On a representation of deterministic uniform root-to-frontier tree transformations

By F. GÉCseg

- The concepts of products and complete systems of finite automata can be generalized for ascending algebras in a natural way (see [4]). Results in finite automata theory imply that for most types of products there are no finite complete systems of ascending algebras. Therefore, it is reasonable to investigate a weaker form of completeness to be called m-completeness when tree transformations are represented up to a finite but not bounded height. In this paper we give necessary and sufficient conditions under which a system of ascending algebras is m-complete for the class of all deterministic uniform root-to-frontier tree transformations with respect to different kinds of products. Moreover, we show the existence of such finite m-complete systems.

1. Notions and notations

The terms "node of a tree" and "subtree at a given node of a tree" will be used in an informal and obvious way.

The symbol R will stand for a nonvoid finite rank type with $0 \notin R$.
By a path of rank type R we mean a word over $U(R)=U(\{(m, 1), \ldots,(m, m)\} \mid$ $\mid m \in R)$. The set of all paths with rank type R will be denoted by pt (R).

Take a ranked alphabet Σ of rank type R, a tree $p \in F_{\Sigma}\left(X_{n}\right)$ and a path $u \in \mathrm{pt}(R)$. Then the realization $u(p)$ of u in p (if it exists) is defined in the following way:

1. if $u=e$ then $u(p)=e$ and u ends in p at the root of p,
2. if $u=u_{1}(m, i), u_{1}(p)$ exists, u_{1} ends in p at the node d of p labelled by σ and $\sigma \in \Sigma_{m}$ then $u(p)=u_{1}(p)(\sigma, i)$ and u ends in p at the $i^{\text {th }}$ descendent of d.

For $U \subseteq \mathrm{pt}(R)$ and $T \subseteq F_{\Sigma}\left(X_{n}\right)(n \geqq 1)$ let $U(T)=\{u(p) \mid u \in U ; p \in T\}$. One can easily see, that for arbitrary $n \geqq 1$, pt $(R)\left(F_{\Sigma}\left(X_{n}\right)\right)=U(\Sigma)^{*}$, where $U(\Sigma)=$ $=\cup\left(\{(\sigma, 1), \ldots,(\sigma, m)\} \mid \sigma \in \Sigma_{m}, m>0\right)$.

Let Σ be an operator domain with $\Sigma_{0}=\emptyset$. A (deterministic) ascending Σ algebra \mathscr{A} is a pair consisting of a nonempty set A and a mapping that assigns
to every operator $\sigma \in \Sigma$ an m-ary ascending operation $\sigma^{\mathscr{A}}: A \rightarrow A^{m}$, where m is the arity of σ. The mapping $\sigma \rightarrow \sigma^{\Omega d}$ will not be mentioned explicitely, but we write $\mathscr{A}=(A, \Sigma)$. If Σ is not specified then we speak about an ascending algebra. The ascending Σ-algebra \mathscr{A} is finite if both A and Σ are finite. Moreover, \mathscr{A} has rank type R if Σ is of rank type R. The class of all finite ascending Σ algebras of rank type R will be denoted by $K(R)$. If there is no danger of confusion then we omit \mathscr{A} in $\sigma^{\mathscr{A}}$.

In this paper by an algebra we mean a finite deterministic ascending algebra.
A (deterministic) root-to-frontier ΣX_{n}-recognizer or a (D) $R \Sigma X_{n}$-recognizer, for short, is a system $\mathbf{A}=\left(\mathscr{A}, a_{0}, X_{n}, a\right)$, where
(1) $\mathscr{A}=(A, \Sigma)$ is a finite Σ-algebra,
(2) $a_{0} \in A$ is the initial state,
(3) $\mathbf{a}=\left(A^{(1)}, \ldots, A^{(n)}\right) \in P(A)^{n}$ is the final-state vector.

Next we recall the concept of a tree transducer.
A root-to-frontier tree transducer (R-transducer) is a system $\mathfrak{U}=\left(\Sigma, X_{n}, A, \Omega\right.$, Y_{m}, A^{\prime}, P), where
(1) Σ and Ω are ranked alphabets,
(2) X_{n} and Y_{m} are the frontier alphabets,
(3) A is a ranked alphabet consisting of unary operators, the state set of \mathfrak{A}. (It is assumed that A is disjoint with all other sets in the definition of \mathfrak{A}, except A^{\prime}.)
(4) $A^{\prime} \subseteq A$ is the set of initial states,
(5) P is a finite set of productions of the following two types:
(i) $a x_{i} \rightarrow q\left(a \in A, x_{i} \in X_{n}, q \in F_{\Omega}\left(Y_{m}\right)\right)$,
(ii) $a \sigma \rightarrow q\left(a \in A, \sigma \in \Sigma_{l}, l \geqq 0, q \in F_{\Omega}\left(Y_{m} \cup A \Xi_{l}\right)\right) . \quad\left(\Xi=\left\{\xi_{1}, \xi_{2}, \ldots\right\}\right.$ is the set of auxiliary variables.)

The transformation induced by \mathfrak{H} will be denoted by $\tau_{\mathfrak{2 1}}$.
The R-transducer \mathfrak{A} is deterministic if $A^{\prime}=\left\{a_{0}\right\}$ is a singleton and there are no distinct productions in P with the same left side. Moreover, the R-transducer \mathfrak{U} is uniform if each production $a \sigma \rightarrow q\left(a \in A, \sigma \in \Sigma_{l}, l \geqq 0, q \in F_{\Omega}\left(Y_{m} \cup A \Xi_{l}\right)\right)$ can be written in the form $a \sigma \rightarrow \bar{q}\left(a_{1} \xi_{1}, \ldots, a_{l} \xi_{l}\right)$ for some $\bar{q} \in F_{\Omega}\left(Y_{m} \cup \Xi_{l}\right)$. In this paper by a transducer we shall mean a deterministic uniform R-transducer. One can easily see that for every transducer $\mathfrak{H}=\left(\Sigma, X_{n}, A, \Omega, Y_{m}, a_{0}, P\right)$ there exists a transducer $\mathfrak{B}=\left(\Sigma, X_{n}, B, \Omega^{\prime}, Y_{m}, b_{0}, P^{\prime}\right)$ such that (i) for arbitrary $b \in B$ and $\sigma \in \Sigma_{m}$ with $m>0$ there is exactly one production in P^{\prime} with left side $b \sigma$, and (ii) $\tau_{\mathfrak{g}}=\tau_{\mathfrak{Y}}$. In the sequel we shall confine ourselves to transducers having property (i) and $\Sigma_{0}=\emptyset$.

To a transducer $\mathfrak{V}=\left(\Sigma, X_{n}, A, \Omega, Y_{m}, a_{0}, P\right)$ we can correspond an $R \Sigma X_{n}$ recognizer $\mathbf{A}=\left(\mathscr{A}, a_{0}, X_{n}, \mathbf{a}\right)$ with $\mathscr{A}=(A, \Sigma)$ and $\mathbf{a}=\left(A^{(1)}, \ldots, A^{(n)}\right)$, where
(1) for arbitrary $l>0, \sigma \in \Sigma_{l}, a \in A$ and $\left(a_{1}, \ldots, a_{l}\right) \in A^{l}$ if $\left(a_{1}, \ldots, a_{l}\right)=\sigma^{\mathscr{A}}(a)$ then $a \sigma \rightarrow q\left(a_{1} \xi_{1}, \ldots, a_{l} \xi_{l}\right) \in P$ for some $q \in F_{\Omega}\left(Y_{m} \cup \Xi_{l}\right)$,
(2) $a \in A^{(i)}(1 \leqq i \leqq n)$ if and only if $a x_{i} \rightarrow q \in P$ for some $q \in F_{\Omega}\left(Y_{m}\right)$.

The class of all recognizers obtained from \mathfrak{H} in the above way will be denoted by $\operatorname{rec}(\mathfrak{H l})$.

Now take an $R \Sigma X_{n}$-recognizer $\mathbf{A}=\left(\mathscr{A}, a_{0}, X_{n}\right.$, a) with $\mathscr{A}=(A, \Sigma)$ and $\mathbf{a}=\left(A^{(1)}, \ldots, A^{(n)}\right)$. Define a transducer $\mathfrak{U}=\left(\Sigma, X_{n}, A, \Omega, Y_{m}, a_{0}, P\right)$ by

$$
\begin{gathered}
P=\left\{a x_{i} \rightarrow q^{(a, i)} \mid a \in A^{(i)}, q^{(a, i)} \in F_{\Omega}\left(Y_{m}\right), i=1, \ldots, n\right\} \cup \\
\cup\left\{a \sigma \rightarrow q^{(a, \sigma)}\left(a_{1} \xi_{1}, \ldots, a_{l} \xi_{l}\right) \mid a \in A, \sigma \in \Sigma_{l}, l>0,\right. \\
\left.\left(a_{1}, \ldots, a_{l}\right)=\sigma^{\mathscr{A}}(a), q^{(a, \sigma)} \in F_{\Omega}\left(Y_{m} \cup \Xi_{l}\right)\right\},
\end{gathered}
$$

where the ranked alphabet Ω, the integer m and the trees on the right sides of the productions in P are fixed arbitrarily. Denote by $\operatorname{tr}(\mathbf{A})$ the class of all transducers obtained from \mathbf{A} in the above way. Obviously, for arbitrary transducer \mathfrak{H} and $\mathbf{A} \in \operatorname{rec}(\mathfrak{H})$ the inclusion $\mathfrak{A} \in \operatorname{tr}(\mathbf{A})$ holds. Therefore, we have

Statement 1. For every transducer \mathfrak{A} there exists a recognizer \mathbf{A} such that $\mathfrak{M} \in \operatorname{tr}(\mathbf{A})$.

Next we recall the concept of a product of ascending algebras (see [4]).
Let $\Sigma, \Sigma^{1}, \ldots, \Sigma^{k}$ be ranked alphabets of rank type R, and consider the Σ^{i}-algebras $\mathscr{A}_{i}=\left(A_{i}, \Sigma^{i}\right)(i=1, \ldots, k)$. Furthermore, let

$$
\psi=\left\{\psi_{m}: A_{1} \times \ldots \times A_{k} \times \Sigma_{m} \rightarrow \Sigma_{m}^{1} \times \ldots \times \Sigma_{m}^{k} \mid m \in R\right\}
$$

be a family of mappings. Then by the product of $\mathscr{A}_{1}, \ldots, \mathscr{A}_{k}$ with respect to ψ we mean the Σ-algebra $\psi\left(\mathscr{A}_{1}, \ldots, \mathscr{A}_{k}, \Sigma\right)=\mathscr{A}=(A, \Sigma)$ with $A=A_{1} \times \ldots \times A_{k}$ and for arbitrary $m \in R, \sigma \in \Sigma_{m}$ and $\mathbf{a} \in A$

$$
\begin{gathered}
\sigma^{\mathscr{A}}(\mathbf{a})=\left(\left(\operatorname{pr}_{1}\left(\sigma_{1}^{\alpha_{1}}\left(\operatorname{pr}_{1}(\mathbf{a})\right)\right), \ldots, \operatorname{pr}_{1}\left(\sigma_{k}^{\alpha_{k}}\left(\operatorname{pr}_{k}(\mathbf{a})\right)\right)\right), \ldots\right. \\
\left.\ldots,\left(\operatorname{pr}_{m}\left(\sigma_{1}^{\alpha_{1}}\left(\operatorname{pr}_{1}(\mathbf{a})\right)\right), \ldots, \operatorname{pr}_{m}\left(\sigma_{k}^{\mathscr{q}_{k}}\left(\operatorname{pr}_{k}(\mathbf{a})\right)\right)\right)\right),
\end{gathered}
$$

where $\left(\sigma_{1}, \ldots, \sigma_{k}\right)=\psi_{m}(\mathbf{a}, \sigma)$ and $\operatorname{pr}_{i}(\mathbf{a})(1 \leqq i \leqq k)$ denotes the $i^{\text {th }}$ component of a.
To define special types of products let us write ψ_{m} in the form $\psi_{m}=\left(\psi_{m}^{(1)}, \ldots, \psi_{m}^{(k)}\right)$ where for arbitrary $\mathbf{a} \in A$ and $\sigma \in \Sigma_{m}, \psi_{m}(\mathbf{a}, \sigma)=\left(\psi_{m}^{(1)}(\mathbf{a}, \sigma), \ldots, \psi_{m}^{(k)}(\mathbf{a}, \sigma)\right)$. We say that \mathscr{A} is an α_{i}-product $(i=0,1, \ldots)$ if for arbitrary $j(1 \leqq j \leqq k)$ and $m \in R, \psi_{m}^{(j)}$ is independent of its $u^{\text {th }}$ component if $i+j \leqq u \leqq k$. If $\Sigma^{1}=\ldots=\Sigma^{k}=\Sigma$ and $\psi_{m}(\mathbf{a}, \sigma)=(\sigma, \ldots, \sigma)$ for arbitrary $m \in R, \sigma \in \Sigma_{m}$ and $\mathbf{a} \in A$ then \mathscr{A} is the direct product of $\mathscr{A}_{1}, \ldots, \mathscr{A}_{k}$. In the case of an α_{i}-product in $\psi_{m}^{(j)}$ we shall indicate only those variables on which $\psi_{m}^{(j)}$ may depend.

One can see easily that the formation of the product, α_{0}-product and direct product is associative. (This is not true for the α_{i}-product with $i>0$.)

Let $\mathfrak{A}=\left(\Sigma, X_{u}, A, \Omega, Y_{v}, a_{0}, P\right)$ and $\mathfrak{B}=\left(\Sigma, X_{u}, B, \Omega, Y_{v}, b_{0}, P^{\prime}\right)$ be two transducers and $m \geqq 0$ an integer. We write $\tau_{\mathfrak{A}} \stackrel{m}{=} \tau_{\mathfrak{F}}$ if $\tau_{\mathfrak{A}}(p)=\tau_{\mathfrak{g}}(p)$ for every $p \in F_{\Sigma}^{m}\left(X_{u}\right)$, where $F_{\Sigma}^{m}\left(X_{u}\right)$ denotes the set of all trees from $F_{\Sigma}\left(X_{u}\right)$ with height less than or equal to m.

Take a class K of algebras of rank type R. We say that K is metrically complete (m-complete, for short) with respect to the product (α_{i}-product) if for arbitrary transducer $\mathfrak{G}=\left(\Sigma, X_{u}, A, \Omega, Y_{v}, a_{0}, P\right)$ and integer $m \geqq 0$ there exist a product (α_{i}-product) $\mathscr{B}=(B, \Sigma)$ of algebras from K, an element $b_{0} \in B$ and a vector $\mathbf{b} \in P(B)^{u}$ such that $\tau_{\mathfrak{M}} \stackrel{m}{=} \tau_{\mathfrak{B}}$ for some $\mathfrak{B} \in \operatorname{tr}(\mathbf{B})$, where $\mathbf{B}=\left(\mathscr{B}, b_{0}, X_{u}, \mathbf{b}\right)$.

Let $\mathscr{A}=(A, \Sigma)$ be an arbitrary algebra from $K(R)$. We correspond to \mathscr{A} a semiautomaton $s(\mathscr{A})=\left(I_{\mathscr{A}}, A, \delta_{\mathscr{A}}\right)$, where $I_{\mathscr{A}}=U(\Sigma)$ and for arbitrary $a \in A$ and $(\sigma, i) \in I_{\mathscr{A}}, \quad \delta_{\mathscr{A}}(a,(\sigma, i))=\operatorname{pr}_{i}\left(\sigma^{\mathscr{A}}(\mathbf{a})\right)$.

Take a Σ-algebra $\mathscr{A}=(A, \Sigma) \in K(R)$, an element $a \in A$ and an integer $m \geqq 0$. We say that the system (\mathscr{A}, a) is m-free if the initial semiautomaton $s(\mathscr{A}, a)=$ $=\left(I_{\mathscr{A}}, A, a, \delta_{s}\right)$ is m-free. (For the definition of m-free semiautomata, see [1]. In [1] initial semiautomata are called initial automata. Moreover, here it is not supposed that $s(\mathscr{A}, a)$ is connected.)

For the system (\mathscr{A}, a) and integer $m \geqq 0$ set $A_{a}^{(m)}=\left\{\delta_{\mathscr{A}}(a, p)\left|p \in I_{\mathscr{A}}^{*},|p| \leqq m\right\}\right.$, where $|p|$ denotes the length of p. Moreover, $\delta_{s i}(a, e)=a$ and $\delta_{s e}(a, p(\sigma, i))=$ $=\delta_{s x}\left(\delta_{s i}(a, p),(\sigma, i)\right)\left(p \in I_{\mathscr{A}}^{*},(\sigma, i) \in I_{s i}\right)$.

Let (\mathscr{A}, a) and (\mathscr{B}, b) be two systems with $\mathscr{A}=(A, \Sigma), \mathscr{B}=(B, \Sigma) \in K(R)$. A mapping φ of $A_{a}^{(m)}$ onto $B_{b}^{(m)}$ is an m-homomorphism of $(\mathscr{A}, a$) onto ($\mathscr{B}, b)$ if it satisfies the following conditions:
(1) $\varphi(a)=b$,
(2) $\varphi\left(\sigma^{\mathscr{A}}\left(a^{\prime}\right)\right)=\sigma^{\mathscr{A}}\left(\varphi\left(a^{\prime}\right)\right)\left(a^{\prime} \in A_{a}^{(m-1)}, \sigma \in \Sigma_{l}, l>0\right)$.

If the above φ is also one-to-one then we speak about an m-isomorphism, and say that (\mathscr{A}, a) and (\mathscr{B}, b) are m-isomorphic. In notation, $(\mathscr{A}, a) \stackrel{m}{\approx}(\mathscr{B}, b)$. One can easily prove the following statements.
Statement 2. Let $\mathscr{A}=(A, \Sigma), \mathscr{B}=(B, \Sigma) \in K(R)$ and $a \in A, b \in B$ be arbitrary. For an integer $m \geqq 0,(\mathscr{B}, b)$ is an m-homomorphic image of (\mathscr{A}, a) if and only if $s(\mathscr{B}, b)$ is an m-homomorphic image of $s(\mathscr{A}, a)$.

Statement 3. Let (\mathscr{A}, a) and ($\mathscr{B}, b)$ be the systems of Statement 2. For arbitrary $m \geqq 0$,
(1) if (\mathscr{A}, a) is m-free then (\mathscr{B}, b) is an m-homomorphic image of (\mathscr{A}, a),
(2) if (\mathscr{A}, a) is m-free and m-isomorphic to ($\mathscr{B}, b)$ then ($\mathscr{B}, b)$ is also m-free, and
(3) if both (\mathscr{A}, a) and (\mathscr{B}, b) are m-free then they are m-isomorphic.

The next statement is also obvious.
Statement 4. Take two systems (\mathscr{A}, a) and $(\mathscr{B}, b)(\mathscr{A}=(A, \Sigma), \mathscr{B}=(B, \Sigma) \in K(R)$, $a \in A, b \in B$). Moreover, let $m \geqq 0$ be an integer. If ($\mathscr{B}, b)$ is an m-homomorphic image of (\mathscr{A}, a) then for arbitrary $u \geqq 0, \mathbf{b} \in P(B)^{u}, \mathbf{B}=\left(\mathscr{B}, b, X_{u}, \mathbf{b}\right)$ and $\mathfrak{B}=$ $=\left(\Sigma, X_{u}, B, \Omega, Y_{v}, b, P^{\prime}\right) \in \operatorname{tr}(\mathbf{B})$ there exist an $\mathbf{a} \in P(A)^{u}$, an $\mathbf{A}=\left(\mathscr{A}, a, X_{u}, \mathbf{a}\right)$ and an $\mathfrak{A}=\left(\Sigma, X_{u}, A, \Omega, Y_{v}, a, P\right) \in \operatorname{tr}(\mathbf{A})$ such that $\tau_{\mathfrak{B}} \stackrel{m}{=} \tau_{\mathfrak{A}}$.

Let (\mathscr{A}, a) be a system with $\mathscr{A}=(A, \Sigma) \in K(R)$ and $a \in A$ an element. We say that for an integer $m \geqq 0$ the algebra $\mathscr{B}=(B, \Sigma)$ m-isomorphically represents (\mathscr{A}, a) if there exists a $b \in B$ such that $(\mathscr{A}, a) \stackrel{m}{\approx}(\mathscr{B}, b)$.

The α_{i}-product and the α_{j}-product ($i, j \geqq 0$) will be called metrically equivalent (m-equivalent) provided that a system of algebras is m-complete with respect to the α_{i}-product if and only if it is m-complete with respect to the α_{j}-product. The m equivalence between an α_{i}-product and the product is defined similarly.

Finally, we shall suppose that every finite index set $I=\left\{i_{1}, \ldots, i_{k}\right\}$ is given together with a (fixed) ordering of its elements. Furthermore, for arbitrary system $\left\{a_{i j} \mid i_{j} \in I\right\},\left(a_{i_{j}} \mid i_{j} \in I\right)$ is the vector $\left(a_{i_{1}}, a_{i_{2}}, \ldots, a_{i_{k}}\right)$ if $i_{1}<i_{2}<\ldots<i_{k}$ is the ordering of I.

For terminology not defined here, see [2] and [3].

2. Metrically complete systems

In this section we give necessary and sufficient conditions for a system of ascending algebras to be m-complete with respect to the α_{i}-products ($i=0,1, \ldots$) and the product. We shall see that the α_{i}-products are m-equivalent to each other and they are m-equivalent to the product.

We start with
Theorem 1. A system $K \subseteq K(R)$ is m-complete with respect to the product (α_{i}-product) if and only if for every $m \geqq 0$ each m-free system (\mathscr{A}, a) with $\mathscr{A} \in K(R)$ can be represented m-isomorphically by a product (α_{i}-product) of algebras from K.
1 Proof. The sufficiency is obvious by Statements 3 and 4.
To prove the necessity take an arbitrary m-free system $\left(\mathscr{A}, a_{0}\right)$ with $\mathscr{A}=$ $=(A, \Sigma) \in K(R)$. Consider the transducer $\mathfrak{U}=\left(\Sigma, X_{n}, A, \Omega, A \times X_{n}, a_{0}, P\right)$, where $n>1$ is an arbitrary natural number, $\Omega_{l}=A \times \Sigma_{l}(l>0)$ and P consists of the following productions:
(1) $a x_{i} \rightarrow\left(a, x_{i}\right)\left(a \in A, x_{i} \in X_{n}\right)$,
(2) $a \sigma \rightarrow(a, \sigma)\left(a_{1} \xi_{1}, \ldots, a_{l} \xi_{l}\right)\left(a \in A, \sigma \in \Sigma, l>0, \sigma^{\alpha}(a)=\left(a_{1}, \ldots, a_{1}\right)\right)$.

Let $\mathscr{B}=(B, \Sigma)$ be a product (α_{i}-product) of algebras from K such that for a $\mathfrak{B}=\left(\Sigma, X_{n}, B, \Omega, A \times X_{n}, b_{0}, P^{\prime}\right) \in \operatorname{tr}(\mathbf{B})$ we have $\tau_{\mathfrak{H}} \stackrel{m}{=} \tau_{\mathfrak{B}}$, where $\mathbf{B}=\left(\mathscr{B}, b_{0}, X_{n}, \mathbf{b}\right)$ $\left(b_{0} \in B, \mathbf{b} \in P(B)^{n}\right)$. We show that ($\left.\mathscr{B}, b_{0}\right)$ is m-free. This, by Statement 3 , will imply that $\left(\mathscr{A}, a_{0}\right) \stackrel{m}{=}\left(\mathscr{B}, b_{0}\right)$.

First of all obset ve that \mathfrak{A} is a totally defined, linear, nondeleting transducer inducing a one-to-one transformation. Moreover, in a tree $\tau_{\mathrm{ql}}(p)$ with $h(p) \leqq m$ no subtree occurs more than once. Therefore, by $\tau_{\mathfrak{I}} \stackrel{m}{=} \dot{\tau}_{\mathfrak{B}}$, all productions occurring in a derivation $b_{0} p \Rightarrow^{*} q\left(p \in F_{\Sigma}\left(X_{n}\right), q \in F_{\Omega}\left(X_{n} \times A\right)\right.$) with $h(p) \leqq m$ are linear and nondeleting. Thus, we have the following relation between derivations in \mathfrak{U} and \mathfrak{B}. Let $u \in \mathrm{pt}(R)$ be a path with $|u| \leqq m$. Take a tree $p \in F_{\Sigma}\left(X_{n}\right)$ with $h(p) \leqq m$, and assume that $u(p)$ is defined, it ends in p at the node d, p^{\prime} is the subtree of p at $d, \bar{p}\left(\xi_{1}\right)$ is obtained from p by replacing the occurrence of p^{\prime} at d by $\xi_{1}, \delta_{\mathscr{A}}\left(a_{0}, u(p)\right)=a$ and $\delta_{\mathscr{P}}\left(b_{0}, u(p)\right)=b$. Then the following derivations are valid:

$$
a_{0} p=a_{0} \bar{p}\left(p^{\prime}\right) \Rightarrow{ }_{\mathscr{N}}^{*} q_{1}\left(a p^{\prime}\right) \Rightarrow{ }_{\mathfrak{Q}}^{*} q_{1}\left(q^{\prime}\right)=q
$$

and

$$
b_{0} p=b_{0} \bar{p}\left(p^{\prime}\right) \Rightarrow{ }_{\mathfrak{B}}^{*} q_{2}\left(b p^{\prime}\right) \Rightarrow \stackrel{*}{\mathfrak{B}} q_{2}\left(q^{\prime \prime}\right)=q,
$$

where $a_{0} \bar{p}\left(\xi_{1}\right) \Rightarrow_{\mathfrak{A}}^{*} q_{1}\left(a \xi_{1}\right), b_{0} \bar{p}\left(\xi_{1}\right) \Rightarrow{ }_{\mathfrak{B}}^{*} q_{2}\left(b \xi_{1}\right)\left(q_{1}, q_{2} \in F_{\Omega}\left(A \times X_{n} \cup \xi_{1}\right)\right)$ and $a p^{\prime} \Rightarrow_{\mathscr{A}}^{*} q^{\prime}$, $b p^{\prime} \Rightarrow{ }_{\mathfrak{B}}^{*} q^{\prime \prime}\left(q^{\prime}, q^{\prime \prime} \in F_{\Omega}\left(A \times X_{n}\right)\right.$). (Observe that ξ_{1} occurs exactly once in q_{1} and q_{2}.) Furthermore, if $v_{1} \in \mathrm{pt}(R)$ is the path such that $v_{1}\left(q_{1}\right)$ ends in q_{1} at the node labelled by ξ_{1} and $v_{2} \in \mathrm{pt}(R)$ is the path for which $v_{2}\left(q_{2}\right)$ ends in q_{2} at the node labelled by ξ_{1} then $v_{2}\left(q_{2}\right)$ is a subword of $v_{1}\left(q_{1}\right)$.

Now assume that (\mathscr{B}, b_{0}) is not m-free, that is there are two distinct words $u, v \in I_{\mathscr{A}}^{*}\left(=I_{\mathscr{A}}^{*}\right)$ such that $|u|,|v| \leqq m$ and $\delta_{\mathscr{A}}\left(b_{0}, u\right)=\delta_{\mathscr{B}}\left(b_{0}, v\right)=b$. Let $\bar{u}, \bar{v} \in \operatorname{pt}(R)$ be paths and $p_{1}, p_{2} \in F_{\Sigma}\left(X_{n}\right)$ trees such that $\bar{u}\left(p_{1}\right)=u, \bar{v}\left(p_{2}\right)=v, h\left(p_{1}\right), h\left(p_{2}\right) \leqq m$, u ends in p_{1} at the node d_{1} and v ends in p_{2} at the node d_{2}. Replace in p_{1} and p_{2} the subtrees at d_{1} resp. d_{2} by x_{1}, and denote by \bar{p}_{1} resp. \bar{p}_{2} the resulting
trees. Moreover, let $\delta_{\mathscr{A}}\left(a_{0}, u\right)=a_{1}$ and $\delta_{\mathscr{A}}\left(a_{0}, v\right)=a_{2}$. (Note that $a_{1} \neq a_{2}$ since $u \neq v$ and $\left(\mathscr{A}, a_{0}\right)$ is m-free.) Then, by the choice of \mathfrak{N}, if $q_{1}, q_{2} \in F_{\Omega}\left(A \times X_{n}\right)$ are obtained by the derivations $a_{0} \bar{p}_{1} \Rightarrow{ }_{\mathscr{Q}}^{*} q_{1}$ and $a_{0} \bar{p}_{2} \Rightarrow{ }_{\text {eit }}^{*} q_{2}$ then $\bar{u}\left(q_{1}\right)$ ends in q_{1} at a node labelled by $\left(a_{1}, x_{1}\right)$ and $\bar{v}\left(q_{2}\right)$ ends in q_{2} at a node labelled by (a_{2}, x_{1}). Moreover, by $\tau_{\mathfrak{B}} \stackrel{m}{=} \tau_{\mathfrak{F}}, b_{0} \bar{p}_{1} \Rightarrow{ }_{\mathfrak{G}}^{*} q_{1}$ and $b_{0} \bar{p}_{2} \Rightarrow{ }_{\mathfrak{B}}^{*} q_{2}$ hold also. From this, taking into consideration our observation concerning the relation between derivations in $\mathfrak{P l}$ and \mathfrak{B}, we get that at the ends of $\bar{u}\left(q_{1}\right)$ and $\bar{v}\left(q_{2}\right)$ the same label should occur which is a contradiction.

The next theorem gives necessary conditions for a system of ascending algebras to be m-complete with respect to the product.

Theorem 2. Let $K \subseteq K(R)$ be a system which is m-complete with respect to the product. Then the following conditions are satisfied:
(i) for arbitrary integer $m \geqq 0$, path $\bar{u} \in \operatorname{pt}(R)$ with $|\bar{u}|=m$, rank $l \in R$ and natural number $1 \leqq i \leqq l$ there exist an $\mathscr{A}=\left(A, \Sigma^{\prime}\right) \in K$, an $a_{0} \in A, \sigma_{1}, \sigma_{2} \in \Sigma_{l}^{\prime}$ and a $u \in \bar{u}\left(F_{\Sigma^{\prime}}\left(X_{1}\right)\right)$ such that $\delta_{\mathscr{A}}\left(a_{0}, u\left(\sigma_{1}, i\right)\right) \neq \delta_{\mathscr{A}}\left(a_{0}, u\left(\sigma_{2}, i\right)\right)$,
(ii) for arbitrary integer $m \geqq 0$, path $\bar{u} \in \operatorname{pt}(R)$ with $|\bar{u}|=m$, rank $l \in R(l>1)$ and integers $1 \leqq i<j \leqq l$ there exist an $\mathscr{A}=(A, \Sigma) \in K$, an $a_{0} \in A$, a $\sigma \in \Sigma_{i}$ and a $u \in \bar{u}\left(F_{\Sigma}\left(X_{1}\right)\right)$ such that $\delta_{s \in}\left(a_{0}, u(\sigma, i)\right) \neq \delta_{\Delta \Omega}\left(a_{0}, u(\sigma, j)\right)$.

Proof. We start with the necessity of (i). Assume that there are $m \geqq 0, \bar{u} \in \operatorname{pt}(R)$ with $|\bar{u}|=m, l \in R$ and $l \leqq i \leqq l$ such that for arbitrary $\mathscr{A}=\left(A, \Sigma^{\prime}\right) \in K, a_{0} \in A, \sigma_{1}, \sigma_{2} \in \Sigma_{l}^{\prime}$ and $u \in \bar{u}\left(F_{\Sigma},\left(X_{1}\right)\right)$ the equation $\delta_{\mathscr{A}}\left(a_{0}, u\left(\sigma_{1}, i\right)\right)=\delta_{s q}\left(a_{0}, u\left(\sigma_{2}, i\right)\right)$ holds. Take a ranked alphabet Σ of rank type R such that Σ_{l} contains two distinct elements σ and σ^{\prime}. Moreover, consider a product $\mathscr{B}=(B, \Sigma)=\psi\left(\mathscr{A}_{1}, \ldots, \mathscr{A}_{k}, \Sigma\right)\left(\mathscr{A}_{i}=\right.$ $\left.=\left(A_{i}, \Sigma^{i}\right) \in K, i=1, \ldots, k\right)$ and an element $\mathbf{b}_{0} \in B$. We show that the system ($\mathscr{B}, \mathbf{b}_{0}$) is not $(m+1)$-free.

First of all let us introduce a notation. Consider the above product \mathscr{B} and define the mappings $\psi^{i}: B \times F_{\Sigma}\left(X_{n}\right) \rightarrow F_{\Sigma^{i}}\left(X_{n}\right)(i=1, \ldots, k ; n \geqq 0)$ in the following way: for arbitrary $\mathbf{b} \in B$ and $p \in F_{\Sigma}\left(X_{n}\right)$
(1) if $p=x_{j}(1 \leqq j \leqq n)$ then $\psi^{i}(\mathrm{~b}, p)=x_{j}$,
(2) if $p=\sigma\left(p_{1}, \ldots, p_{l}\right)$ then $\psi^{i}(\mathbf{b}, p)=\sigma_{i}\left(\psi^{i}\left(\mathbf{b}_{1}, p_{1}\right), \ldots, \psi^{i}\left(\mathbf{b}_{l}, p_{l}\right)\right)$, where $\left(\sigma_{1}, \ldots, \sigma_{k}\right)=\psi_{l}(\mathbf{b}, \sigma)$ and $\left(\mathbf{b}_{1}, \ldots, \mathbf{b}_{l}\right)=\sigma^{\mathscr{E}}(\mathbf{b})$.

One can see easily that for arbitrary $\mathbf{b} \in B, p \in F_{\Sigma}\left(X_{n}\right)$ and $\bar{u} \in \operatorname{pt}(R)$ the equation $\delta_{\mathscr{\mathscr { F }}}(\mathbf{b}, \vec{u}(p))=\left(\delta_{\mathscr{A}_{1}}\left(\mathrm{pr}_{1}(\mathbf{b}), \bar{u}\left(\psi^{1}(\mathbf{b}, p)\right)\right), \ldots, \delta_{\mathscr{A}_{k}}\left(\mathrm{pr}_{k}(\mathbf{b}), \bar{u}\left(\psi^{k}(\mathbf{b}, p)\right)\right)\right)$ holds.

Now take two trees $p, q \in F_{\Sigma}\left(X_{1}\right)$ such that $(\bar{u}(l, i))(p)=u(\sigma, i)$ and $(\bar{u}(l, i))(q)=$ $=u\left(\sigma^{\prime}, i\right)$. For every $j(=1, \ldots, k)$ let $(\bar{u}(l, i))\left(\psi^{j}\left(\mathbf{b}_{0}, p\right)\right)=u_{j}\left(\sigma^{(j)}, i\right)$ and $(\bar{u}(l, i))\left(\psi^{j}\left(\mathbf{b}_{0}, q\right)\right)=v_{j}\left(\bar{\sigma}^{(j)}, i\right)$. By the definition of the product, the equations $u_{j}=v_{j} \quad(j=1, \ldots, k)$ obviously hold. Moreover,

$$
\delta_{\mathscr{B}}\left(\mathbf{b}_{0}, u(\sigma, i)\right)=\left(\delta_{\mathscr{S}_{1}}\left(\operatorname{pr}_{1}\left(\mathbf{b}_{0}\right), u_{1}\left(\sigma^{(1)}, i\right)\right), \ldots, \delta_{\mathscr{S}_{k}}\left(\operatorname{pr}_{k}\left(\mathbf{b}_{0}\right), u_{k}\left(\sigma^{(k)}, i\right)\right)\right)
$$

and

$$
\delta_{\mathscr{B}}\left(\mathbf{b}_{0}, u\left(\sigma^{\prime}, i\right)\right)=\left(\delta_{\mathscr{A}_{1}}\left(\operatorname{pr}_{1}\left(\mathbf{b}_{0}\right), u_{1}\left(\bar{\sigma}^{(1)}, i\right)\right), \ldots, \delta_{\mathscr{A}_{k}}\left(\mathrm{pr}_{k}\left(\mathbf{b}_{0}\right), u_{k}\left(\bar{\sigma}^{(k)}, i\right)\right)\right) .
$$

But, by our assumptions, $\delta_{\Omega_{j}}\left(\operatorname{pr}_{j}\left(\mathbf{b}_{0}\right), u_{j}\left(\sigma^{(j)}, i\right)\right)=\delta_{\Delta J_{j}}\left(\mathrm{pr}_{j}\left(\mathbf{b}_{0}\right), u_{j}\left(\bar{\sigma}^{(j)}, i\right)\right)$ for every $j(1 \leqq j \leqq k)$, i.e., $\delta_{\mathscr{A}}\left(\mathbf{b}_{0}, u(\sigma, i)\right)=\delta_{\mathscr{A}}\left(\mathbf{b}_{0}, u\left(\sigma^{\prime}, i\right)\right)$. Therefore, ($\left.\mathscr{B}, \mathbf{b}_{0}\right)$ is not ($m+1$)-free which, by Theorem 1 , implies that K is not m-complete with respect to the product.

The necessity of (ii) can be shown in a similar way.
Theorem 3. If a system $K \subseteq K(R)$ satisfies the conclusions of Theorem 2 then K is m-complete with respect to the α_{0}-product.

Proof. Let Σ be a fixed ranked alphabet of rank type R. We shall show by induction on m that for every integer $m \geqq 0$ there are an α_{0}-product $\mathscr{B}=(B, \Sigma)$ of algebras from K and an element $\mathbf{b} \in B$ such that (\mathscr{B}, \mathbf{b}) is m-free. This,' by Theorem 1, will end the proof of Theorem 3.

If $m=0$ then our claim is obviously valid. Let us suppose that our statement has been proved for an $m \geqq 0$, and take a product $\mathscr{A}=(A, \Sigma)$ of algebras from K and an element $a \in A$ such that (\mathscr{A}, a) is m-free. By our assumption, for every $\bar{u}=\bar{u}_{1}(l, i)\left(\bar{u}_{1} \in \operatorname{pt}(R), l \in R, l \leqq i \leqq l\right)$ there are an $\mathscr{A}^{(\bar{u})}=\left(A^{(\bar{u})}, \Sigma^{(\bar{u})}\right) \in K$, an $a^{(\bar{u})} \in A^{(\bar{u})}$, two operators $\sigma_{1}, \sigma_{2} \in \Sigma_{i}^{(\bar{u})}$ and a $u_{1} \in \bar{u}_{1}\left(F_{\Sigma}\left(X_{1}\right)\right)$ such that $\delta_{\mathscr{A}^{(u)}}\left(a^{(\bar{u})}, u_{1}\left(\sigma_{1}, i\right)\right) \neq$ $\neq \delta_{\mathscr{A}}(\bar{u})\left(a^{(\bar{u})}, u_{1}\left(\sigma_{2}, i\right)\right)$. Moreover, for arbitrary $\bar{u}=\bar{u}_{1}(l, i), \bar{v}=\bar{u}_{1}(l, j) \quad\left(\bar{u}_{1} \in \operatorname{pt}(R)\right.$, $l \in R, l>1, \quad 1 \leqq i<j \leqq l)$ there are an $\mathscr{A}^{(\bar{u}, \bar{v})}=\left(A^{(\bar{u}, \bar{v})}, \Sigma^{(\bar{u}, \bar{v})}\right)$, an $a^{(\bar{u}, \bar{v})} \in A^{(\bar{u}, \bar{v})}$, a $u_{1} \in \bar{u}_{1}\left(F_{\Sigma}\left(X_{1}\right)\right)$ and a $\bar{\sigma} \in \Sigma_{I}^{(\bar{u}, \bar{v})}$ such that $\delta_{\mathscr{A}}(\bar{u}, \bar{v})\left(a^{(\bar{u}, \bar{v})}, u_{1}(\bar{\sigma}, i)\right) \neq \delta_{\mathscr{L g}}(\bar{u}, \bar{v})\left(a^{(\bar{u}, \bar{v})}, u_{1}(\bar{\sigma}, j)\right)$. Consider an index set I consisting of all pairs (u, v) where $u, v \in U(\Sigma)^{*}, u \neq v$, $|u|=m+1$ and $|v| \leqq m+1$. For the pair (u, v) with $u=u^{\prime}(\sigma, i) \in \bar{u}\left(F_{\Sigma}\left(X_{1}\right)\right)$ and $v=v^{\prime}\left(\sigma^{*}, j\right)$ if $u^{\prime} \neq v^{\prime}$ or $\sigma \neq \sigma^{*}$ take the α_{0}-product $\mathscr{A}^{(u, v)}=\psi^{(u, v)}\left(\mathscr{A}, \mathscr{A}^{(\bar{u})}, \Sigma\right)=$ $=\left(A^{(u, v)}, \Sigma\right)$, where $\psi^{(u, v)}$ is defined in the following way. For every $s \in R, \psi_{s}^{(u, v)(\mathbf{1})}$ is the identity mapping on Σ_{s}. If $w=w_{1}\left(\sigma^{\prime}, j\right)\left(\sigma^{\prime} \in \Sigma_{k}\right)$ is a proper subword of u^{\prime} and $w^{\prime}=w_{1}^{\prime}\left(\sigma^{\prime \prime}, j\right)$ is the subword of u_{1} with $\left|w^{\prime}\right|=|w|$ then let

$$
\psi_{k}^{(u, v)(2)}\left(\delta_{a d}\left(a, w_{1}\right), \sigma^{\prime}\right)=\sigma^{\prime \prime}
$$

In all other cases, except $\psi_{l}^{(u, v)(2)}\left(\delta_{\mathscr{A}}\left(a, u^{\prime}\right), \sigma\right), \psi_{s}^{(u, v)(2)}(s \in R)$ is given arbitrarily in accordance with the definition of the α_{0}-product. Since $u^{\prime} \neq v^{\prime}$ or $\sigma \neq \sigma^{*}$ and (\mathscr{A}, a) is m-free $\delta_{\mathscr{o}^{(u, v)}}\left(\left(a, a^{(\bar{u})}\right), v\right)$ is defined. Now let

$$
\psi_{l}^{(u, v)(2)}\left(\delta_{\mathscr{A}}\left(a, u^{\prime}\right), \sigma\right)=\left\{\begin{array}{lll}
\sigma_{1} & \text { if } & \delta_{\mathscr{\prime}}(u, v)\left(\left(a, a^{(\bar{u})}\right), v\right)=\left(a_{1}, a_{2}\right) \\
\text { and } & \delta_{\left.\mathscr{Q}^{(\bar{u}}\right)}\left(a^{(\bar{u})}, u_{1}\left(\sigma_{1}, i\right)\right) \neq a_{2} \\
\sigma_{2} & \text { otherwise. }
\end{array}\right.
$$

Obviously, $\left(\mathscr{A}^{(u, v)}, a^{(u, v)}\right)$ with $a^{(u, v)}=\left(a, a^{(\bar{u})}\right)$ is m-free and $\delta_{\mathscr{A}^{(}(u, v)}\left(a^{(u, v)}, u\right) \neq$ $\neq \delta_{\mathcal{A}^{(}(u, v)}\left(a^{(u, v)}, v\right)$.

Now assume that $u^{\prime}=v^{\prime}$ and $\sigma=\sigma^{*}$; that is $u=u^{\prime}(\sigma, i) \in \bar{u}\left(F_{\Sigma}\left(X_{1}\right)\right)$ and $v=$ $=u^{\prime}(\sigma, j) \in \bar{v}\left(F_{\Sigma}\left(X_{1}\right)\right)$. Take the α_{0}-product $\mathscr{A}^{(u, v)}=\psi^{(u, v)}\left(\mathscr{A}, \mathscr{A}^{(\bar{u}, \bar{v})}, \Sigma\right)=\left(A^{(u, v)}, \Sigma\right)$, where $\psi^{(u, v)}$ is given as follows. Again for every $s \in R, \psi_{s}^{(u, v)(1)}$ is the identity mapping on Σ_{s}. If $w=w_{1}\left(\sigma^{\prime}, t\right)\left(\sigma^{\prime} \in \Sigma_{k}\right)$ is a proper subword of u^{\prime} and $w^{\prime}=$ $=w_{1}^{\prime}\left(\sigma^{\prime \prime}, t\right)$ is the subword of u_{1} with $\left|w^{\prime}\right|=|w|$ then let $\psi_{k}^{(u, v)(2)}\left(\delta_{s s}\left(a, w_{1}\right), \sigma^{\prime}\right)=$ $=\sigma^{\prime \prime}$. Moreover, $\psi_{l}^{(u, v)(2)}\left(\delta_{s t}\left(a, u^{\prime}\right), \sigma\right)=\bar{\sigma}$. In any other cases $\psi_{s}^{(u, v)(2)}(s \in R)$ is given arbitrarily in accordance with the definition of the α_{0}-product. Since (\mathscr{A}, a) is m-free $\mathscr{A}^{(u, v)}$ is well defined. Again, $\left(\mathscr{A}^{(u, v)}, a^{(u, v)}\right)$ with $a^{(u, v)}=\left(a, a^{(\bar{u}, \bar{v})}\right)$ is

Finally, take the direct product $\mathscr{B}=(B, \Sigma)=\Pi\left(\mathscr{A}^{(u, v)} \mid(u, v) \in I\right)$ and the vector $\mathbf{b}=\left(a^{(u, v)} \mid(u, v) \in I\right)$. Then $(\mathscr{B}, \mathbf{b})$ is $(m+1)$-free. Indeed, for two different words $u, v \in U(\Sigma)^{*}$ if $|u|,|v|<m+1$ then $\delta_{\mathscr{B}}(\mathbf{b}, u) \neq \delta_{\mathscr{B}}(\mathbf{b}, v)$ since they differ in all of their components, and if $|u|=m+1$ and $|v| \leqq m+1$ then $\delta_{\mathscr{G}}(\mathbf{b}, u)$ and $\delta_{\mathscr{G}}(\mathbf{b}, v)$
are different at least in their $(u, v)^{\text {th }}$ components. Since the direct product is a special α_{0}-product and the formation of the α_{0}-product is associative \mathscr{B} is an α_{0}-product of algebras from K.

From Theorems 2 and 3 we get
Corollary 4. For arbitrary $i, j \geqq 0$ the α_{i}-product and the α_{j}-product are m-equivalent to each other and they are m-equivalent to the product.

We now give an algorithm to decide for a finite $K \subseteq K(R)$ whether K is m complete with respect to the product.

Take an algebra $\mathscr{A}=(A, \Sigma) \in K$. For arbitrary $l \in R$ and $1 \leqq i \leqq l$ set $A^{(1, i)}=$ $=\left\{a \in A \mid \operatorname{pr}_{i}\left(\sigma_{1}^{\alpha}(a)\right) \neq \operatorname{pr}_{i}\left(\sigma_{2}^{\sigma}(a)\right)\right.$ for some $\left.\sigma_{1}, \sigma_{2} \in \Sigma_{l}\right\}$. Moreover, for every $a \in A$ let $L_{a}^{(l, i)}$ be the language recognized by the automaton $\mathscr{A}_{a}^{(l, i)}=\left(I_{\mathscr{A}}, A, a, \delta_{\mathscr{A}}, A^{(l, i)}\right)$. Furthermore, let $L_{\dot{A}}^{(1, i)}=U\left(L_{a}^{(1, i)} \mid a \in A\right)$ and $L^{(1, i)}=\bigcup\left(L_{\dot{d}}^{(1, i)} \mid \mathscr{A} \in K\right)$. For arbitrary $l \in R(l>1)$ and $1 \leqq i<j \leqq l$ define $L^{(l, i, j)}$ in a similar way with $A^{(l, i, j)}=$ $=\left\{a \in A \mid \operatorname{pr}_{i}\left(\sigma^{s t}(a)\right) \neq \mathrm{pr}_{j}\left(\sigma^{s f}(a)\right)\right.$ for some $\left.\sigma \in \Sigma_{l}\right\}$ instead of $A^{(l, i)}$. Finally, denote by $\bar{\Sigma}$ the union of all ranked alphabets belonging to algebras from K, and take the language homomorphism $\varphi: U(\bar{\Sigma})^{*} \rightarrow U(R)^{*}$ given by $\varphi(\sigma, i)=(k, i)(\sigma \in \bar{\Sigma}, r(\sigma)=$ $=k$), where $r(\sigma)$ denotes the rank of σ. Then, by Theorems 2 and $3, K$ is m complete with respect to the product if and only if
(1) for arbitrary $l \in R$ and $1 \leqq i \leqq l, \varphi\left(L^{(l, i)}\right)=U(R)^{*}$,
(2) for arbitrary $l \in R(l>1)$ and $1 \leqq i<j \leqq l, \varphi\left(L^{(i, i, j)}\right)=U(R)^{*}$.

The validity of these equations is decidable effectively.
Finally, for a given rank type R we give a one-element system which is m complete with respect to the product. Let Σ be a ranked alphabet of rank type R such that for every $l \in R, \Sigma_{l}=\left\{\sigma_{1}^{(l)}, \sigma_{2}^{(l)}\right\}$. Assume that the greatest natural number in R is n. Take the Σ-algebra $\mathscr{A}=(A, \Sigma)$, where $A=\left\{a_{0}, \ldots, a_{n}\right\}, \sigma_{1}^{(l)}\left(a_{i}\right)=$ $=\left(a_{i+1(\bmod n+1)}, \ldots, a_{i+1(\bmod n+1)}\right) \quad(l \in R, i=0,1, \ldots, n), \sigma_{2}^{(l)}\left(a_{n}\right)=\left(a_{n}, a_{n-1}, \ldots, a_{n-t+1}\right)$ $(l \in R)$ and for arbitrary $l \in R$ and a_{i} with $i \neq n, \sigma_{2}^{(l)}\left(a_{i}\right)$ is defined arbitrarily. $(i+1(\bmod n+1)$ denotes the least residue of $i+1$ modulo $n+1$.) One can see easily that the system $K=\{\mathscr{A}\}$ satisfies the conclusions of Theorem 2.

References

[1] GécSeg, F. and I. Peák, Algebraic theory of automata, Akadémiai Kiadó, Budapest, 1972.
[2] Gécseg, F. and M. Steinby, Minimal ascending tree automata, Acta Cybernet., v. 4, 1978, pp. 37-44.
[3] Gécseg, F. and M. Steinby, Tree automata, Akadémiai Kiadó, Budapest, to appear.
[4] Viráigh, J., Deterministic ascending tree automata II, Acta Cybernet., to appear.

