On a representation of deterministic uniform root-to-frontier tree transformations

By F. Gécseg

The concepts of products and complete systems of finite automata can be generalized for ascending algebras in a natural way (see [4]). Results in finite automata theory imply that for most types of products there are no finite complete systems of ascending algebras. Therefore, it is reasonable to investigate a weaker form of completeness to be called *m*-completeness when tree transformations are represented up to a finite but not bounded height. In this paper we give necessary and sufficient conditions under which a system of ascending algebras is *m*-complete for the class of all deterministic uniform root-to-frontier tree transformations with respect to different kinds of products. Moreover, we show the existence of such finite *m*-complete systems.

1. Notions and notations

The terms "node of a tree" and "subtree at a given node of a tree" will be used in an informal and obvious way.

The symbol R will stand for a nonvoid finite rank type with $0 \notin R$.

By a path of rank type R we mean a word over $U(R) = \bigcup \{ \{(m, 1), ..., (m, m) \} | m \in R \}$. The set of all paths with rank type R will be denoted by pt (R).

Take a ranked alphabet Σ of rank type R, a tree $p \in F_{\Sigma}(X_n)$ and a path $u \in pt(R)$. Then the *realization* u(p) of u in p (if it exists) is defined in the following way:

1. if u=e then u(p)=e and u ends in p at the root of p,

2. if $u=u_1(m, i)$, $u_1(p)$ exists, u_1 ends in p at the node d of p labelled by σ and $\sigma \in \Sigma_m$ then $u(p)=u_1(p)(\sigma, i)$ and u ends in p at the ith descendent of d.

For $U \subseteq \operatorname{pt}(R)$ and $T \subseteq F_{\Sigma}(X_n)$ $(n \ge 1)$ let $U(T) = \{u(p) | u \in U, p \in T\}$. One can easily see, that for arbitrary $n \ge 1$, $\operatorname{pt}(R)(F_{\Sigma}(X_n)) = U(\Sigma)^*$, where $U(\Sigma) = = \bigcup \{\{(\sigma, 1), \dots, (\sigma, m)\} | \sigma \in \Sigma_m, m > 0\}$.

Let Σ be an operator domain with $\Sigma_0 = \emptyset$. A (deterministic) ascending Σ algebra \mathscr{A} is a pair consisting of a nonempty set A and a mapping that assigns

Acta Cybernetica VI/2

to every operator $\sigma \in \Sigma$ an *m*-ary ascending operation $\sigma^{\mathscr{A}}: A \to A^m$, where *m* is the arity of σ . The mapping $\sigma \to \sigma^{\mathscr{A}}$ will not be mentioned explicitly, but we write $\mathscr{A} = (A, \Sigma)$. If Σ is not specified then we speak about an ascending algebra. The ascending Σ -algebra \mathscr{A} is finite if both A and Σ are finite. Moreover, \mathscr{A} has rank type R if Σ is of rank type R. The class of all finite ascending Σ algebras of rank type R will be denoted by K(R). If there is no danger of confusion then we omit \mathscr{A} in $\sigma^{\mathscr{A}}$.

In this paper by an algebra we mean a finite deterministic ascending algebra. A (deterministic) root-to-frontier ΣX_n -recognizer or a $(D)R\Sigma X_n$ -recognizer, for short, is a system $\mathbf{A} = (\mathcal{A}, a_0, X_n, \mathbf{a})$, where

(1) $\mathscr{A} = (A, \Sigma)$ is a finite Σ -algebra,

(2) $a_0 \in A$ is the initial state,

(3) $\mathbf{a} = (A^{(1)}, \dots, A^{(n)}) \in P(A)^n$ is the final-state vector.

Next we recall the concept of a tree transducer.

A root-to-frontier tree transducer (*R*-transducer) is a system $\mathfrak{A} = (\Sigma, X_n, A, \Omega, Y_m, A', P)$, where

(1) Σ and Ω are ranked alphabets,

(2) X_n and Y_m are the frontier alphabets,

(3) A is a ranked alphabet consisting of unary operators, the state set of \mathfrak{A} . (It is assumed that A is disjoint with all other sets in the definition of \mathfrak{A} , except A'.)

(4) $A' \subseteq A$ is the set of *initial states*,

(5) P is a finite set of productions of the following two types:

(i) $ax_i \rightarrow q (a \in A, x_i \in X_n, q \in F_{\Omega}(Y_m)),$

(ii) $a\sigma \rightarrow q$ $(a \in A, \sigma \in \Sigma_l, l \ge 0, q \in F_{\Omega}(Y_m \cup A\Xi_l))$. $(\Xi = \{\xi_1, \xi_2, ...\}$ is the set of auxiliary variables.)

The transformation induced by \mathfrak{A} will be denoted by $\tau_{\mathfrak{A}}$.

The *R*-transducer \mathfrak{A} is *deterministic* if $A' = \{a_0\}$ is a singleton and there are no distinct productions in *P* with the same left side. Moreover, the *R*-transducer \mathfrak{A} is *uniform* if each production $a\sigma \rightarrow q$ $(a \in A, \sigma \in \Sigma_1, l \ge 0, q \in F_{\Omega}(Y_m \cup A\Xi_l))$ can be written in the form $a\sigma \rightarrow \overline{q}(a_1\xi_1, ..., a_l\xi_l)$ for some $\overline{q} \in F_{\Omega}(Y_m \cup \Xi_l)$. In this paper by a transducer we shall mean a deterministic uniform *R*-transducer. One can easily see that for every transducer $\mathfrak{A} = (\Sigma, X_n, A, \Omega, Y_m, a_0, P)$ there exists a transducer $\mathfrak{B} = (\Sigma, X_n, B, \Omega', Y_m, b_0, P')$ such that (i) for arbitrary $b \in B$ and $\sigma \in \Sigma_m$ with m > 0 there is exactly one production in P' with left side $b\sigma$, and (ii) $\tau_{\mathfrak{B}} = \tau_{\mathfrak{A}}$. In the sequel we shall confine ourselves to transducers having property (i) and $\Sigma_0 = \emptyset$.

To a transducer $\mathfrak{A} = (\Sigma, X_n, A, \Omega, Y_m, a_0, P)$ we can correspond an $R\Sigma X_n$ -recognizer $\mathbf{A} = (\mathcal{A}, a_0, X_n, \mathbf{a})$ with $\mathcal{A} = (A, \Sigma)$ and $\mathbf{a} = (A^{(1)}, \dots, A^{(n)})$, where

(1) for arbitrary l>0, $\sigma \in \Sigma_l$, $a \in A$ and $(a_1, ..., a_l) \in A^l$ if $(a_1, ..., a_l) = \sigma^{\mathscr{A}}(a)$ then $a\sigma \rightarrow q(a_1\xi_1, ..., a_l\xi_l) \in P$ for some $q \in F_{\Omega}(Y_m \cup \Xi_l)$,

(2) $a \in A^{(i)}$ $(1 \le i \le n)$ if and only if $ax_i \rightarrow q \in P$ for some $q \in F_{\Omega}(Y_m)$.

The class of all recognizers obtained from \mathfrak{A} in the above way will be denoted by rec (\mathfrak{A}) .

Now take an $R\Sigma X_n$ -recognizer $\mathbf{A} = (\mathscr{A}, a_0, X_n, \mathbf{a})$ with $\mathscr{A} = (A, \Sigma)$ and $\mathbf{a} = (A^{(1)}, \dots, A^{(n)})$. Define a transducer $\mathfrak{A} = (\Sigma, X_n, A, \Omega, Y_m, a_0, P)$ by

$$P = \{ax_i \rightarrow q^{(a,i)} | a \in A^{(i)}, q^{(a,i)} \in F_{\Omega}(Y_m), i = 1, ..., n\} \cup$$
$$\cup \{a\sigma \rightarrow q^{(a,\sigma)}(a_1\xi_1, ..., a_l\xi_l) | a \in A, \sigma \in \Sigma_l, l > 0,$$
$$(a_1, ..., a_l) = \sigma^{\mathcal{A}}(a), q^{(a,\sigma)} \in F_{\Omega}(Y_m \cup \Xi_l)\},$$

where the ranked alphabet Ω , the integer *m* and the trees on the right sides of the productions in *P* are fixed arbitrarily. Denote by tr (A) the class of all transducers obtained from A in the above way. Obviously, for arbitrary transducer \mathfrak{A} and $A \in \operatorname{rec}(\mathfrak{A})$ the inclusion $\mathfrak{A} \in \operatorname{tr}(A)$ holds. Therefore, we have

Statement 1. For every transducer \mathfrak{A} there exists a recognizer A such that $\mathfrak{A} \in tr(A)$.

Next we recall the concept of a product of ascending algebras (see [4]).

Let Σ , Σ^1 , ..., Σ^k be ranked alphabets of rank type R, and consider the Σ^i -algebras $\mathscr{A}_i = (A_i, \Sigma^i)$ (i = 1, ..., k). Furthermore, let

$$\psi = \{\psi_m \colon A_1 \times \ldots \times A_k \times \Sigma_m \to \Sigma_m^1 \times \ldots \times \Sigma_m^k | m \in R\}$$

be a family of mappings. Then by the product of $\mathscr{A}_1, ..., \mathscr{A}_k$ with respect to ψ we mean the Σ -algebra $\psi(\mathscr{A}_1, ..., \mathscr{A}_k, \Sigma) = \mathscr{A} = (A, \Sigma)$ with $A = A_1 \times ... \times A_k$ and for arbitrary $m \in R$, $\sigma \in \Sigma_m$ and $\mathbf{a} \in A$

$$\sigma^{\mathscr{A}}(\mathbf{a}) = \big((\mathrm{pr}_1(\sigma_1^{\mathscr{A}_1}(\mathrm{pr}_1(\mathbf{a}))), \dots, \mathrm{pr}_1(\sigma_k^{\mathscr{A}_k}(\mathrm{pr}_k(\mathbf{a})))), \dots \\ \dots, (\mathrm{pr}_m(\sigma_1^{\mathscr{A}_1}(\mathrm{pr}_1(\mathbf{a}))), \dots, \mathrm{pr}_m(\sigma_k^{\mathscr{A}_k}(\mathrm{pr}_k(\mathbf{a})))) \big),$$

where $(\sigma_1, ..., \sigma_k) = \psi_m(\mathbf{a}, \sigma)$ and $\operatorname{pr}_i(\mathbf{a}) \ (1 \le i \le k)$ denotes the *i*th component of **a**.

To define special types of products let us write ψ_m in the form $\psi_m = (\psi_m^{(1)}, ..., \psi_m^{(k)})$ where for arbitrary $\mathbf{a} \in A$ and $\sigma \in \Sigma_m, \psi_m(\mathbf{a}, \sigma) = (\psi_m^{(1)}(\mathbf{a}, \sigma), ..., \psi_m^{(k)}(\mathbf{a}, \sigma))$. We say that \mathscr{A} is an α_i -product (i=0, 1, ...) if for arbitrary $j \ (1 \le j \le k)$ and $m \in R, \psi_m^{(j)}$ is independent of its u^{th} component if $i+j \le u \le k$. If $\Sigma^1 = ... = \Sigma^k = \Sigma$ and $\psi_m(\mathbf{a}, \sigma) = (\sigma, ..., \sigma)$ for arbitrary $m \in R, \sigma \in \Sigma_m$ and $\mathbf{a} \in A$ then \mathscr{A} is the direct product of $\mathscr{A}_1, ..., \mathscr{A}_k$. In the case of an α_i -product in $\psi_m^{(j)}$ we shall indicate only those variables on which $\psi_m^{(j)}$ may depend.

One can see easily that the formation of the product, α_0 -product and direct product is associative. (This is not true for the α_i -product with i > 0.)

Let $\mathfrak{A} = (\Sigma, X_u, A, \Omega, Y_v, a_0, P)$ and $\mathfrak{B} = (\Sigma, X_u, B, \Omega, Y_v, b_0, P')$ be two transducers and $m \ge 0$ an integer. We write $\tau_{\mathfrak{A}} \stackrel{m}{=} \tau_{\mathfrak{B}}$ if $\tau_{\mathfrak{A}}(p) = \tau_{\mathfrak{B}}(p)$ for every $p \in F_{\Sigma}^{m}(X_u)$, where $F_{\Sigma}^{m}(X_u)$ denotes the set of all trees from $F_{\Sigma}(X_u)$ with height less than or equal to m.

Take a class K of algebras of rank type R. We say that K is *metrically* complete (*m*-complete, for short) with respect to the product (α_i -product) if for arbitrary transducer $\mathfrak{A} = (\Sigma, X_u, A, \Omega, Y_v, a_0, P)$ and integer $m \ge 0$ there exist a product (α_i -product) $\mathscr{B} = (B, \Sigma)$ of algebras from K, an element $b_0 \in B$ and a vector $\mathbf{b} \in P(B)^u$ such that $\tau_{\mathfrak{A}} \stackrel{m}{=} \tau_{\mathfrak{B}}$ for some $\mathfrak{B} \in tr(\mathbf{B})$, where $\mathbf{B} = (\mathscr{B}, b_0, X_u, \mathbf{b})$.

a vector $\mathbf{b} \in P(B)^u$ such that $\tau_{\mathfrak{A}} \stackrel{m}{=} \tau_{\mathfrak{D}}$ for some $\mathfrak{B} \in \operatorname{tr}(\mathbf{B})$, where $\mathbf{B} = (\mathscr{B}, b_0, X_u, \mathbf{b})$. Let $\mathscr{A} = (A, \Sigma)$ be an arbitrary algebra from K(R). We correspond to \mathscr{A} a semiautomaton $s(\mathscr{A}) = (I_{\mathscr{A}}, A, \delta_{\mathscr{A}})$, where $I_{\mathscr{A}} = U(\Sigma)$ and for arbitrary $a \in A$ and $(\sigma, i) \in I_{\mathscr{A}}, \delta_{\mathscr{A}}(a, (\sigma, i)) = \operatorname{pr}_i(\sigma^{\mathscr{A}}(\mathbf{a}))$.

4*

Take a Σ -algebra $\mathscr{A} = (A, \Sigma) \in K(\mathbb{R})$, an element $a \in A$ and an integer $m \ge 0$. We say that the system (\mathscr{A}, a) is *m*-free if the initial semiautomaton $s(\mathscr{A}, a) = (I_{\mathscr{A}}, A, a, \delta_{\mathscr{A}})$ is *m*-free. (For the definition of *m*-free semiautomata, see [1]. In [1] initial semiautomata are called initial automata. Moreover, here it is not supposed that $s(\mathscr{A}, a)$ is connected.)

For the system (\mathcal{A}, a) and integer $m \ge 0$ set $A_a^{(m)} = \{\delta_{\mathcal{A}}(a, p) | p \in I_{\mathcal{A}}^*, | p | \le m\}$, where |p| denotes the length of p. Moreover, $\delta_{\mathcal{A}}(a, e) = a$ and $\delta_{\mathcal{A}}(a, p(\sigma, i)) = = \delta_{\mathcal{A}}(\delta_{\mathcal{A}}(a, p), (\sigma, i))$ $(p \in I_{\mathcal{A}}^*, (\sigma, i) \in I_{\mathcal{A}})$.

Let (\mathscr{A}, a) and (\mathscr{B}, b) be two systems with $\mathscr{A} = (A, \Sigma), \ \mathscr{B} = (B, \Sigma) \in K(R)$. A mapping φ of $A_a^{(m)}$ onto $B_b^{(m)}$ is an *m*-homomorphism of (\mathscr{A}, a) onto (\mathscr{B}, b) if it satisfies the following conditions:

(1) $\varphi(a)=b$, (2) $\varphi(\sigma^{\mathscr{A}}(a'))=\sigma^{\mathscr{B}}(\varphi(a'))$ $(a'\in A_a^{(m-1)}, \sigma\in\Sigma_l, l>0)$.

If the above φ is also one-to-one then we speak about an *m*-isomorphism and say that (\mathscr{A}, a) and (\mathscr{B}, b) are *m*-isomorphic. In notation, $(\mathscr{A}, a) \stackrel{m}{\simeq} (\mathscr{B}, b)$. One can easily prove the following statements.

Statement 2. Let $\mathscr{A} = (A, \Sigma), \mathscr{B} = (B, \Sigma) \in K(R)$ and $a \in A, b \in B$ be arbitrary. For an integer $m \ge 0$, (\mathscr{B}, b) is an *m*-homomorphic image of (\mathscr{A}, a) if and only if $s(\mathscr{B}, b)$ is an *m*-homomorphic image of $s(\mathscr{A}, a)$.

Statement 3. Let (\mathcal{A}, a) and (\mathcal{B}, b) be the systems of Statement 2. For arbitrary $m \ge 0$,

(1) if (\mathcal{A}, a) is *m*-free then (\mathcal{B}, b) is an *m*-homomorphic image of (\mathcal{A}, a) ,

(2) if (\mathcal{A}, a) is *m*-free and *m*-isomorphic to (\mathcal{B}, b) then (\mathcal{B}, b) is also *m*-free, and

(3) if both (\mathcal{A}, a) and (\mathcal{B}, b) are *m*-free then they are *m*-isomorphic.

The next statement is also obvious.

Statement 4. Take two systems (\mathscr{A}, a) and (\mathscr{B}, b) $(\mathscr{A} = (A, \Sigma), \mathscr{B} = (B, \Sigma) \in K(R), a \in A, b \in B)$. Moreover, let $m \ge 0$ be an integer. If (\mathscr{B}, b) is an *m*-homomorphic image of (\mathscr{A}, a) then for arbitrary $u \ge 0$, $\mathbf{b} \in P(B)^u$, $\mathbf{B} = (\mathscr{B}, b, X_u, \mathbf{b})$ and $\mathfrak{B} = (\Sigma, X_u, B, \Omega, Y_v, b, P') \in \text{tr}(\mathbf{B})$ there exist an $\mathbf{a} \in P(A)^u$, an $\mathbf{A} = (\mathscr{A}, a, X_u, \mathbf{a})$ and an $\mathfrak{A} = (\Sigma, X_u, A, \Omega, Y_v, a, P) \in \text{tr}(\mathbf{A})$ such that $\tau_{\mathfrak{B}} \stackrel{m}{=} \tau_{\mathfrak{A}}$.

Let (\mathcal{A}, a) be a system with $\mathcal{A} = (A, \Sigma) \in K(R)$ and $a \in A$ an element. We say that for an integer $m \ge 0$ the algebra $\mathcal{B} = (B, \Sigma)$ *m-isomorphically represents* (\mathcal{A}, a) if there exists a $b \in B$ such that $(\mathcal{A}, a) \stackrel{m}{=} (\mathcal{B}, b)$.

The α_i -product and the α_j -product $(i, j \ge 0)$ will be called *metrically equivalent* (*m*-equivalent) provided that a system of algebras is *m*-complete with respect to the α_i -product if and only if it is *m*-complete with respect to the α_j -product. The *m*-equivalence between an α_i -product and the product is defined similarly.

Finally, we shall suppose that every finite index set $I = \{i_1, ..., i_k\}$ is given together with a (fixed) ordering of its elements. Furthermore, for arbitrary system $\{a_{i_j}|i_j \in I\}$, $(a_{i_j}|i_j \in I)$ is the vector $(a_{i_1}, a_{i_2}, ..., a_{i_k})$ if $i_1 < i_2 < ... < i_k$ is the ordering of I.

For terminology not defined here, see [2] and [3].

2. Metrically complete systems

In this section we give necessary and sufficient conditions for a system of ascending algebras to be *m*-complete with respect to the α_i -products (i=0, 1, ...) and the product. We shall see that the α_i -products are *m*-equivalent to each other and they are *m*-equivalent to the product.

We start with

Theorem 1. A system $K \subseteq K(R)$ is *m*-complete with respect to the product $(\alpha_i$ -product) if and only if for every $m \ge 0$ each *m*-free system (\mathcal{A}, a) with $\mathcal{A} \in K(R)$ can be represented *m*-isomorphically by a product $(\alpha_i$ -product) of algebras from *K*.

/ Proof. The sufficiency is obvious by Statements 3 and 4.

To prove the necessity take an arbitrary *m*-free system (\mathcal{A}, a_0) with $\mathcal{A} = = (A, \Sigma) \in K(R)$. Consider the transducer $\mathfrak{A} = (\Sigma, X_n, A, \Omega, A \times X_n, a_0, P)$, where n > 1 is an arbitrary natural number, $\Omega_l = A \times \Sigma_l$ (l > 0) and *P* consists of the following productions:

(1)
$$ax_i \rightarrow (a, x_i) (a \in A, x_i \in X_n),$$

(2) $a\sigma \rightarrow (a, \sigma) (a_1\xi_1, ..., a_l\xi_l) (a \in A, \sigma \in \Sigma, l > 0, \sigma^{\mathscr{A}}(a) = (a_1, ..., a_l)).$

Let $\mathscr{B} = (B, \Sigma)$ be a product $(\alpha_i$ -product) of algebras from K such that for a $\mathfrak{B} = (\Sigma, X_n, B, \Omega, A \times X_n, b_0, P') \in \text{tr}(\mathbf{B})$ we have $\tau_{\mathfrak{A}} \stackrel{m}{=} \tau_{\mathfrak{D}}$, where $\mathbf{B} = (\mathscr{B}, b_0, X_n, \mathbf{b})$ $(b_0 \in B, \mathbf{b} \in P(B)^n)$. We show that (\mathscr{B}, b_0) is *m*-free. This, by Statement 3, will imply that $(\mathscr{A}, a_0) \stackrel{m}{=} (\mathscr{B}, b_0)$.

First of all observe that \mathfrak{A} is a totally defined, linear, nondeleting transducer inducing a one-to-one transformation. Moreover, in a tree $\tau_{\mathfrak{A}}(p)$ with $h(p) \leq m$ no subtree occurs more than once. Therefore, by $\tau_{\mathfrak{A}} \stackrel{m}{=} \tau_{\mathfrak{B}}$, all productions occurring in a derivation $b_0 p \Rightarrow^* q$ $(p \in F_{\mathfrak{L}}(X_n), q \in F_{\mathfrak{Q}}(X_n \times A))$ with $h(p) \leq m$ are linear and nondeleting. Thus, we have the following relation between derivations in \mathfrak{A} and \mathfrak{B} . Let $u \in \mathfrak{pt}(R)$ be a path with $|u| \leq m$. Take a tree $p \in F_{\mathfrak{L}}(X_n)$ with $h(p) \leq m$, and assume that u(p) is defined, it ends in p at the node d, p' is the subtree of p at $d, \bar{p}(\xi_1)$ is obtained from p by replacing the occurrence of p' at d by $\xi_1, \delta_{\mathfrak{A}}(a_0, u(p)) = a$ and $\delta_{\mathfrak{B}}(b_0, u(p)) = b$. Then the following derivations are valid:

$$a_0 p = a_0 \overline{p}(p') \Rightarrow_{\mathfrak{A}} q_1(ap') \Rightarrow_{\mathfrak{A}} q_1(q') = q$$

and

$$b_0 p = b_0 \overline{p}(p') \Longrightarrow_{\mathfrak{B}}^* q_2(bp') \Longrightarrow_{\mathfrak{B}}^* q_2(q'') = q,$$

where
$$a_0 \bar{p}(\xi_1) \Rightarrow_{\mathfrak{A}} q_1(a\xi_1)$$
, $b_0 \bar{p}(\xi_1) \Rightarrow_{\mathfrak{B}} q_2(b\xi_1)$ $(q_1, q_2 \in F_{\Omega}(A \times X_n \cup \xi_1))$ and $ap' \Rightarrow_{\mathfrak{A}} q', p' \Rightarrow_{\mathfrak{B}} q''(q', q'' \in F_{\Omega}(A \times X_n))$. (Observe that ξ_1 occurs exactly once in q_1 and q_2 .)
Furthermore, if $v_1 \in \operatorname{pt}(R)$ is the path such that $v_1(q_1)$ ends in q_1 at the node labelled by ξ_1 and $v_2 \in \operatorname{pt}(R)$ is the path for which $v_2(q_2)$ ends in q_2 at the node labelled by ξ_1 then $v_2(q_2)$ is a subword of $v_1(q_1)$.

Now assume that (\mathcal{B}, b_0) is not *m*-free, that is there are two distinct words $u, v \in I_{\mathscr{B}}^* (=I_{\mathscr{A}}^*)$ such that $|u|, |v| \leq m$ and $\delta_{\mathscr{B}}(b_0, u) = \delta_{\mathscr{B}}(b_0, v) = b$. Let $\bar{u}, \bar{v} \in pt(R)$ be paths and $p_1, p_2 \in F_{\Sigma}(X_n)$ trees such that $\bar{u}(p_1) = u, \bar{v}(p_2) = v, h(p_1), h(p_2) \leq m$, u ends in p_1 at the node d_1 and v ends in p_2 at the node d_2 . Replace in p_1 and p_2 the subtrees at d_1 resp. d_2 by x_1 , and denote by \bar{p}_1 resp. \bar{p}_2 the resulting

trees. Moreover, let $\delta_{\mathscr{A}}(a_0, u) = a_1$ and $\delta_{\mathscr{A}}(a_0, v) = a_2$. (Note that $a_1 \neq a_2$ since $u \neq v$ and (\mathscr{A}, a_0) is *m*-free.) Then, by the choice of \mathfrak{A} , if $q_1, q_2 \in F_{\Omega}(A \times X_n)$ are obtained by the derivations $a_0 \bar{p}_1 \Rightarrow \mathfrak{q}_1^* q_1$ and $a_0 \bar{p}_2 \Rightarrow \mathfrak{q}_1^* q_2$ then $\bar{u}(q_1)$ ends in q_1 at a node labelled by (a_1, x_1) and $\overline{v}(q_2)$ ends in q_2 at a node labelled by (a_2, x_1) . Moreover, by $\tau_{\mathfrak{Y}} \stackrel{m}{=} \tau_{\mathfrak{Y}}, b_0 \bar{p}_1 \Rightarrow_{\mathfrak{Y}} q_1$ and $b_0 \bar{p}_2 \Rightarrow_{\mathfrak{Y}} q_2$ hold also. From this, taking into consideration our observation concerning the relation between derivations in \mathfrak{A} and \mathfrak{B} , we get that at the ends of $\overline{u}(q_1)$ and $\overline{v}(q_2)$ the same label should occur which is a contradiction.

The next theorem gives necessary conditions for a system of ascending algebras to be *m*-complete with respect to the product.

Theorem 2. Let $K \subseteq K(R)$ be a system which is *m*-complete with respect to the product. Then the following conditions are satisfied:

(i) for arbitrary integer $m \ge 0$, path $\bar{u} \in pt(R)$ with $|\bar{u}| = m$, rank $l \in R$ and natural number $1 \le i \le l$ there exist an $\mathscr{A} = (A, \Sigma') \in K$, an $a_0 \in A, \sigma_1, \sigma_2 \in \Sigma'_l$ and a $u \in \overline{u}(F_{\Sigma'}(X_1))$ such that $\delta_{\mathscr{A}}(a_0, u(\sigma_1, i)) \neq \delta_{\mathscr{A}}(a_0, u(\sigma_2, i)),$

(ii) for arbitrary integer $m \ge 0$, path $\bar{u} \in pt(R)$ with $|\bar{u}| = m$, rank $l \in R$ (l > 1)and integers $1 \le i < j \le l$ there exist an $\mathscr{A} = (A, \Sigma) \in K$, an $a_0 \in A$, a $\sigma \in \Sigma_l$ and a $u \in \overline{u}(F_{\Sigma}(X_1))$ such that $\delta_{\sigma}(a_0, u(\sigma, i)) \neq \delta_{\sigma}(a_0, u(\sigma, j))$.

Proof. We start with the necessity of (i). Assume that there are $m \ge 0$, $\bar{u} \in pt(R)$ with $|\bar{u}| = m$, $l \in R$ and $1 \le i \le l$ such that for arbitrary $\mathscr{A} = (A, \Sigma') \in K$, $a_0 \in A, \sigma_1, \sigma_2 \in \Sigma'_l$ and $u \in \overline{u}(F_{\Sigma'}(X_1))$ the equation $\delta_{\mathscr{A}}(a_0, u(\sigma_1, i)) = \delta_{\mathscr{A}}(a_0, u(\sigma_2, i))$ holds. Take a ranked alphabet Σ of rank type R such that Σ_i contains two distinct elements σ and σ' . Moreover, consider a product $\mathscr{B} = (B, \Sigma) = \psi(\mathscr{A}_1, ..., \mathscr{A}_k, \Sigma) (\mathscr{A}_i =$ $=(A_i, \Sigma^i) \in K, i=1, ..., k)$ and an element $\mathbf{b}_0 \in B$. We show that the system $(\mathcal{B}, \mathbf{b}_0)$ is not (m+1)-free.

First of all let us introduce a notation. Consider the above product \mathcal{B} and define the mappings $\psi^i: B \times F_{\Sigma}(X_n) \to F_{\Sigma'}(X_n)$ $(i=1,...,k; n \ge 0)$ in the following way: for arbitrary $\mathbf{b} \in B$ and $p \in F_{\Sigma}(X_n)$

(1) if $p = x_i$ $(1 \le j \le n)$ then $\psi^i(\mathbf{b}, p) = x_i$,

(2) if $p = \sigma(p_1, ..., p_l)$ then $\psi^i(\mathbf{b}, p) = \sigma_i(\psi^i(\mathbf{b}_1, p_1), ..., \psi^i(\mathbf{b}_l, p_l)),$ where $(\sigma_1, \ldots, \sigma_k) = \psi_l(\mathbf{b}, \sigma)$ and $(\mathbf{b}_1, \ldots, \mathbf{b}_l) = \sigma^{\mathscr{B}}(\mathbf{b})$.

One can see easily that for arbitrary $\mathbf{b} \in B$, $p \in F_{\Sigma}(X_n)$ and $\bar{u} \in pt(R)$ the equation $\delta_{\mathscr{B}}(\mathbf{b}, \bar{u}(p)) = (\delta_{\mathscr{A}}, (\mathrm{pr}_{1}(\mathbf{b}), \bar{u}(\psi^{1}(\mathbf{b}, p))), \dots, \delta_{\mathscr{A}}, (\mathrm{pr}_{k}(\mathbf{b}), \bar{u}(\psi^{k}(\mathbf{b}, p)))) \text{ holds.}$

Now take two trees $p, q \in F_{\Sigma}(X_1)$ such that $(\overline{u}(l, i))(p) = u(\sigma, i)$ and $(\overline{u}(l, i))(q) =$ $=u(\sigma', i)$. For every j(=1, ..., k) let $(\overline{u}(l, i))(\psi^{j}(\mathbf{b}_{0}, p))=u_{j}(\sigma^{(j)}, i)$ and $(\overline{u}(l, i))(\psi^{j}(\mathbf{b}_{0}, q))=v_{j}(\overline{\sigma}^{(j)}, i)$. By the definition of the product, the equations $u_j = v_j$ (j = 1, ..., k) obviously hold. Moreover,

and

~ /-

$$\delta_{\mathscr{B}}(\mathbf{b}_{0}, u(\sigma, i)) = (\delta_{\mathscr{A}_{1}}(\mathrm{pr}_{1}(\mathbf{b}_{0}), u_{1}(\sigma^{(1)}, i)), \dots, \delta_{\mathscr{A}_{k}}(\mathrm{pr}_{k}(\mathbf{b}_{0}), u_{k}(\sigma^{(k)}, i)))$$

$$\delta_{\mathscr{B}}(\mathbf{b}_0, u(\sigma', i)) = \left(\delta_{\mathscr{A}_1}(\mathrm{pr}_1(\mathbf{b}_0), u_1(\bar{\sigma}^{(1)}, i)), \dots, \delta_{\mathscr{A}_k}(\mathrm{pr}_k(\mathbf{b}_0), u_k(\bar{\sigma}^{(k)}, i))\right)$$

But, by our assumptions, $\delta_{\mathscr{A}_{j}}(\mathrm{pr}_{j}(\mathbf{b}_{0}), u_{j}(\sigma^{(j)}, i)) = \delta_{\mathscr{A}_{j}}(\mathrm{pr}_{j}(\mathbf{b}_{0}), u_{j}(\bar{\sigma}^{(j)}, i))$ for every $j(1 \leq j \leq k)$, i.e., $\delta_{\mathscr{B}}(\mathbf{b}_{0}, u(\sigma, i)) = \delta_{\mathscr{B}}(\mathbf{b}_{0}, u(\sigma', i))$. Therefore, $(\mathscr{B}, \mathbf{b}_{0})$ is not (m+1)-free which, by Theorem 1, implies that K is not m-complete with respect to the product.

The necessity of (ii) can be shown in a similar way.

Theorem 3. If a system $K \subseteq K(R)$ satisfies the conclusions of Theorem 2 then K is *m*-complete with respect to the α_0 -product.

Proof. Let Σ be a fixed ranked alphabet of rank type R. We shall show by induction on m that for every integer $m \ge 0$ there are an α_0 -product $\mathscr{B} = (B, \Sigma)$ of algebras from K and an element $\mathbf{b} \in B$ such that $(\mathscr{B}, \mathbf{b})$ is *m*-free. This, by Theorem 1, will end the proof of Theorem 3.

If m=0 then our claim is obviously valid. Let us suppose that our statement has been proved for an $m \ge 0$, and take a product $\mathscr{A} = (A, \Sigma)$ of algebras from K and an element $a \in A$ such that (\mathscr{A}, a) is *m*-free. By our assumption, for every $\overline{u} = \overline{u}_1(l, i)$ ($\overline{u}_1 \in pt(R), l \in R, 1 \le i \le l$) there are an $\mathscr{A}^{(\overline{u})} = (A^{(\overline{u})}, \Sigma^{(\overline{u})}) \in K$, an $a^{(\overline{u})} \in A^{(\overline{u})}$, two operators $\sigma_1, \sigma_2 \in \Sigma_l^{(\overline{u})}$ and a $u_1 \in \overline{u}_1(F_{\Sigma}(X_1))$ such that $\delta_{\mathscr{A}^{(\overline{u})}}(a^{(\overline{u})}, u_1(\sigma_1, i)) \ne \delta_{\mathscr{A}^{(\overline{u})}}(a^{(\overline{u})}, u_1(\sigma_2, i))$. Moreover, for arbitrary $\overline{u} = \overline{u}_1(l, i), \overline{v} = \overline{u}_1(l, j)$ ($\overline{u}_1 \in pt(R), l \in R, l > 1, 1 \le i < j \le l$) there are an $\mathscr{A}^{(\overline{u},\overline{v})} = (A^{(\overline{u},\overline{v})}, \Sigma^{(\overline{u},\overline{v})})$, an $a^{(\overline{u},\overline{v})} \in A^{(\overline{u},\overline{v})}$, $a u_1 \in \overline{u}_1(F_{\Sigma}(X_1))$ and a $\overline{\sigma} \in \Sigma_l^{(\overline{u},\overline{v})}$ such that $\delta_{\mathscr{A}^{(\overline{u},\overline{v})}}(a^{(\overline{u},\overline{v})}, u_1(\overline{\sigma}, j)) \ne \delta_{\mathscr{A}^{(\overline{u},\overline{v})}}(a^{(\overline{u},\overline{v})}, u_1(\overline{\sigma}, j))$. Consider an index set I consisting of all pairs (u, v) where $u, v \in U(\Sigma)^*, u \ne v$, |u| = m+1 and $|v| \le m+1$. For the pair (u, v) with $u = u'(\sigma, i) \in \overline{u}(F_{\Sigma}(X_1))$ and $v = v'(\sigma^*, j)$ if $u' \ne v'$ or $\sigma \ne \sigma^*$ take the α_0 -product $\mathscr{A}^{(u,v)} = \psi^{(u,v)}(\mathscr{A}, \mathscr{A}^{(\overline{u})}, \Sigma) = (A^{(u,v)}, \Sigma)$, where $\psi^{(u,v)}$ is defined in the following way. For every $s \in R, \psi_s^{(u,v)(1)}$ is the identity mapping on Σ_s . If $w = w_1(\sigma', j)$ ($\sigma' \in \Sigma_k$) is a proper subword of u' and $w' = w_1'(\sigma'', j)$ is the subword of u_1 with |w'| = |w| then let

$$\psi_k^{(u,v)(2)}(\delta_{\mathscr{A}}(a,w_1),\sigma')=\sigma''.$$

In all other cases, except $\psi_l^{(u,v)(2)}(\delta_{\mathscr{A}}(a, u'), \sigma), \psi_s^{(u,v)(2)}(s \in R)$ is given arbitrarily in accordance with the definition of the α_0 -product. Since $u' \neq v'$ or $\sigma \neq \sigma^*$ and (\mathscr{A}, a) is *m*-free $\delta_{\mathscr{A}}(u,v)((a, a^{(\bar{u})}), v)$ is defined. Now let

$$\psi_l^{(u,v)(2)}(\delta_{\mathscr{A}}(a,u'),\sigma) = \begin{cases} \sigma_1 & \text{if } \delta_{\mathscr{A}}^{(u,v)}((a,a^{(\bar{u})}),v) = (a_1,a_2) \\ \text{and } \delta_{\mathscr{A}}^{(\bar{u})}(a^{(\bar{u})},u_1(\sigma_1,i)) \neq a_2 \\ \sigma_2 & \text{otherwise.} \end{cases}$$

Obviously, $(\mathscr{A}^{(u,v)}, a^{(u,v)})$ with $a^{(u,v)} = (a, a^{(\bar{u})})$ is *m*-free and $\delta_{\mathscr{A}}^{(u,v)}(a^{(u,v)}, u) \neq \delta_{\mathscr{A}}^{(u,v)}(a^{(u,v)}, v)$.

Now assume that u'=v' and $\sigma=\sigma^*$; that is $u=u'(\sigma, i)\in \bar{u}(F_{\Sigma}(X_1))$ and v== $u'(\sigma, j)\in \bar{v}(F_{\Sigma}(X_1))$. Take the α_0 -product $\mathscr{A}^{(u,v)}=\psi^{(u,v)}(\mathscr{A}, \mathscr{A}^{(\bar{u},\bar{v})}, \Sigma)=(A^{(u,v)}, \Sigma)$, where $\psi^{(u,v)}$ is given as follows. Again for every $s\in R, \psi_s^{(u,v)(1)}$ is the identity mapping on Σ_s . If $w=w_1(\sigma', t)$ ($\sigma'\in\Sigma_k$) is a proper subword of u' and w'== $w'_1(\sigma'', t)$ is the subword of u_1 with |w'|=|w| then let $\psi_k^{(u,v)(2)}(\delta_{\mathscr{A}}(a, w_1), \sigma')=$ = σ'' . Moreover, $\psi_1^{(u,v)(2)}(\delta_{\mathscr{A}}(a, u'), \sigma)=\bar{\sigma}$. In any other cases $\psi_s^{(u,v)(2)}$ ($s\in R$) is given arbitrarily in accordance with the definition of the α_0 -product. Since (\mathscr{A}, a) is *m*-free and $\delta_{\mathscr{A}}(u,v)(a^{(u,v)}, u) \neq \delta_{\mathscr{A}}(u,v)(a^{(u,v)}, v)$.

Finally, take the direct product $\mathscr{B} = (B, \Sigma) = \Pi(\mathscr{A}^{(u,v)}|(u,v) \in I)$ and the vector $\mathbf{b} = (a^{(u,v)}|(u,v) \in I)$. Then $(\mathscr{B}, \mathbf{b})$ is (m+1)-free. Indeed, for two different words $u, v \in U(\Sigma)^*$ if |u|, |v| < m+1 then $\delta_{\mathscr{B}}(\mathbf{b}, u) \neq \delta_{\mathscr{B}}(\mathbf{b}, v)$ since they differ in all of their components, and if |u| = m+1 and $|v| \leq m+1$ then $\delta_{\mathscr{B}}(\mathbf{b}, u)$ and $\delta_{\mathscr{B}}(\mathbf{b}, v)$

are different at least in their $(u, v)^{\text{th}}$ components. Since the direct product is a special α_0 -product and the formation of the α_0 -product is associative \mathscr{B} is an α_0 -product of algebras from K.

From Theorems 2 and 3 we get

Corollary 4. For arbitrary $i, j \ge 0$ the α_i -product and the α_j -product are *m*-equivalent to each other and they are *m*-equivalent to the product.

We now give an algorithm to decide for a finite $K \subseteq K(R)$ whether K is mcomplete with respect to the product.

Take an algebra $\mathscr{A} = (A, \Sigma) \in K$. For arbitrary $l \in R$ and $1 \leq i \leq l$ set $A^{(l,i)} = = \{a \in A | \operatorname{pr}_i(\sigma_1^{\mathscr{A}}(a)) \neq \operatorname{pr}_i(\sigma_2^{\mathscr{A}}(a))$ for some $\sigma_1, \sigma_2 \in \Sigma_l\}$. Moreover, for every $a \in A$ let $L_a^{(l,i)}$ be the language recognized by the automaton $\mathscr{A}_a^{(l,i)} = (I_{\mathscr{A}}, A, a, \delta_{\mathscr{A}}, A^{(l,i)})$. Furthermore, let $L_{\mathscr{A}}^{(l,i)} = \bigcup (L_a^{(l,i)} | a \in A)$ and $L^{(l,i)} = \bigcup (L_{\mathscr{A}}^{(l,i)} | \mathscr{A} \in K)$. For arbitrary $l \in R$ (l > 1) and $1 \leq i < j \leq l$ define $L^{(l,i,j)}$ in a similar way with $A^{(l,i,j)} = = \{a \in A | \operatorname{pr}_i(\sigma^{\mathscr{A}}(a)) \neq \operatorname{pr}_j(\sigma^{\mathscr{A}}(a))$ for some $\sigma \in \Sigma_l\}$ instead of $A^{(l,i)}$. Finally, denote by $\overline{\Sigma}$ the union of all ranked alphabets belonging to algebras from K, and take the language homomorphism $\varphi: U(\overline{\Sigma})^* \to U(R)^*$ given by $\varphi(\sigma, i) = (k, i)$ ($\sigma \in \overline{\Sigma}, r(\sigma) = k$), where $r(\sigma)$ denotes the rank of σ . Then, by Theorems 2 and 3, K is m-complete with respect to the product if and only if

(1) for arbitrary $l \in R$ and $1 \le i \le l$, $\varphi(L^{(l,i)}) = U(R)^*$,

(2) for arbitrary $l \in R$ (l>1) and $1 \leq i < j \leq l, \varphi(L^{(i,i,j)}) = U(R)^*$.

The validity of these equations is decidable effectively.

Finally, for a given rank type R we give a one-element system which is mcomplete with respect to the product. Let Σ be a ranked alphabet of rank type R such that for every $l \in R$, $\Sigma_i = \{\sigma_1^{(l)}, \sigma_2^{(l)}\}$. Assume that the greatest natural number in R is n. Take the Σ -algebra $\mathscr{A} = (A, \Sigma)$, where $A = \{a_0, ..., a_n\}, \sigma_1^{(l)}(a_i) =$ $= (a_{i+1(\text{mod } n+1)}, ..., a_{i+1(\text{mod } n+1)})$ $(l \in R, i = 0, 1, ..., n), \sigma_2^{(l)}(a_n) = (a_n, a_{n-1}, ..., a_{n-l+1})$ $(l \in R)$ and for arbitrary $l \in R$ and a_i with $i \neq n, \sigma_2^{(l)}(a_i)$ is defined arbitrarily. $(i+1 \pmod{n+1})$ denotes the least residue of i+1 modulo n+1.) One can see easily that the system $K = \{\mathscr{A}\}$ satisfies the conclusions of Theorem 2.

References

- [1] GÉCSEG, F. and I. PEÁK, Algebraic theory of automata, Akadémiai Kiadó, Budapest, 1972.
- [2] GÉCSEG, F. and M. STEINBY, Minimal ascending tree automata, Acta Cybernet., v. 4, 1978, pp. 37-44.
- [3] GÉCSEG, F. and M. STEINBY, Tree automata, Akadémiai Kiadó, Budapest, to appear.
- [4] VIRÁGH, J., Deterministic ascending tree automata II, Acta Cybernet., to appear.

(Received Nov. 2, 1982)

180