., j_r\}$ of the set $\{0, ..., k-1\}$. Define a relation π_{Γ} on $\prod_{t=0}^{k-1} A_t$ in the following way: $(a_0, ..., a_{k-1})\pi_{\Gamma}(b_0, ..., b_{k-1})$ if and only if $a_{j_s-(\frac{m}{2})+u(\text{mod }k)} =$

3 Acta Cybernetica VI/2

 $= b_{j_{s}-\binom{m}{2}+u(\text{mod }k)} (u=1, ..., \binom{m}{2}), (s=1, ..., r) \text{ for any } (a_{0}, ..., a_{k-1}), (b_{0}, ..., b_{k-1}) \in \underset{t=0}{\overset{k-1}{\prod}} A_{t}. \text{ It is clear that } \pi_{\Gamma} \text{ is an equivalence relation on } \prod_{t=0}^{k-1} A_{t}. \text{ Now let us denote by } \overline{B} \text{ the set } \{(a_{l_{0}}, ..., a_{l_{k}-1}): 0 \le l \le n-1\} \text{ and let } \overline{\pi}_{\Gamma} = \pi_{\Gamma} \cap (\overline{B} \times \overline{B}). \text{ We shall show that } (a_{0}, ..., a_{k-1})\overline{\pi}_{\Gamma} (b_{0}, ..., b_{k-1}) \text{ implies } (a_{0}, ..., a_{k-1})\tau(t)\overline{\pi}_{\Gamma'}$

 $(b_0, ..., b_{k-1})\tau(t)$ for any $t \in T_n$ and $(a_0, ..., a_{k-1}), (b_0, ..., b_{k-1}) \in \prod_{t=0}^{k-1} A_t$, where $\Gamma' = \{j_s + |\tau(t)| \pmod{k}: 1 \le s \le r\}$. Indeed, assume that $(a_0, ..., a_{k-1}) \ \overline{\pi}_{\Gamma}(b_0, ..., b_{k-1})$ and let $t \in T_n$ be arbitrary. Since \mathbf{T}_n can be simulated isomorphically by **B** there exist $t_1, t_2, t_3 \in T_n$ such that

$$(a_0, \dots, a_{k-1})\tau(t)\tau(t_1) = (b_0, \dots, b_{k-1})\tau(t)\tau(t_1),$$

$$(a_0, \dots, a_{k-1})\tau(t)\tau(t_1)\tau(t_2) = (b_0, \dots, b_{k-1}),$$

$$(b_0, \dots, b_{k-1})\tau(t)\tau(t_1)\tau(t_3) = (a_0, \dots, a_{k-1}).$$

Let $\tau(t) = x_1 \dots x_j$, $\tau(t_1) = x_{j+1} \dots x_{j+u}$, $\tau(t_2) = y_1 \dots y_v$ and $\tau(t_3) = z_1 \dots z_w$. Introduce the following notations

$$q_{1t}^{(1)} = \varphi_t(a_{t-1 \pmod{k}}, x_1) \quad (t = 0, \dots, k-1),$$

$$\begin{aligned} q_{lt}^{(1)} &= \varphi_t(a_{t-1(\text{mod }k)}q_{1t-1(\text{mod }k)}^{(1)} \cdots q_{l-1t-1(\text{mod }k)}^{(1)}, x_l) \quad (t = 0, \dots, k-1), \quad (2 \le l \le j+u), \\ q_{1t}^{(2)} &= \varphi_t(b_{t-1(\text{mod }k)}, x_1) \quad (t = 0, \dots, k-1), \end{aligned}$$

$$\begin{aligned} q_{lt}^{(2)} &= \varphi_t (b_{t-1(\text{mod } k)} q_{1t-1(\text{mod } k)}^{(2)} \dots q_{l-1t-1(\text{mod } k)}^{(2)}, x_l) \quad (t = 0, \dots, k-1), \quad (2 \leq l \leq j+u), \\ p_{1t} &= \varphi_t (a_{t-1(\text{mod } k)} q_{1t-1(\text{mod } k)}^{(1)} \dots q_{j+ut-1(\text{mod } k)}^{(1)}, y_1) \quad (t = 0, \dots, k-1), \\ p_{lt} &= \varphi_t (a_{t-1(\text{mod } k)} q_{1t-1(\text{mod } k)}^{(1)} \dots q_{j+ut-1(\text{mod } k)}^{(1)} p_{1t-1(\text{mod } k)} \dots p_{l-1t-1(\text{mod } k)}, y_l) \\ &\qquad (t = 0, \dots, k-1), \quad (2 \leq l \leq v), \\ r_{1t} &= \varphi_t (b_{t-1(\text{mod } k)} q_{1t-1(\text{mod } k)}^{(2)} \dots q_{j+ut-1(\text{mod } k)}^{(2)}, z_1) \quad (t = 0, \dots, k-1), \end{aligned}$$

$$r_{lt} = \varphi_t(b_{t-1 \pmod{k}}^{(2)} q_{1t-1 \pmod{k}}^{(2)} \cdots q_{j+ut-1 \pmod{k}}^{(2)} r_{1t-1 \pmod{k}} \cdots r_{l-1t-1 \pmod{k}}, z_l)$$

(t = 0, ..., k-1), (2 \le l \le w).

Then, by the above equations, we have that for any $t \in \{0, ..., k-1\}$

(i)
$$a_t q_{1t}^{(1)} \dots q_{j+ut}^{(1)} = b_t q_{1t}^{(2)} \dots q_{j+ut}^{(2)}$$

(ii)
$$a_t q_{1t}^{(1)} \dots q_{i+ut}^{(1)} p_{1t} \dots p_{vt} = b_t$$

(iii)
$$b_t q_{1t}^{(2)} \dots q_{j+ut}^{(2)} r_{1t} \dots r_{wt} = a_t.$$

Now let us denote by $(a_0^{(0)}, ..., a_{k-1}^{(0)}), (b_0^{(0)}, ..., b_{k-1}^{(0)})$ the states $(a_0, ..., a_{k-1}), (b_0, ..., b_{k-1})$ and $(a_0^{(i)}, ..., a_{k-1}^{(i)}), (b_0^{(i)}, ..., b_{k-1}^{(i)})$ the states $(a_0, ..., a_{k-1})x_1...x_i, (b_0, ..., b_{k-1})x_1...x_i, (i = 1, ..., j)$, respectively. To prove our statement we show that $(a_0, ..., a_{k-1}), \overline{\pi}_{\Gamma}(b_0, ..., b_{k-1})$ implies $(a_0^{(i)}, ..., a_{k-1}^{(i)})\pi_{\Gamma_4}(b_0^{(i)}, ..., b_{k-1}^{(i)})$ for any $0 \le i \le j$, where $\Gamma_i = \{j_s + i \pmod{k}: 1 \le s \le r\}$. We proceed by induction on *i*. $(a_0^{(0)}, ..., a_{k-1}^{(0)})\pi_{\Gamma_0}(b_0^{(0)}, ..., b_{k-1}^{(0)})$ obviously holds. Now assume that our statement

has been proved for i-1 $(1 \le i \le j)$. Then from $(a_0^{(i-1)}, ..., a_{k-1}^{(i-1)}) \pi_{r_k}$ $(b_0^{(i-1)}, ..., b_{k-1}^{(i-1)}) = 0$ $\dots, b_{k-1}^{(i-1)}$ it follows that

$$a_{j_s-\binom{m}{2}+l+i-1 \pmod{k}}^{(i-1)} = b_{j_s-\binom{m}{2}+l+i-1 \pmod{k}}^{(i-1)} \quad (l = 1, \dots, \binom{m}{2}), \quad (s = 1, \dots, r)$$

Therefore, by the definition of $q_{ll}^{(1)}, q_{ll}^{(2)}$ we have that

$$q_{ij_s-\binom{m}{2}+l+i-1(\text{mod }k)}^{(1)} = q_{ij_s-\binom{m}{2}+l+i-1(\text{mod }k)}^{(2)} \quad (l = 2, ..., \binom{m}{2}+1), \quad (s = 1, ..., r)$$

and thus $a_{j_s-\binom{m}{2}+l+i(\text{mod }k)}^{(i)} = b_{j_s-\binom{m}{2}+l+i(\text{mod }k)}^{(i)} (l=1, ..., \binom{m}{2}-1), (s=1, ..., r).$

Now, if $a_{j_s-(\frac{m}{2})+l+i(\text{mod }k)}^{(i)} = b_{j_s-(\frac{m}{2})+l+i(\text{mod }k)}^{(i)}$ for all $1 \le s \le r$ then we get that $(a_0^{(i)}, \dots, a_{k-1}^{(i)}) \pi_{r_i}(b_0^{(i)}, \dots, b_{k-1}^{(i)})$ and so we are ready. In the opposite case there exists an index $s \in \{1, \dots, r\}$ such that $a_{j_s+i(\text{mod }k)}^{(i)} \ne b_{j_s+i(\text{mod }k)}^{(i)} \ge b_{j_s+i(\text{mod }k)}^{(i)}$. Let us denote by f the index $j_s+i \pmod{k}$. Then $a_{j_s}^{(i)} \ne b_{j_s}^{(i)}$. From this, by $q_{i_j}^{(1)} = q_{i_j}^{(2)}$, it follows that $a_{j_s}^{(i-1)} \ne b_{j_s}^{(i-1)} q_{i_j}^{(1)} \ge b_{j_s}^{(i-1)} q_{i_j}^{(1)}$. Now let $h = \min(j+u-i, \binom{m}{2}-1)$. Then, by $a_{i-(\frac{m}{2})+l(\text{mod }k)}^{(i)} = b_{j-(\frac{m}{2})+l(\text{mod }k)}^{(i)} (l=1, ..., \binom{m}{2}-1)$, we have that $q_{i+lf}^{(i)} = q_{i+lf}^{(2)} (l=1, ..., \binom{m}{2}-1)$. Therefore, $q_{i+1f}^{(1)} ... q_{i+hf}^{(2)} = q_{i+1f}^{(2)} ... q_{i+hf}^{(2)}$. Now we show that $a_{j}^{(i)} q_{i+1f}^{(1)} ... q_{i+hf}^{(1)} = b_{j}^{(i)} q_{i+1f}^{(1)} ... q_{i+hf}^{(1)}$. Indeed, if h=i+u-i then we get the required equality from (i). If $h=\binom{m}{2}-1$ then let us consider the sets M_{i} (l=0, ..., h)defined by $M_0 = \{a_f^{(i)}, b_f^{(i)}\}$ and $M_l = M_{l-1}q_{i+lf}^{(1)}$ (l=1, ..., h). If $|M_l| = 1$ for $M_l = l \in \{1, ..., h\}$ then $a_f^{(i)}q_{i+1f}^{(1)}...q_{i+lf}^{(1)} = b_f^{(i)}q_{i+1f}^{(1)}...q_{i+lf}^{(1)}$ and thus $a_f^{(i)}q_{i+1f}^{(1)}...q_{i+hf}^{(1)} = b_f^{(i)}q_{i+1f}^{(1)}...q_{i+hf}^{(1)}$. Therefore, it is enough to consider the case for which $|M_l| = 2$ for all $l \in \{0, ..., h\}$. If $M_q = M_l$ for some $0 \le g < l \le h$ then $M_q p = M_l$ where $p=q_{i+q+1}^{(1)}\dots q_{i+lf}^{(1)}$. But in this case it can be seen easily that the automaton A_f has the property required in (2) which is a contradiction. Now consider the case for which $|M_l|=2$ for all $l \in \{0, ..., h\}$ and the sets M_l (l=0, ..., h) are pairwise different. It is not difficult to see that from (ii) and (iii) it follows that for any $a, b \in \bigcup M_1$ there exists an input word p of A_f with ap=b. From this, by the definition m. we obtain that $\left| \bigcup_{l=0}^{n} M_{l} \right| = m' < m$. Thus we got that a set with cardinality m'(< m)has $\binom{m}{2}$ pairwise different subsets of two elements which is a contradiction. Therefore, we have proved that $a_{f}^{(i)}q_{i+1f}^{(1)}...q_{i+hf}^{(1)} = b_{f}^{(i)}q_{i+1f}^{(1)}...q_{i+hf}^{(1)}$. In this case, by (i), (ii), (iii), it can be seen easily that the automaton A_f with the states $a_f^{(i-1)}, b_f^{(i-1)}$ has the property required in (3) which is a contradiction. So we get a contradiction from the assumption $a_{j_{s}+i(\text{mod }k)}^{(i)} \neq b_{j_{s}+i(\text{mod }k)}^{(i)}$ for some $s \in \{1, ..., r\}$. Therefore, $a_{j_{s}+i(\text{mod }k)}^{(i)} = b_{j_{s}+i(\text{mod }k)}^{(i)}$ for all $s \in \{1, ..., r\}$ and thus $(a_{0}^{(i)}, ..., a_{k-1}^{(i)}) \pi_{\Gamma_{i}}(b_{0}^{(i)}, ..., b_{k-1}^{(i)})$. From this, by i = j we obtain that $(a_0, ..., a_{k-1})x_1...x_j\pi_{\Gamma_j}(b_0, ..., b_{k-1})x_1...x_j$ i.e. $(a_0, ..., a_{k-1})\tau(t)\pi_{\Gamma'}(b_0, ..., b_{k-1})\tau(t)$. On the other hand $(a_0, ..., a_{k-1})\tau(t)$, $(b_0, ..., b_{k-1})\tau(t)\in \overline{B}$ and thus $(a_0, ..., a_{k-1})\tau(t)\overline{\pi_{\Gamma'}}(b_0, ..., b_{k-1})\tau(t)$ which ends the proof of the statement.

Since $n > m^{\binom{m}{2}}$ there exists a subset $\Gamma \subseteq \{0, ..., k-1\}$ such that $\overline{\pi}_{\Gamma} \neq \Delta_{B}$, where Δ_{B} denotes the identity relation on \overline{B} . Therefore, the set $C = \{\Gamma: \Gamma \subseteq \mathcal{F}\}$ $\subseteq \{0, ..., k-1\}, \Gamma \neq \emptyset, \overline{\pi}_{\Gamma} \neq A_{B}\}$ is nonempty. Then let us denote by $\Gamma = \{j_{1}, ..., \overline{j_{r}}\}$ such an element of C for which $|\Gamma|$ is maximal. Since $\bar{\pi}_{\Gamma} \neq \Delta_{B}$ there exist $u \neq \neq v \in \{0, ..., n-1\}$ with $\mu(u) \bar{\pi}_{\Gamma} \mu(v)$. Consider the element $t_{1} \in T_{n}$ defined by $t_{1}(u) = v$, $t_1(v) = u$ and $t_1(l) = l$ if $l \in \{0, ..., n-1\} \setminus \{u, v\}$. By the isomorphic simulation,

we have that $\mu(u)\tau(t_1) = \mu(v)$, $\mu(v)\tau(t_1) = \mu(u)$ and $\mu(l)\tau(t_1) = \mu(l)$ if $l \in \{0, ..., n-1\} \setminus \{u, v\}$. On the other hand $\mu(u)\overline{\pi}_{\Gamma}\mu(v)$ and thus $\mu(u)\tau(t_1)\overline{\pi}_{\Gamma'}\mu(v)\tau(t_1)$, where $\Gamma' = \{j_s + |\tau(t_1)| \pmod{k}: 1 \le s \le r\}$. Therefore, $\mu(u)\overline{\pi}_{\Gamma'}\mu(v)$. It is clear that the mapping $\beta_1: t \to t + |\tau(t_1)| \pmod{k}$ (t = 0, ..., k - 1) is a permutation of the set $\{0, ..., k-1\}$ and thus $|\Gamma| = |\Gamma'|$. By the maximality of $|\Gamma|$ we have that $\Gamma' \subseteq \Gamma$ and thus $\Gamma = \Gamma'$. This means that the mapping β_1 , fixes the set Γ , i.e. $\beta_1(\Gamma) = \Gamma$, where $\beta_1(\Gamma)$ denotes the set $\{\beta_1(t): t \in \Gamma\}$. On the other hand it is not difficult to see that β_1 fixes a subset M of the set $\{0, ..., k-1\}$ if and only if

$$M = \{i, i + |\tau(t_1)| \pmod{k}, \dots, i + (f-1)|\tau(t_1)| \pmod{k}\}$$

for some $i \in \{0, 1, ..., g.c.d. (k, |\tau(t_1)|) - 1\}$ or M is equal to an union of such sets, where g.c.d. $(k, |\tau(t_1)|)$ denotes the greatest common divisor of the numbers $k, |\tau(t_1)|$ and $f = k/g.c.d (k, |\tau(t_1)|)$. Furthermore, it is clear that the considered sets $m_i =$ $= \{i, i+|\tau(t_1)| (\mod k), ..., i+(f-1)|\tau(t_1)| (\mod k)\}$ form a partition of $\{0, ..., k-1\}$. Thus assume that $\Gamma = \bigcup_{t=1}^{\theta} m_{i_t}$. Now consider the set $\overline{B} \setminus \{\mu(u), \mu(v)\}$. Since $n \ge 3$ there exists an element $w \in \{0, ..., n-1\}$ such that $\mu(w) \in \overline{B} \setminus \{\mu(u), \mu(v)\}$. Let us denote by t_2 a cyclic permutation from T_n with $t_2(u) = v$ and $t_2(v) = w$. By the isomorphic simulation we have that $\mu(u)\tau(t_2)=\mu(v)$ and $\mu(v)\tau(t_2)=\mu(w)$. On the other hand $\mu(u)\overline{\pi}_{\Gamma} \mu(v)$. Therefore, $\mu(u)\tau(t_2)\overline{\pi}_{\Gamma}, \mu(v)\tau(t_2)$ where $\Gamma' = \{j_s + |\tau(t_2)|$ (mod k): $1 \le s \le r\}$. Since the mapping $\beta_2: t \to t + |\tau(t_2)| \pmod{k}$ (t = 0, ..., k - 1) is a permutation of $\{0, ..., k-1\}$ we obtain that $|\Gamma| = |\Gamma'|$. Now we distinguish two cases.

First assume that $\Gamma = \Gamma'$. Then it is not difficult to see that $\mu(u)\bar{\pi}_{\Gamma} \mu(l)$ holds for any $l \in \{0, ..., n-1\}$ which contradicts the maximality of $|\Gamma|$.

Now assume that $\Gamma \neq \Gamma'$. Observe that $\Gamma' = \bigcup_{t=1}^{\theta} \beta_2(m_{i_t})$ and $\beta_2(m_{i_t}) = m_{i_t + |\tau(t_2)| (\text{mod } g.c.d. (k, |\tau(t_1)|))}$. Therefore, from $|\Gamma| = |\Gamma'|$ and $\Gamma \neq \Gamma'$ it follows that there exists an index $j \in \{0, ..., g.c.d. (k, |\tau(t_1)|) - 1\}$ with $m_j \cap \Gamma = \emptyset$ and $m_j \subseteq \Gamma'$. On the other hand $\mu(v)\overline{\pi}_{\Gamma'}\mu(w)$ and thus $\mu(v)\tau(t_1)\overline{\pi}_{\Gamma''}\mu(w)\tau(t_1)$ where $\Gamma'' = \beta_1(\Gamma')$. By $\mu(v)\tau(t_1)=\mu(u)$ and $\mu(w)\tau(t_1)=\mu(w)$ we obtain that $\mu(u)\overline{\pi}_{\Gamma''}\mu(w)$. Since β_1 fixes the sets m_i $(i=0, ..., g.c.d. (k, |\tau(t_1)|) - 1)$ we have that $m_j \subseteq \Gamma''$. Then $j \in \Gamma''$ and $j \in \Gamma''$ and thus

$$a_{vj-\binom{m}{2}+l(\text{mod }k)} = a_{wj-\binom{m}{2}+l(\text{mod }k)} \quad (l = 1, ..., \binom{m}{2}),$$

$$a_{wj-\binom{m}{2}+l(\text{mod }k)} = a_{uj-\binom{m}{2}+l(\text{mod }k)} \quad (l = 1, ..., \binom{m}{2}).$$

From this it follows that $j \in \Gamma$ which is a contradiction. This ends the proof of the necessity.

The next theorem holds for the generalized v_i -product if i > 1.

Theorem 3. A system Σ of automata is isomorphically S-complete with respect to the generalized v_i -product (i > 1) if and only if Σ contains an automaton which has two different states a, b and input words p, q such that ap=b and bq=a.

Proof. The necessity is obvious. Conversely, assume that Σ satisfies the condition of Theorem 3 by A. Let $n \ge 3$ be arbitrary and take the generalized v_2 -product

$A^n(X, \varphi, \gamma)$ where $X = \{x_1,, x_6\}$ and the mappings γ, φ are defined in the following way: for any $t \in \{0,, n-1\}$
$\gamma(t) = \{t, t-1 \pmod{n}\},\$
$\varphi_t(a, a, x_1) = pq, \ \varphi_t(a, b, x_1) = q, \ \varphi_t(b, a, x_1) = p,$
$\varphi_0(a, a, x_2) = \varphi_0(b, a, x_2) = p, \varphi_0(a, b, x_2) = q, \ \varphi_1(a, a, x_2) = pq, \ \varphi_1(a, b, x_2) = q,$
$\varphi_1(b, a, x_2) = p, \varphi_t(u, v, x_2) = \begin{cases} pq & \text{if } v = a, \\ qp & \text{if } v = b, (t = 2,, n-1), \end{cases}$
$\varphi_t(u, v, x_3) = \begin{cases} pq & \text{if } v = a, \\ qp & \text{if } v = b, (t = 0, 1), \end{cases}$
$\varphi_t(u, v, x_3) = \begin{cases} p & \text{if } v = a, u = b, \\ pq & \text{if } v = a, u = a, \\ qp & \text{if } v \neq a (t = 2,, n-1), \end{cases}$
$\varphi_0(a, a, x_4) = \varphi_0(b, a, x_4) = pq, \varphi_0(a, b, x_4) = qp, \varphi_0(b, b, x_4) = q,$
$\varphi_t(u, v, x_4) = \begin{cases} pq & \text{if } v = a, \\ qp & \text{if } v = b, (t = 1,, n-1), \end{cases}$
$arphi_t(u, v, x_5) = egin{cases} pq & ext{if} & v = a, \ qp & ext{if} & v = b, \ (t = 0, 1), \end{cases}$
$\varphi_t(u, v, x_5) = \begin{cases} q & \text{if } u = v = b, \\ qp & \text{if } u = a, v = b, \\ pq & \text{if } v = a, (t = 2,, n-1), \end{cases}$
$\varphi_0(a, a, x_6) = \varphi_0(b, a, x_6) = p, \ \varphi_0(a, b, x_6) = qp,$
$\varphi_1(a, a, x_6) = \varphi_1(b, a, x_6) = pq, \varphi_1(a, b, x_6) = q,$
$\varphi_t(u, v, x_6) = \begin{cases} pq & \text{if } v = a, \\ qp & \text{if } v = b, (t = 2,, n-1). \end{cases}$

In the remaining cases $\varphi_t(u, v, x_j)$ is an arbitrary input word from $\{p, q\}$. Now consider the mappings:

$$\begin{array}{rcl} 0 & \rightarrow (b, a, ..., a), & t_1 \rightarrow x_1, \\ \mu & 1 & \rightarrow (a, b, ..., a), & \tau \colon t_2 \rightarrow x_2 x_3^{n-3} x_4 x_5, \\ & \vdots & & t_3 \rightarrow x_6 x_3^{n-3} x_4 x_5. \\ n-1 \rightarrow (a, a, ..., b), \end{array}$$

It is not difficult to see that the automaton \mathbf{T}'_n can be simulated isomorphically by $\mathbf{A}^n(X, \varphi, \gamma)$ under μ and τ .

* DEPT. OF MATHEMATICS UNIVERSITY OF L. KOSSUTH EGYETEM TÉR 1. DEBRECEN, HUNGARY H-4010 ** DEPT. OF COMPUTER SCIENCE A. JÓZSEF UNIVERSITY ARADI VÉRTANŮK TERE 1. SZEGED, HUNGARY H—6720

References

- [1] GÉCSEG, F., On products of abstract automata, Acta Sci. Math. (Szeged), v. 38, 1976, pp. 21-43.
- [2] GLUSKOV, V. М., Абстрактная теория автоматов, Успехи Мат. Наук, v. 16:5(101), 1961, pp. 3-62.
- [3] GLUSKOV, V. M., О полноте систем операции в электронных вычислительных машин, Kubephemuka, v. 2, 1968, pp. 1–5. [4] IMREH, B., On α_i -products of automata, Acta Cybernet., v. 3, 1978, pp. 301–307.

(Received Oct. 16, 1982)