On a representation of deterministic uniform
root-to-frontier tree transformations

By F. GECSEG

- The concepts of products and complete systems of finite automata can be
generalized for ascending algebras in a natural way (see [4]). Results in finite auto-
mata theory imply that for most types of products there are no finite complete
systems of ascending algebras. Therefore, it is reasonable to investigate a weaker
form of completeness to be called m-completeness when tree transformations are
represented up to a finite but not bounded height. In this paper we give necessary
and sufficient conditions under which a system of ascending algebras is m-complete
for the class of all deterministic uniform root-to-frontier tree transformations with
respect to different kinds of products. Moreover, we show the existence of such
finite m-complete systems.

1. Notions and notations

The terms ‘“‘node of a tree” and *‘subtree at a given node of a tree”’ will be used
in an informal and obvious way. '

The symbol R will stand for a nonvoid finite rank type with 04 R.

By a path of rank type R we mean a word over U(R)= U({(m, 1), ..., (m, m)}|
|mé& R). The set of all paths with rank type R will be denoted by pt (R). :

Take a ranked alphabet 2 of rank type R, a tree p€Fy(X,) and a path
u€pt (R). Then the realization u(p) of u in p (if it exists) is defined in the follow-
ing way:

1. if u=e then u(p)=e and uendsin p at the root of p,
2. if u=u(m, i), u,(p) exists, u, ends in p at the node d of p labelled by
¢ and ¢€X, then u(p)=u,(p)o,i) and u endsin p atthe i descendent of d.

For USpt(R) and TCEFs(X,) (n=1) let U(T)={u(p)lucU, p€T}. One
can easily see, that for arbitrary nz=1, pt (R)(Fy(X,))=U(2)*, where U(Z)=
=U({(s, 1), ..., (6, m}|o€ Z,,, m=0). ‘

Let X be an operator domain with X,=@. A (deterministic) ascending X-
algebra s/ is a pair consisting of a nonempty set 4 and a mapping that assigns
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to every operator o€ZX an m-ary ascending operation o<: A—~A™, where m 1is
the arity of o. The mapping 6—0< will not te mentioned explicitely, but we
write &/ =(4, Z). If X is not specified then we speak about an ascending algebra.
The ascending Z-algebra & is finite if both 4 and X are finite. Moreover,
& has rank type R if X is of rank type R. The class of all finite ascending Z-
algebras of rank type R will be denoted by K(R). If there is no danger of con-
fusion then we omit &/ in o*.

In this paper by an algebra we mean a finite deterministic as.cending algebra.

A (deterministic) root-to-frontier ZX,recognizer or a (D)RZX,recognizer, for
short, is a system A=(#,a,, X,, a), where

(1) &/ =(4, X) is a finite Z-algebra,
(2) a,€ A 1s the initial state,
(3) a=(4Y, ..., A P(A)" is the final-state vector.

Next we recall the concept of a tree transducer.

A root-to-frontier tree transducer ( R-transducer) is a system U=(Z, X,, 4, Q,
Y., A’, P), where '

(1) £ and Q are ranked alphabets,

(2) X, and Y,, are the frontier alphabets,

(3) 4 is a ranked alphabet consisting of unary operators, the state ser of AU.
(It is assumed that A is disjoint with all other sets in the definition of U, except A’.)

(4) A’S A is the set of initial states,

(5) P is a fintte set of productions of the following two types:

() ax,~q (€4, %€ X, g€ Fo(Y,),

(i) ac—~q (a€A,0€Z;,1=0, qEFQ(Y UAE)). (E = {&, &, ...} is the set of
auxiliary variables.)

The transformation induced by U will be denoted by 7y.

The R-transducer U is deterministic if A’={a,} is a singleton and there are
no distinct productions in P with the same left side. Moreover, the R-transducer
U is uniform if each production ao ~q (a€ A4, o€ Z;, [ =0, g€ Fo(Y,,UAZ))) can be
written in the form ao—g(a,¢,, ..., q;¢,) for some qEFQ(Y UZ). In this paper
by a transducer we shall mean a deterministic uniform R-transducer. One can easily
see that for every transducer U=(Z, X,, 4, 2, Y,,, ay, P) there exists a transducer
B=(Z,X,,B, Q,Y,, by, P") such that (i) for arbitrary b€B and o¢€ZX, with
m=0 there is exactly one production in P’ with left side bo, and (i) tg=14.
In the sequel we shall confine ourselves to transducers having property (i) and
L,=9.

To a transducer U=(Z, X, 4, @, Y,,, a,, P) we can correspond an RZX,-
recognizer A=(o, dy, X,,a) with #=(4,Z) and a=(4Y, ..., 4®™), where

(1) for arbitrary />0, g€Z;, a€A and (ay, ...,a)eA" if (ay,...,a)=0%(a)
then ao—~q(a&,, ..., ;)€ P for some g€ F(Y,UE),

(2) acAD (1=i=n) if and only if ax;—~g€P for some g€ Fy(Y,).

The class of all recognizers obtained from A in the above way will be denoted

by rec ().
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Now take an RZXX,-recognizer A=(«,a,, X,,a) with & =(4,2) and
a=(4", ..., AM). Define a transducer U=(Z, X,, 4, Q, Y,,, a,, P) by

P = {ax; - ¢ |ac 4V, ¢V Fy(¥,), i=1,..,nU
Ufas - ¢ (a¢,, ..., a1&)|ac A, €2, 1 =0,
(al’ Trey al) = ad(a)’ q(n’”)EFQ(YmUEl)}:

where the ranked alphabet Q, the integer m and the trees on the right sides of the
productions in P are fixed arbitrarily. Denote by tr (A) the class of all trans-
ducers obtained from A in the above way. Obviously, for arbitrary transducer
A and Acrec (Y) the inclusion Aetr (A) holds. Therefore, we have

Statement 1. For every transducer U there exists a recognizer A such that
Actr (A). '

Next we recall the concept of a product of ascending algebras (see [4]).

Let Z, 2%, ..., Z*¥ be ranked alphabets of rank type R, and consider the
Zialgebras o=(4;, ) (i=1, ..., k). Furthermore, let

U ={Yn: A3 X...XAXZ, -~ ZLX...XZE|mER}

be a family of mappings. Then by the product of &, ..., o Wwith respect to ¥
we mean the Z-algebra Y (s, ..., o, D)=L =(4,2) with A=A4,X...X4,
and for arbitrary meR, ¢€Z,, and acA

g¥(a) = ((prl (o (pry (a))), ..., pry (6*(pry (2)))), ...
o> (PTy (0 (PT1 (), - » PIy (6% (Py (2)))))s

where (o4, ..., 0,)=V,(a, ¢) and pr;(a) (1=i=k) denotes the i component of a.

To define special types of products let us write y,, inthe form y,, =@, ..., y¥)
where for arbitrary ac4 and ¢€ZX,, y,(a, o)=(yP(a, o), ...,y ¥(a,0)). We say
that o/ is an o;-product (i=0,1, ...) if for arbitrary j(1=j=k) and m€R, ¢
is independent of its #™ component if i+j=u=k. If Z'=..=2*=Y and
V.(a, 6)=(o, ...,6) for arbitrary m€R,0€Z, and a€A then &/ is the direct
product of oy, ..., &,. In the case of an «;-product in ¥’ we shall indicate only
those variables on which ¥¢’ may depend. '

One can see easily that the formation of the product, a,-product and direct
product is associative. (This is not true for the «;-product with i=0.)

Let A=(2,X,,4,2,Y,,a,,P) and B=(3,X,,B, Q2,Y,,b,, P’) be two

transducers and m=0 an integer. We write 1q= 1y if tq(p)=14(p) for every
PEFP(X,), where FP(X,) denotes the set of all trees from Fy(X,) with height
less than or equal to m.

Take a class K of algebras of rank type R. We say that K is metrically
complete (m-complete, for short) with respect to the product (x;-product) if for
arbitrary transducer U=(2, X,, 4, Q, Y,, a;, P) and integer m=0 there exist
a product (a;-product) #=(B, X) of algebras from K, an element b,€B and

a vector b€ P(B)* such that 74 = 14 for some Betr (B), where B=(4, b,, X, b).

Let &/=(4, X) be an arbitrary algebra from K(R). We correspond to <
a semiautomaton s(&)=(I,, 4,0,), where I,=U(Z) and for arbitrary ac4
and (o,i)€ly, 64(a, (o, i))=pri(c¥(a)). .

4
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Take a Z-algebra & =(4, £)€K(R), an element a€A and an integer m=0.
We say that the system (&, a) is m-free if the initial semiautomaton s(«, a)=
=(I4, A, a,6,4) is m-free. (For the definition of m-free semiautomata, see [I).
In (1] initial semiautomata are called initial automata. Moreover, here it is not
supposed that s(s/,a) is connected.)

For the system (&, a) and integer m=0 set A ={04(a, p)lp€lY, |p|=m),
where |p| denotes the length of p. Moreover, 64(a, ©)=a and d64(a, p(o,i))=
=0.4(d4(a, p), (O'a’)) (pelk, (o, 1)Ely).

Let (&/,a) and (&,b) be two systems with & =(4, 2), B=(B, 2)¢K(R).
A mapping ¢ of A™ onto B{™ is an m-homomorphism of (&, a) onto (%, b)
if it satisfies the following conditions:

1) ¢
2 qo(od(a))—aﬂ(q)(a’)) (@€dimY,6€Z, 1=0).

If the above ¢ Iis also one-to-one then we speak about an m-isomorphism:
and say that (o, a) and (%, b) are m-isomorphic. In notation, (&, a) = (4, b).
One can easily prove the following statements.

Statement 2. Let o/ =(4, X), #=(B, £)cK(R) and a€ 4, beB be arbitrary. For
an integer m=0, (#,b) is an m-homomorphic image of (&,a) if and only if
s(4#, b) is an m-homomorphic image of s(«, a).

Statement 3. Let (<, a) and (%, b) be the systems of Statement 2. For ar-
bitrary m=0,

(1) if (,a) is m-free then (%,b) is an m-homomorphic image of (<, a),

2) if (,a) is m-free and m-isomorphic to. (#,b) then (%,b) is also
m-free, and

(3) if both («,a) and (&, b) are m-free then they are m-isomorphic.

The next statement is also obvious.

Statement 4. Take two systems (&, a) and (4, b) (.sf (4, %), B=(B, 2)EK(R),
aEA bEB) Moreover, let m=0 be an integer. If (%, b) is an m-homomorphic
image of (&, a) then for arbitrary u=0, b€ P(B)*, B=(%,b, X,,b) and B=
=(2,X,,B,9,7,,b, P)ctr (B) there exist an aEP(A)“ an A=(.sz¢, a, X,, a)

and an U=(2, X,, 4, Q, Y,, a, P)ctr (A) such that rm— Tg.

Let (&, a) be a system with & =(4, 2)€K(R) and ac¢A an element. We say
that for an integer m=0 the algebra #=(B, X) m-isomorphically represents (o4, a)
if there exists a b€ B such that (&, d) < (%, b).

The «;-product and the o;-product (j, j=0) will be called metrically equivalent
(m-equivalent) provided that a system of algebras is m-complete with respect to the

o;-product if and only if it is m-complete with respect to the o;-product. The m-
equivalence between an a;-product and the product is defined s1m11arly

Finally, we shall suppose that every finite index set I={i, ..., 4} is given
together with a (fixed) ordering of its elements. Furthermore, for arbitrary system
{a;li;e1}, (a;)li;€1) is the vector (ay, dy, ..., @) if iy<iy<...<iy is the ordering
of 1.

For terminology not defined here, see {2] and {3].
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2. Metrically complete systems

In this section we give necessary and sufficient conditions for a system of
ascending algebras to be m-complete with respect to the ai-products (i =0,1, ...)
and the product. We shall see that the a;-products are m-equivalent to each other
and they are m-equivalent to the product.

We start with

Theorem 1. A system KCK(R) is m-complete with respect to the product
(o;-product) if and only if for every m=0 each m-free system (&, a) with "/ € K(R)
can be represented m-isomorphically by a product («;-product) of algebras from K.

/ Proof. The sufficiency is obvious by Statements 3 and 4.

To prove the necessity take an arbitrary m-free system (&, q,) with &=
=(4, 2)€K(R). Consider the transducer N =(Z, X,, 4, Q, AXX,, ay, P), where
n=1 1is an arbitrary natural number, ,=4XZ, (I=0) and P consists of the
following productions: :

(1) axi_’(a> xi) (aeAs xiEXn),
(2) aO'—>(d, O') (aléls AR al&l) (aEA, O'EZ, l>0’ O'd(a):(al’ ceey a,)).

Let #=(B, ) be a product («;-product) of algebras from K such that for

aB=(Z, X,, B, Q, AXX,, by, P")¢ctr (B) we have 1y =14, where B=(4%, by, X,, b)
(bo€ B, bEP(B)) We show that (%, b,) is m-free. This, by Statement 3, will
imply that (o, a)) = (4, b,).

First of all obsetve that A is a totally defined, linear, nondeleting transducer
inducing a one-to-one transformation. Moreover, in a tree to(p) with A(p)=m

no subtree occurs more than once. Therefore, by TQI Tq, all productions occur-
ring in a derivation bop=*gq (p€F5(X,), g€ Fo(X,X A)) with h(p)=m are linear
and nondeleting. Thus, we have the following relation between derivations in
A and B. Let ucpt (R) beapathwith |uj=m. Takea tree pEF;( ) with A(p)=m,
and assume that u(p) is defined, it ends in p at the node d, p” is the subtree of
p at d, p(¢;) is obtained from p by replacing the occurrence of p” at d by
&, 6 J,.,(ao, u(p))=a and S&g(b,, u(p))=>b. Then the following derivations are valid:

; aop = aop(p) =a qi(ap) 24 n(g) =¢q
an .
bop = byp(p") =5 q:(bp") =54.(9") =g,

where  aop(&;) =4 ¢:(al)), bop(&,) =& qu(bE)) (g1, g€ Fo(AX X, U&l)) and ap’=qq’,
bp'=8q" (', q"€ Fo(AX X, ) (Observe that &, occurs exactly oncein ¢, and g,.)
Furthermore, if v,€pt (R) is the path such that v,(g;) ends in g, at the node
labelled by &, and v,€pt (R) 1s the path for which vy(g,) ends in g, at the node
labelled by &; then wvy(g,) is a subword of v,(gy). '

Now assume that (4, by) is not m-free, that is there are two distinct words
u, vel% (=1} such that |u, [vj=m and 5@(170, u)=0g4 (by, v)=b. Let @, D€Pt(R)
be paths and p,, p,€ F5(X,) trees such that @(p)=u, 5(p;)=v, h(p,), h(pz) m,
u endsin p, atthenode d, and v endsin p, atthe node ds. Replace in p, and
p, the subtrees at d; resp. d, by x,,-and denote by p, resp. p, the resulting
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trees. Moreover, let 6,(a,, u)=a, and 064(a,, v)=a,. (Note that a,a, since
u#v and (&,a,) is m-free)) Then, by the choice of U, if g, g€ Fo(4XX,)
are obtained by the derivations a,p,=¢ ¢, and a,p.=4 4. then #(q,) ends in ¢,
at a node labelled by (a,, x,) and #(g,) ends in ¢, at a node labelled by (a,, x,).
Moreover, by Tméfg, bopr=54q, and byps=¢ g, hold also. From this, taking
into consideration our observation concerning the relation between derivations
in 2 and B, we get that at the ends of ii(q,) and #(g,) the same label should
occur which is a contradiction.

The next theorem gives necessary conditions for a system of ascending algebras
to be m-complete with respect to the product.

Theorem 2. Let KC K(R) be a system which is m-complete with respect to the
product. Then the following conditions are satisfied:

(i) for arbitrary integer m=0, path uecpt(R) with |i#|=m,rank/€R and
natural number 1=i=/ there exist an & =(4, X)€K, an aq,€A4,0,,05€ %] and
a u€ii(Fy(Xy) such that 8,(aq, u(o,, ) %6 4(ay, u(os, 1)),

(i1) for arbitrary integer m=0, path#€pt(R) with |a]=m, rank I€R (I>1)
and integers 1=i<j=/ there exist an & =(4, 2)€K, an a,cA4,a ¢€ZX, and a
ucii(Fy(X,)) such that &,(a,, u(o, {))5d4(ay, u(o, j)).

Proof. We start with the necessity of (). Assume that there are m=0, u¢pt(R)
with [i|=m, € R and 1=i =/ such that for arbitrary &/ =(4, 2)€K, a,€ A4, 6,,6,€ 2]
and u€ii(Fy(X,)) the equation &4(dy, u(oy, i))=04(ay, u(o,, i) holds. Take
a ranked alphabet X of rank type R such that X, contains two distinct elements
o and o’. Moreover, consider a product B=(B, L)=Y(s,, ..., &, 2) (=
=(4;, )€K, i=1, .., k) and an element by€ B. We show that the system (2, b)
is not (m+1)-free.

First of all let us introduce a notation. Consider the above product # and
define the mappings ¥': BX Fy(X,)~Fu(X,) (i=1, ..., k; n=0) in the following
way: for arbitrary b€B and pe€ Fy(X,)

(1) if p=x; (1=j=n) then ¥'(b, p)=x;, . .
) if p=o(py, ..., p) then Yi(b, p)=0;(Y!(by, py), ..., ¥ (b, pp)), where
(G1s s 0)=V(b, 6) and (by, ..., b)=0%(b).

One can see easily that for arbitrary b¢ B, p€ Fy(X,) and #¢pt(R) the equation
553(b’ a(p)):(édl(prl (b)’ ﬁ(lpl(b, p)))a R 5dk(prk (b)9 ﬁ(‘abk (b9 p)))) holds.

Now take two trees p, g€ Fx(X;) such that (@(/, i))(p)=u(o, i) and (a(l, )))(g)=
=u(¢’,i). For every j(=1,..,k) let (a(l,))(¥/(by, p))=uc,i) and
(@, D))(Wi(by, g))=v(3D, {). By the definition of the product, the equations
u;=v; (j=1,...,k) obviously hold. Moreover, ’

,6.%(b0a u(a, l)) = (54#1 (prl (bo), Uy (0-(1), l)), sy 6dk(prk (bO), u, (a(k)’ l)))

593("0’ u(o’, 1)) = (5.d1(pr1 (bg), u (G, 1)), ..., 5.dk(prk (bo), u, (W, l)))
But, by our assumptions, &, (pr;(by), u (6", i))=84 (pr;(by), u (¢, 7)) for
every j(1=j=k), ie., 0dg(by, u(c,1))=0a(by, u(c’, 7)). Therefore, (&, b, is
not (m+ 1)-free which, by Theorem 1, implies that X is not m-complete with
respect to the product.

and
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The necessity of (ii) can be shown in a similar way.

Theorem 3. If a system KC K(R) satisfies the conclusions of Theorem 2 the
K is m-complete with respect to the oy-product. :

Proof. Let X be a fixed ranked alphabet of rank type R. We shall show by
induction on m that for every integer m=0 there are an ay-product #=(B, X)
of algebras from K and an element b€B such that (#,b) is m-free. This, by
Theorem 1, will end the proof of Theorem 3.

If m=0 then our claim is obviously valid. Let us suppose that our statement
has been proved for an m=0, and take a product & =(4, X) of algebras from
K and an element @€ A such that (&, @) is m-free. By our assumption, for every
a=i, (I, i) (1, €pt(R), [€R, 1=i=I) there are an FD=(4D, Z@)cK, an a@cAD,
two operators oy, 0,€ 2{® and a u, €iy(Fx(X,)) such that §,@(a®, u(o,, 1))
#0 4@(a®, uy(0z, 1)). Moreover, for arbitrary u=iu,(l, i), 5=i(,j) (4 €pt(R),
I€R, =1, 1=i<j=I) there are an "F@D=(4E?), @) an gD @D,
a u; €ii,(F5(Xy)) and a 6€ 2 such that 8 ,@0(a® ), uy(G, i) #6 4@ n(a®?, u,(5, j)).
Consider an 1ndex set I consisting of all pairs (u, v) where u, v€ U(2)*, u=v,
lul=m+1 and |v|=m+1. For the pair (u,v) with w=u'(c,)cu(Fx(X;)) and
v=0'(c%,j) if ¥'#v or ox#¢* lake the ay-product LWV=yWo)(of, @ F)=
=(4®"), %), where y®" is defined in the following way. For every s¢R, y#»®
is the identity mapping on Z;. If w=w,(0’, j) (¢'€Z,) is a proper subword of
u and w =w;(¢”, j) is the subword of u, with |w’|=|w| then let

l//,?" v) (2) (5d(a; W1), O") — U”.

In all other cases, except Y@, (a,u’), 6), Y@ (s€R) is given arbitrarily
in accordance with the definition of the ag-product. Since u’#v” or o=¢* and
(4, a) is m-free &, 0((a, a®), v) is defined. Now let

. oy if G un) ((a, a®), U) = (a1, ay)
Y@ (§ (a, v), 0) =1 and O,@ (a®@, u(ay, 1) # a,
o5 otherwise.

Obviously, (™, a®?) with a®*?=(aq, a®) is m-free and &y w (@™, u)=
# 0 _yu, ) (@™, v).

Now assume that «'=v’ and o=¢*; that is u=u'(s, i)€i(Fs(Xy) and v=
=u'(s, j)€0(Fs(X;)). Take the oy -product &®=y®) (o, f @9, F)=(4®"), X),
where y® is given as follows. Again for every s¢R, yv® js the identity
mapping on ZX,. If w=wy(c’,t)(c’€Z,) is a proper subword of ¥ and w'=
=wi(c”, t) is the subword of u, with [w’|=|w| then let Y5, (a, wy), ¢")=
=g¢”. Moreover, Y™I®(5,(a, u),0)=6. In any other cases Y™ (s€R)
is given arbitrarily in accordance with the definition of the ay-product. Since (&, a)
is m-free ™" is well defined. Again, (™9, a®?) with a®*=(aq, a®?) is
m-free and & i, (@™ ?, u)# 6 4w ) (a®™?, v).

Finally, take the direct product #=(B, X)=II(&#“"|(u, v)€]) and the vector
b=(a™"|(u, v)€I). Then (&,b) is (m+1)-free. Indeed, for two different words
u, veU(D)* if |ul, v]<m+1 then Jg(b, u)2d4(b, v) since they differ in all of
their components, and if |u/=m+1 and [v|=m+1 then Jg(b,u) and J4(b,v)
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are different at least in their (u, v)® components. Since the direct product is a
special ay-product and the formation of the ay-product is associative # is an
ap-product of algebras from K.

From Theorems 2 and 3 we get

Corollary 4. For arbitrary 1, j=0 the o;-product and the «;-product are
m-equivalent to each other and they are m-equivalent to the product.

We now give an algorithm to decide for a finite KS K(R) whether K is m-
complete with respect to the product.

Take an algebra &/ =(4, 2)€K. For arbitrary /€R and 1=i=l set A¢:9=
={a€Apr;(c¥(a))#=pri(cf(a)) for some o,,0,€Z;}. Moreover, for every acA
let L9 be the language recognized by the automaton "= (Iy, A4, a, 6,4, A"Y).
Furthermore, let L&V=U(L{¢"a€d) and LE9=U(L%Y|#€K). For ar-
bitrary leR (I>1) and l=i<j=! define L*%) in a similar way with 4®&)=
={ac A|pr;(c7(a))#pr; (67 (a)) for some o€ X} instead of A" 9. Finally, denote
by Z the union of all ranked alphabets belonging to algebras from K, and take
the language homomorphism ¢: U(Z)*—~U(R)* given by ¢(o, H)=(k, i) (c€Z, r(c)=
=k), where r(c) denotes the rank of ¢. Then, by Theorems 2 and 3, X is m-
complete with respect to the product if and only if

(1) for arbitrary /€R and 1=i=/, o(L*D)=U(R)*,
(2) for arbitrary I€R (I=1) and 1=i<j=l, o(L*4N)=U(R)*.

The validity of these equations is decidable effectively.

Finally, for a given rank type R we give a one-element system which is m-

complete with respect to the product. Let X be a ranked alphabet of rank type
R such that for every /€R, Z;={c{", 6{}. Assume that the greatest natural number
in R is n. Take the Z-algebra «/=(4, X), where A={a,, ..., a,}, oc’(@)=
: =(ai+1(modn+1)’ cres ai+1(modn+1)) (IER’ l=0, 1, seey n)a Gél)(an)=(am Ap_15 -5 an—l+l)
(I€R) and for arbitrary /€¢R and a; with is#n, o{"(a;) is defined arbitrarily.
(i+1 (mod n+1) denotes the least residue of i+1 modulo n+1.) One can see
easily that the system K={«/} satisfies the conclusions of Theorem 2.
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