Decomposition results concerning K-visit attributed
tree transducers

By Z. FOLOP

The concept of attributed tree transducer was introduced in [1], [4] and [6].
On the other hand, the 1-visit, pure K-visit and simple K-visit classes of attributed
grammars were defined in [3] and [5]. In this paper, we formulate these properties
for deterministic attributed tree transducers defined in [6] and prove some de-
composition results. Namely, we show that each tree transformation induced by a
pure K-visit attributed tree transducer can be induced by a bottom-up tree transdu-
cer followed by an I-visit attributed tree transducer. Here, the bottom-up tree trans-
ducer can be substituted by a top-down one. Moreover, each tree transforma-
tion induced by a simple K-visit attributed tree transducer can be induced by a
deterministic bottom-up tree transducer followed by an I-visit attributed tree trans-
ducer.

1. Notions and notations

By a type we mean a finite set F of the form F= |J F, where the sets F,

are pairwise disjoint and F,=0.

For an arbitrary type. F and set S the set of trees over S of type F is the
smallest set T(S) satisfying:

(i) F,USESTKS),

@) f(p1, ..., )ETH(S) whenever f€F,, py,....,0,€T(S) (n=0). If S=0
then Tg(S) is written TFg.

The set of all positive integers is denoted by N. Let N* denote the free monoid
generated by N, with identity A. _

For a tree p(€T(S)) the depth (dp (p)), root (root (p)), the set of subtrees
(sub (p)) of p and paths (path (p)) of p as a subset of N* are defined as follows:

() dp (p)=0, sub (p)={p}, root (p)=p, path (p)={A} if peF,US,

(i) dp (p)=1+max {dp (py|1 =i =n}, root (p)=£, sub (p)={p}U(U(sub (p)|
1=i=n)), path (p)={1}U{iv|l =i =n, vepath (p)} if p=f(py, ..., p,) (1=0, fE F)).
Subtrees of height 0 of a tree p(€TH(S)) are called leaves of p.
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For each p(eTg(S)), w(€path(p)) there is a corresponding label Ib,(w)
(€FUS) and a subtree str,(w) (€sub(p)) in p which are defined by induction
on the length of w:

(i) 1b,(w)=root (p), str,(w)=p if w=J, :

(i) Ib,(w)=lb,, (v), str,(w)=str,, (v) if w=iv, p=f(ps, ..., ), 1=i=n.

In the rest of this paper, F, G and H always mean types, moreover, the set of
auxiliary variables Z={z,, z, ...} and its subsets Z,={z,, ..., z,} (n=0,1,..)
are kept fixed. Observe that Z,=0. Let n=0 and peTy(Z,). Substituting the
elements s,,...,s, of aset S for z,..,z, in p, respectively, we have another
tree, which is in Tx(S) and denoted by p(s,, ...,s,). There is a distinguished
subset Tx(Z,) of Tx(Z,) defined as follows: pcTp(Z,) if and only if each z
(1=i=n) appears in p exactly once.

We now turn to the definition of tree transducers. The terminology used here
follows [2].

Subsets of TpX T are called tree transformations. The domain of a tree trans-
formation (< Ty X T) is denoted by dom 7 and defined by dom t={p€ T¥|(p, g) €
for some g€Tg;). The composition 7,01, of the tree transformations 7,(S T X Tg)
and 1,(CSTeXTy) is defined by t0t.={(p, @l(p, r)€7,, (r,9) €1, for some r}.
If 4, and %, are classes of tree transformations then their composition %,0%,
is the class %,0%,= {1,07,|t,€%, T.€%,}.

By a bottom-up tree transducer we mean a system A=(F, 4, G, A’, P) where
A is a nonempty finite set, the set of states, 4'(& A4) is the set of final states, moreover,
P is a finite set of rewriting rules of the form f(a,z,, ..., a,z;) ~aq where k=0,
fEF,, a, a, ..., aq,€A, g€ Te(Z,). A is said to be deterministic if different rules in
P have different left sides. P can be used to define a binary relation = on the

set Te(AXTg). The reflexive, transitive closure of = is denoted by :=> and

called derivation. The exact definition can be found in [2]. The tree transformation
induced by A is a relation 1,(STpXT;) defined by

74 = {(p, ‘q‘)lp%aq for some a(€4)}.

A top-down tree transducer is again a system A=(F, 4,G, 4’, P) which
differs from the bottom-up one only in the form of the rewriting rules. Here,
P is a finite set of rules of the form af(zy, ..., z) ~q(a,z;, ..., a;z;) where k, =0,
fE€F,, a,a,...,4€4, 1=i, ..., ii=k,qeT¢(Z). Moreover, A’ is called the set
of initial states. The relation = can now be defined on the set T5(4X Tp) and

its reflexive, transitive closure is again denoted by % (c.f.[2]). The tree transforma-
tion induced by ‘A is a relation 1,(STXT;) defined by ‘

7, = {(p, q)lap%:» g for some a(€4’)}.

The following concept of attributed tree transducer was defined in [6]. We repeat
this definition, . with: a $lightly different formalism, because this new orne seems to be
simpler. Moreover, we allow not only the completely defined but the partially
defined case as well. - ¢ '
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By a deterministic attributed tree transducer, or shortly DATT, we mean a
system A=(F, 4, G, a,, P, rt) defined as follows:

(a) A is a finite set, the set of attributes, which is the union of the disjoint sets
A, and A; where A, is called the set of synthesized attributes, A; is called the
set of inherited attributes;

(b) ap€ A4s;

(c) rtis a partial mapping from A4; to T;;

(d) P is a finite set of rewriting rules of the form

af(zl,-'-,Zk)“le-(alzjl,‘--,azzj,) ¢))

where k, =0, fcFy, GeT4(Z), acd,, 0=j, ..., ji=k, a,€A; if j,=0 and a,€4,
if 1=j,=k (r=1,...,1) aswell as rules of the form '

a(Zjaf)‘_q(alzjla”'s atzj,) " (2)

where feF, for some k(=1), I=0, acd;, 1=j=k, §cTs(Z), 0=}, ..., =k
and a, is the same as above (r=1,...,1). Any two different rules of P are re-
quired to have different left sides.

From now on, for the sake of convenience we shall use the following notation
for each element x of the set NU {0}

x if x€EN
{l if x=0.

Let pcTr. We can define the relation <= on the set Tq(A4Xpath(p))
in the following way. For g, r(€T¢(4Xpath (p)) 9= r if r is obtained from

g by substituting the tree g((a;, vy), ..., (@, v;)) for sorne leaf (a, w)(€ A4 X path (p))
of g if either the condition (a) or (b) holds

(@ @O acd,,
(i) b, (w)=f(€F, for some k=0),
(iti) the rule (1) isin P,
Giv) o.=wj, (r=1,...,D);

(b) (i) aeAi’
‘ (i) w=yj for some j(€N),
(iii) 1b,()=f(€F, for some k=1),
(iv) the rule 2)isin P,
v ov=v, (r=1,...,D.
Observe that a leaf of g which is in A;X {A} can never be substituted because,

for such a leaf, neither (a) nor (b) can hold. Therefore we define the relation
<=: concerning rt”’ which contains = in the following manner: qge=r
b,

X =

concerning rt if either ¢ <=__ r orris obtalned from ¢ by substituting rt(a)
(if it exists) for a leaf (a, l)(EA X {A}) of g. Let the n-th power, trans1t1ve closure,
reflexive, transitive closure of == be denoted by c: i <=+_ c;—, respectively,

p,A
and similarly for the relation <=r concerning rt. We can now define the tree
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transformation 7,(S Ty x T;) induced by A in the following way
a = {(2; Pl@0, ) C*T g concerning rt}.
P

An example for a DATT can be found in [6]. The relation c% is called
ps
derivation. The length It (¢) of a derivation a=q<=*7r is defined as the integer n
Es

for which ¢ c% r.

ps

In the rest of this paper, by a DATT we always mean a noncircular DATT
(see [6)). '

Before going on, we make an observation which will often be used without
reference. Let p€Ty, wepath(p), [=0, g€T:(Z), acA,, a,...,aq€A; and let
str,(w) be denoted by p,.

Suppose that

(a, W) == q((a1, W). ..., (@1, W)) ©)
and there is no step in (3), in which, a leaf in 4;X {w} is substituted. Then

(a, 1) == q((@1, ), ---> (@, )

and the converse also holds.

The classes of all tree transformations induced by top-down tree transducers,
(deterministic) bottom-up tree transducers, deterministic attributed tree transducers
are denoted by 7, (2)%B, 2, respectively.

2. K -visit attributed tree transducers

Let A(=(F, 4, G, ay, P, rt)) be a DATT and let K(z=1) be an integer.

By a partition of 4 we mean a sequence ((I;, Sy), ..., (J;, S)) where I; (S))
are pairwise disjoint subsets of A; (4,) whose union is A; (4,). Let @x(A)
denote the set of all partitions of A with /=K.

Now let f¢ F, (k=0), €€ Px(4) with e'=((Ii, S, ..., (I}, §§)) (=0, 1, ..., k).
The oriented graph D (e’ e, ..., €") is defined as follows. Its nodes are the symbols
1}, 8t (j=1,.., 1) and the symbols I, S} (i=1,...,k, j=1,...,1). Edges are
oriented for each

@) j=1, ..., 1) from I} to S%;

@) j(=1, ..., ,—1) from S} to I},;

i) i(=1, ..., k), j(=1, ..., ) from I} to S%;

(v) i(=1, ..., k), j(=1, ..., ;-1) from Si to Iiyy;

W) j(=1, ..., L), a(€S) from X}s to S} ifthere is a rule af(z, ..., z)~
~g(ayz;,, ..., qz;)) in P for which a,cX/s under some s(=1,...,0),r(=1, .., 1),
Xe{l, S}; ]

i) i(=1, ..., k), j(=1, ..., ), a(eI}) from X, to I; if there is a rule
alz;, ) ~q(ayz;,, ..., ayz;) in P with a,€X}s under some s,r, X defined as in (v).
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The graph D,(e% ¢!, ..., ¢¥) corresponds to the concept of partition graph for
a production of an attribute grammar, which concept was introduced in [5].

Let p(=f(ps, -. ,p,‘))eTF (k>0 f€F) and consider a mapping =: path (p)—
—+®y(A4). The mappings =':path(p;)—~®x(4) are defined by = (w) 7 (iw)
(i=1, ..., k, wepath ()

Now let again p€T; and =:path(p)—®Px(4). The oriented graph D (r)
is defined by induction on dp (p):

(i) if p=f(cF)) with n(A)=e then D, (m)=D(e);

@ii) if p f(pl,. P (=0, feF) with n(2)=e, n(z) e (i=1,...,k) then
D(n)=D(e, ¢, ..., YU(U(D,(n)|l =i =k)) where D, (7r') is obtained from D, ()
by “multlplymg 1ts nodes by z” that is, the nodes of D ("), are the symbols X*
where X;* are nodes of Dm(n'), moreover, there is an edge from X to Y¥
in Dp,(n') iff there is an edge from X} to ¥ in D,(n'). Nodes and edges of
graphs are combined as sets.

Definition 1. We say that A is pure K-visit, if for each p(€ domt,) there
exists a n: path (p) ~®x(4) with acyclic D,(n).

To support this definition, the followmg observation can be made. If D, (n)
is acyclic then a computation sequence (see in [5] for attribute grammars) can be
constructed, which induces a K-visit tree-walking attribute evaluation strategy on p.

Definition 2. Suppose that to each f(€F) there corresponds an element
e/ of &x(A4) and let Ix={e/|fcF}. A is said to be simple K-visit concerning
M if for each p(eédom 7,) there exists a n: path (p)—II; for which the following
two conditions hold:

(1) if 1b,(w)=f then n(w)=e/ (wepath (p)),

(ii) D,(n) is acyclic.

A is simple K-visit, if it is simple K-visit concerning some ITg.

The classes of all tree transformations induced by pure, simple K visit DATTs
are denoted by Dofpy, D5y, respectively. Observe, that @,(A)={(4;, 4y} so, in
the particular case K =1, the two properties defined above are identical. There-
fore Dolp, =9, and they can be denoted by 2.,.

Theorem 3. For each K(=1), Dpyx C Bo DA, .

Proof. Let A(=(F, 4, G, ay, P, rt)) be a pure K-visit DATT. Consider the
bottom-up tree transducer B(_(F B, F, B’, P")) where

(a) B=B"=®g(4);

(b) for each m(=0), F,, is defined as follows {f; e, €., ..., ¢ F, if and only if

(i) f¢ F, for some k(=0),

(ii) e, €., ..., e¥C Py(A),

(i) m=4+...+1], where /; is the number of components of & (i=1, ..., k),

(iv) Ds(e, €, ..., € is acyclic;

(¢) for each m(=0), {f; e, ¢, ..., e (¢F,) the rule

i, times I times
Sletzy, ...,ekz) —e(f; e, € oo, €D (21, oees 20y cny Zky onns Z1)

isin P’.
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Moreover, let the DATT C=(F, C, G, ¢,, P”, rt”) be defined as follows

(a) Cs:As’ Ci=Ai7 Co=4ay, l't”=l't;

(b) P” is constructed in the following way. Let m=0, {f;e, €\, ..., e)¢cF,
with e=((I, Sy, ..., I;, S)) and e&=((}{, S), ..., (I,fj, Slj;)) (I=j=sk). For
each a(€C)) let the rule a{f;e e, ..., (7, ....2,)~gla,z;, ..., a,z;). be in
P” if the following conditions hold:

@ af(zy, ..., z) < q(a1zj,,---, aszj,)€P3
. . {]r(= 0) if a,EA,' (T = 1, ey S)
@ = L+..+1;, y+n if a€S)- for some n(=1,..,1;).

Moreover, for each j(=1,...,k), n(=1,..,1), a(€[{U...UIj) let the rule
a(z;, {f;e €, ...,e)~qg(az;, ...,a.z;) bein P” if

@) a(z;, ) = q(az;,, ..., a,z; )EP,

) i=l4.. ] +n,
) {j,(= 0) if a€4; (r=1,...,5)
4 L+..+1, ,+u if a€S) forsome u=(,..,1;).

The 1-visit property of C can be shown in the following manner. In [3], it was
proved that an attributed grammar is 1-visit iff each of its brother graphs is acyclic.
We can formulate the concept of the brother graph for DATTs and can easily show
that each brother graph of C is acyclic.

The proof of the next lemma can be performed by a simple induction on dp (p).

Lemma 4. Let p€Ty,e€B. Then p %»ezj for some g(€Tr) if and only
if there exists a 7: path (p)~®Px(4) with n(l)=e and acyclic D,(n).

Lemma 5. Let peTy, G€Tr, g€ T(Z), a1, ..., a,€4;, € B with e=((I;, Sy), ...
s (I, S)) and let a¢S; for some j(=1,...,I). Suppose that p::>e2j and

(a, A C:T q((a1, 2), ..., (a5, ). Then ay, ..., a€LU...UI;.

Proof. 1t follows from the previous lemma that there exists a =: path (p)—
- @x(A) with n(})=e and acyclic D,(rn). Suppose that, say, a,€l, where k=>j.
Then, by the definition of D,(r), there is a path from I} to S? m Dy(n) due
to the dependency edges of D,(m). On the other hand, there is a path from S} to
I} in D,(n) because k=j, which contradicts the fact that D,(r) is acyclic.

Lemma 6. Let a€A,, p€Tr, G€Tp, q€Ts(A4;X{A})), ecB. Suppose that
(a,7) <= gq and p= eg. Then (g, }) == ¢.
p,A B % C

Proof. The proof can be performed by induction on dp (p).

(a) Let dp (p)=0 1.e. p=f(€F,). Then by supposition, af - q(a,z, ..., a;z;)€EP
(SEO, ¢I'E TG(Zs 2 Qs ooy asEAi)a q:q,((al’ ’1")9 i (an )"))a moreover, f_'e<f) e>EP’
and §=(f;e). Therefore, by the definition of C, alf;e)~g'(a,z,, ..., Aszs) €EP”.
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(b) Now let dp(p)=0 that is p=f(py, ..., p) (k=0,fcF,). Here, p:;=> eq
can be written in the form

* —-— —_—
p=f(Pr, s P) 3 S(@ s -, €7)) =

1, times I, times
! e,

L _;—-/—_ _
4 elf; e, el ., €D (Guy ooy Qus ooes iy <oes G) = €4
o = (I, S, s (B, 59) (G =1, ...,k).

First we can prove the following
STATEMENT. Let 1= '<k l=n=l;,beliU.. UI,{, tcTe(A4;X {A}) and suppose
that the relation g=(b, j) <== t holds. Then (b, i) <=_C_ t where i=hL+...+[;_;+n.
9

The proof of this statement can be done by an induction on It (). When
It(B)=1 then b(z;, f)«~1t'(bzg, ..., bz)€P (s=0,t'€TG(Z), by, ..., b;€4;) and
t=t'((by, %), ..., (bs, ) so, by the definition of C,b(z, )t (blzo, ey BsZg)EP.

When It ([3)>1 then B can be written in the following form

with

. ’ 3 3 L ’ —
(b».]) iz_—“ t ((b19 .]1)’ sees (bs’ ]s)) ‘:A_ 4 (t1’ cuey ts)_t
where

520, t'€T6(Z,), by, ..., bs€4, 1y, ..., t,€Te(A;X {2, b(zj, ) <1 (b1z),, s bsZ; )EP.
Then, by the definition of C, b(z;, {f; e, €, ..., )« 1t'(byz;,, ..., bz, )EP” where
. {jr(= 0 if b,E€4; (r=1,..,59)
= L+.. .+l y+v if beS) for some wv(=1,..,1,).

Now let r(=1, ...,5) be such an index for which b,€ Sir and so 1=j,=k. Then
the relation (b,, j,) c% t, can be written in the form (b,, j,) cZ: 1 ((ers i)y -

P, p,

NRCA). <=*= 1/ (G, .., 1,)=t, for some u(z0), t(¢ T6(ZD), c1y ..., Cal €A), Ty, ...

, L(ET, (A x{l}) and we can suppose that the derivation (b,, j,) <=_ M(CAAR

(c,,, J,)) has no such a step, in which, a leaf in A4;X {j,} substltuted Then
(b,, A) <=__ t/((c1, A), ..., (c,, ) so, by the induction hypothesis concerning dp (p),
we have (b,, 2) < <== t/((¢1, A), ..., (¢,, 4)) which means that (b,, i,) <=_ t;/((c1, 1)), -

vs (Cus 1) because lb 7(i)=3;,. On the other hand, by Lemma 5, cl, s c,,EIJ'U
. UI,{’, moreover, the length of each of the derivations (¢, J,) C*T i, ...

p,
o (Cus Jr) <=*= i, is less than 1t (B) so we have (¢, i,) c_:*E—_ Fis ooes (Cus iy) <_=*c_—_ i,
q, 9

that is (b,, ,) <=_t G, ., B) =T
g,C
If r is such an index for which b,€4; and so j,=0 then t,=(b,, A), therefore
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®,,1) é% t, again. All that means that
- q

G.0) ez (b 1) s b 1) 5= 0, a 1) = 1

. proving our statement.
Now we return to the induction step of the lemma. The relation (a, 1) <=*A= q
. . ps
can be written in the form

(as A) 77 q,((alajl)a cevs (as’js)) ‘7% q’(qla see qs) =4q

where s=0, ¢'€T6(Z), ay, ..., a€4, qy, ..., q€T(A4;x{1}) and af(z, ..., z) -
«~g'(a,zj,, ..., aiz;)) isin P. Then, by the definition of C, therule a{f;e, ¢!, ..., e
(z1, ..o Z~q(arz;,, ..., a5z;) is in P” where m=Il+...+/, and

] j(=0) if a,€A4; (r=1,..,s
'r L+..+L _1+n if a€S) for some n(=1,..,1).

Let r(=1,...,5) be an index for which a,€S} for some n(=1,...,/;) and
so 1= j,.S k. Then the relation (a,, J) <=t= g, can be written in the form
(ar’ .,r) <=’— qr((bl, .]r)s Ly (bu > ]r)) <=— Qr(‘hs ey qu) qr for some u>0 q;ETG(Zu)9

b EA,, G1s --es §u€ TG(A ><{,1}) We can again suppose, that there is no step
in the derivation (4, /) = 07( 1), - G ), in which, a leaf in A (1)
is substituted. Therefore (a,, 2) <=_ q,((bl, 2), ..., (bys 2)) from which, by Lemma 5,

L belrU.. UL and, by the induction hypothe51s on dp(p), we get

(a,, A) <_=*=C g/ ((by, 2), ..., (b, A)) that is (a,,7,) <_=C= g:((b1, 3,), ..., (b, 7). On the
j 4, )
other hand, by the statement, we have (by, i) <_=% Grs ooy (Bus 7)) ‘-:a_‘ g, which
q, q,
means that (ar’ r) <=— ‘]r(‘h, . 9qu) qr
41
If r(=1, ..., s) is such an index for which q,€4; and so j,=0 then it is clear

that ¢,=(a,, A), therefore (a,,1,) <=_ g, again. The two cases of r and
g, C
alf; e e, ...,e (2, ..., z,) g (@12, ..., a5z; )EP” together prove that

@) == d(@, 1), ... @ 1) fg— 9@, - 9)=9-
This ends the proof of Lemma 6.
‘The proof of the next lemma is essentially the converse of the previous one.
Lemma 7. Let a€A,, p€Ty, G€Tr, g€Ts(A; X {2}), e€ B. Suppose that p% e
and (a, ) <=— g. Then (a,4) <=._
Now we are ready to prove our theorem. Suppose that (p, g)€t, that is
(ag, A) <:A= g concerning rt. Because A is K-visit, by Lemma 4, there exist g€ Ty
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and e¢B withp ;=>eq, therefore, by Lemma 6, (a,, 2) <_=*C= g concerning rt”, hence
q,
(p, g)€tgotc. Conversely, by (p, g)€tgore we have a g€Ty for which p]*? eq
under some e(¢B) and (aq, 4) <_=*-C= g concerning rt”. Then, by Lemma 7, we have
q,

(ay, 4) <=_ g concerning rt. The fact, that the inclusion is strict follows from the

proof of Theorem 4.1 of [6]. This ends the proof of Theorem 3.

After studying the proof of the previous theorem two observation can be made.
On the onhe hand, instead of the bottom-up tree transducer B we can have a top-
down one which can be constructed by reversing the rewriting rules of B. Although
this top-down one does not induce the same tree transformation as B, the following
will be valid.

Corollary 8. Dedpy < ToDA,.

On the other hand it also seems that if A is simple K-visit then a deterministic
bottom-up tree transducer can be constructed, so we have :

Corollary 9. DA sk C DBoDHA,.
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