A Theory of Finite Functions, Part I.
On finite trees associated to certain finite functions

By P. Ecsep1-TOTH

1. Introduction

1.1. Let A be a set of cardinality /, /cw, [=2. For n,mcw we set O®m =
={f|f: A"~A"} and O{" =) OP™. Certain subsets of OY™, in particular,

I neEow
of O, are interesting for the very different mathematical theories of algebra,
logic and computer science. For example, the celebrated result of I. Rosenberg
picks up some subsets when enumerating maximal closed classes of O [9]. Several
special types of functions such as monotone (unate) and symmetric ones play a role
in the theory of logic design [10], and in other applications of finite functions (cf.
e.g. Dedekind’s problem on freely generated lattices generated by finitely many
generators). In the common part of logic and computer science, e.g. in the theory
of theorem-proving and of semantics for programming languages, certain restric-
tions to logical formulae with prescribed forms seem to help in increasing efficiency [8].

1.2. One possible method for investigation the properties of these subsets is
to associate special finite algebras (or more precisely finite graphs and trees) to the
elements of OY™. There is a very common way of doing this: let the ““parse tree”
be associated to each function. By this correspondence several remarkable results
have been established. The parse tree, however, mirrors mostly the syntactical
features of the function at hand and very little can be learnt about the ‘‘semantics”
of the mapping by the parse tree only. Here we suggest another tree-representation
of finite functions — the valuation tree — and show the use by examples. Valuation
trees are compressed forms of valuation tables (generalized truth tables) of functions
(for /=2, see [5]). It should be mentioned that a more compact representation in
graph forms can also be given, cf. [1] for /=2. Trees, however, seem to be more
tractable in spite of or thanks to their redundancies. Clearly, valuation trees are
completely semantically oriented and designed to contain all information about
the action of a function.

1.3. The natural question arises' what kinds of trees are associated to certain
interesting subsets of OY™. Our main contribution in this first part of a series of
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papers Is to present a uniform graphical property, the level-homogenity, to answer
this question. As an illustration we apply the method for three well-known pre-
primal subsets of O(Q). In this paper we do not assume any algebraic structure
on A except the ordering relation. From the second part, however, we shall endow
some more operations to A, in fact, we suppose that A is a Post-algebra of order
! and apply the results obtained in Part I to this case. Actually, we shall develop
some optimization techniques for synthesizing Post formulae. Later parts are
devoted partly to complexity questions where several estimates are established
concerning the methods of Patt T and 11, and partly to different problems concerning
finite functions.

1.4. The organization of this paper is as follows. In Section 2, we overview
the notations used in this series of papers. In Section 3 we deal with trees and intro-
duce several notions and notations concerning them. Some notions of this section
will be used only in later parts, but is presented here for the sake of uniformity. Key
notion of these considerations, the level-homogeneous tree, will be introduced in
Section 4. This section deals with some auxiliary concepts, too. Finite functions
enter in Section 5 where, after a general representation theorem, we investigate
degenerate, order-preserving, value-preserving and permutation-preserving functions
in terms of trees.

We note that this paper is selfcontained, 1.e. no preliminary knowledge is assumed.

2. Preliminaires

2.1. Let o be the set of finite ordinals, @ is the empty set. If m€w, then we
make use of the following notations: {m}={0,1,...,m—1}, [m]={L,2, ..., m},
[01=0, [w]={1,2, ...}. Weshallfix 2=/<w;n, m€w and theset 4 of cardinality /.
Since A is finite, it can be identified with {/}. We shall usually use this identification.
From now on, the letters /, m, n, A will always refer to these fixed sets. Let < be -
the well-known total ordering on {/} (and thus on 4). We extend < to the elements
" of {I}" (henceto A") componentwise. The elements of the set O™ ={f|f: A"~ A"}
will be called n-ary 4-functions with m output. We make this concept independent
of arity by setting O§” =) O™, If f€0Y, then

neEo
= s f) where fi€0L for all i€[m]; ie. O =OPY™ (1)

If g40¢Y and g is a function (a meta-function) of n arguments, then
e,e, ... e,g will denote the application of g to the arguments e, e,, ..., e,. This
is to be distinguished from any application of a function f€0¢" which will be
displayed as fe, ... e,.

Let feO®Y. By f(x;/x) we mean a function in O$~%Y which is obtained
from f by substituting o for each occurrence of x; provided x; occurs in f,
otherwise let f(x;/a)=f, (and hence in OY{Y). f*(x,/ay, ..., X,/a,) denotes the
value of f under substituting its variables x,, ..., x, by «, ...,a, In due course.
In Part I we shall give a more detailed method for computing this value (by assuming
that 4 is a Post algebra).
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Af feO¢™, then we always assume that an ordering of variables occurring
in f, say xi, X, ..., X,, 1S fixed. This convention will be essential from Section 5.

Let feO$™. Then, for every n;>n, f can be considered as a function of
n, variables, i.e. f€O¢r™ (cf. subsection 5.2).

The cardinality of a set H is denoted by card H. ‘#H is the powerset of H.
If £ is a function defined on H and H’cCH, then f}H’ is the restriction of f
onto H’. Rangef and Domf denote the range and domain of the function f,
respectively.

We shall omit all indices without any remark unless confusion can occur. In this
paper O§"™ will be denoted by Of*™ to emphasize that no algebraic operations
are present on A4. All considerations apply for arbitrary m=0, however, for the
sake of simplicity, we often give definitions and assertions in the case m=1, only.
If generalization for larger m is not straightforward then we shall explicitly discuss it.

3. Trees

3.1. Let ¥V be an arbitrary set and ¢: ¥V —~{/+1}. The pair (V, ¢) is called
an l-ary pretree (ranked set). We set Ey ,={(v, i){veV Ai€[vg]}. The function
¢ is the rank function of the pregraph; ve is the rank of v in (V, ¢) provided
veV. Ey , is the set of edges. ,

The triplet T=((V, 0), 3, (¢1, .., &) is an m-rooted l-ary tree if and only if
(¥, 0) is an l-ary pretree; ¢: E~V;¢,...,8,6V and the following (Peano-like)
conditions are satisfied:

(i) o is a bijection.
(i) Range ¢ {e;li€[m]}=0.
(i) If ¥’V issuchthat {glic[m]}cV’ and [V'],CV, where V1. denotes
the closure of ¥’ under o, then ¥V’ =V.
The elements-of ¥ are called points of T; the point & (i€[m]) is the i-th root
and o is the successor function of T.

Note, that m=0 implies ¥ =@. We shall use the name leaf for an element
of 0¢~! (of a given tree), where ag~' denotes the total inverse of ¢ on a.
Clearly, card Vé[w] entails 0Op~*>0. From now on, we always assume that
card V€[w] and m#0.

We remark, that m-rooted trees are usually defined in a dlﬁ'erent way (cf. [2D).
The definition presented here is originated from C. C. Elgot et al. and is proved
equivalent to the more common one used in the literature in [6].

3.2. We define the immediate successors vD% and the successors vDp of
v in T as follows:

: D} = {v'|v€VAZi(i€[ve] Av' = (v, o)} @
an .
oDy = {v'|v'eVA@n€w, 3f: [n+1] ~V)(1f = vA(n+1) f = v'A
AV jED((+D) € (i) DD)}- ©)

In particular, v€vDy, ie. gD;#P provided i¢[m], and for all vcV, there exists
a unique i€[m] such that v€e;Dyr. The following assertion is immediate by defini-
tions.
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Lemma 1. Lei T be a tree and g€V, ic[m), furthermore assume that v€&Dy.
Then, there exist exactly one n (n€w) and exactly one f such that

1Lf = e A(n+1)f = s A(Yjeln]) ((+1) fe(if) DE) )
holds. .

If the conditions of Lemma 1 are fulfilled for v, then n and f, determined
uniquely by (4) and the remark preceeding the assertion, are called the level of v
and the derivation function of v, respectively. We shall use the notations, viy for
the level of v and vdy for the sequence (1f,2f, ..., (n+1)f), the derivation of
v in T. By a path we mean a derivation of a leaf v€0¢~. We shall denote the
set of all paths of T by Py. Clearly, card Py=card Og~'. Foreach p=(1f, 2f, ...
..y (n+1)f)€Py, there exist a unique i and a sequence (ky, ..., k,) such that 1f=g,
and for all j€[n], (jf, k)o=(j+1)f, hence we can use the pair (i, (k,, ..., k,))
to identify paths. Note, that the set of paths in T completely determines T, thus
P; and T can be identified and is actually done at several points of this paper.

3.3. We define T4, fthe level of T, as follows:
Th = n e (V€0 H)((vAr = n)A(3v€00 ™) (vAr = n))

i.e.,, TA is the least element of w such that every leaf of T has level less than
or equal to n. The tree T is exactly of level » if and only if

(V€0 ) (vAir = n).

3.4. The m-rooted i-ary tree T exactly of level n is complete if and only if
(YveV)(ve=I). It follows that in an m-rooted l-ary complete tree T,

card Pr=m-I"
The following observation is trivial but- very useful. !

Lemma 2. Let T, and T, be arbitrary m-rooted I-ary complete trees of level n.
Then T, and T, are isomorphic.

Let T be an m-rooted l-ary tree of level n and let h¢[n]. We say that T is
complete on level k if and only if (Vo€V ) (vi=h=vo=I).

3.5. Let 7, and T, be two m-rooted l-ary trees exactly of level n. We say
T, isasubtree of T, ifand onlyif Py, C Py, andforall p=(1f£, 2f, ..., n+1)f)€Py,,
if for some i€[m), (n+1)f€e;Dr,, then (n+1)f€e;Dr,. Note, that if T; is a sub-
tree of T,, then it may well happen that T, is not a subalgebra of T,, and vica
versa. If there is a subtree T’ in T, such that T’ is isomorphic to T, then we
say T, is embeddable in T,. Obviously, every m-rooted /-ary tree exactly of level
n is embeddable in an (m-rooted /-ary) complete tree. The embedding is, up to -
isomorphism, unique by definition and Lemma 2.

3.6. Let T be an m-rooted /-ary tree exactly of level n and let PcPy. P de-
fines, in the natural way, an m-rooted /-ary tree exactly of level n which is a subtree
of T, the subtree of T determined by P. This subtree is unique and we denote it .
by Toe.
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Let T be an m-rooted [-ary tree exactly of level n. Let p=(i, (k,, ..., k,))€ Pr,
q=(j, (s, ..., h,))EPr. We let p~ge(Vsc[n]) (k,=h). Clearly, ~ is an equi-
valence relation. Set p={qlg¢ PrAp~q} and Pr={p|p€P;}. The l-rooted l-ary
tree exactly of level n determined by P; is named the compressed form of T and
is denoted by T°. Let PC Py, then the subtree T§ of T determined by P is
called the compressed-subtree of T determined by P. Note, however, that this name
is a somewhat misleading: T§ is not a subtree of T in the very sense of 3.5.

3.7. Let T=((V, 0), 0, (&1, .-, £&,)) be an m-rooted l-ary tree of level n, v€0p 2.
Let us suppose that vA;=h, h<n. Let ¥, be a set of new points with cardinality

> I The tree TE=((VUV4, ), 0", (&1, --., &) is defined as follows: oV =g,
ig¢n—h]
and for all weV,, wo'=l; 6''V=0¢ and o is extended to ¥, in such a way that

TE is a tree (ftH denotes the restriction of the function of f to the set H).
Roughly speaking, the tree TF is obtained from 7 by identifying the root of
a l-rooted [-ary complete tree of level n—h to v. Let {v,,...,vC00~" be that
set of leaves, the level of which is strictly less than n. Let Ty=T and for every
relsl, T,=(T,_,)E. Then, T, is unique up to isomorphism and is called the extended
form of T, in notation TE. Clearly, TE is an m-rooted l-ary tree exactly of level n.

3.8. Let T be a complete m-rooted Il-ary tree of level n and define the index
Sunction 6: Pr—~{ml"} by the formula P
pd=(@{-DI"+ 3 k;- 1" ) &)

jeln]

where p is determined by the pair (i, (ky, ..., k,)). Clearly, & is a bijection, hence
for each k€{m-I"}, there exists p¢Pr such that pd=k. If p is determined by
the pair (i, (k, ..., k,)) then we shall make use of the following notations p=£kd 1,
(i, (ky, ..., kK))A=k, kA"1=(i, (ky, ks, ..., k,)). We use also the compressed index
Junction 6°: Pr—{I"} defined by

ps* = 3 k;In. (6)
Jj€ln) : i :

If ‘T is not complete but is exactly of level n, then 6=6P,, where & is the
index function defined on the complete tree in which T is embeddable. It is obvious,
that P; determines a unique subset of {m-I"}; the notations introduced above
apply in the natural way. If T is of level n but is not exactly of level n, then we
extend & as follows: 6F: Pr—~P{mi"}; for p=(1f,2f, ..., (h+1)f)ePr, let
poE={p’d|p’ € Pr=N\p'=(sy, Sp, ..., 5,41) such that for all je[h+1],5;=jf} It
follows, that if A=n, then péf=ps. :

SE, the extended index function, is well defined since & is a bijection. It follows
that 8% is injective as well and thus we can employ the natural generalizations of
(65)71, 474, 4 to those k which are in the range of §F.

3.9. Let T be an m-rooted /-ary tree. The pair (T, 1) is calied a terminated
(m-rooted, l-ary) tree if and only if =: Pp—{/}.

3.10. Let us define the following function é®: w--w'~1; for kéw let kEW=
=D, ED, .., ED,) where &0, i€[I—1] is the number of occurrences of i in
the /-ary expansion of k. Let T be an m-rooted l-ary tree exactly of level n. The
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pair (T, &) is called a é-augmented (m-rooted, l-ary) tree if and only if &: Pp—ow'™?
is defined by pé=(pds)E®. The following assertion can be proved by an easy
induction.

Lemma 3. Let (T, &) be a é-augmented m-rooted l-ary tree, p= Sl £+ D)f)e
€P; and pE=(¢Y, ..., EP). Then, for all sc[l—1), card {(jf, s)|jc(nIA(f, s)o=
=@+ 1)f}=¢€9. In other words, if p=(i, (ky, ..., k,)), then ¢& gives the number
of k; such that k;=s.

4. Homogeneous trees

4.1. Let T be a l-rooted l-ary tree exactly of level n; j€[n}. T is called
A-homogeneous (to shorten the term level-homogeneous) on level j if and only if

(Voy, 0,6V, Yh, ke[ID((14 = 0,4 = jAv, # vaA(vy, H)EE) =
= ((v5, )EE = k = h)). 0]
An equivalent formalization of (7) is the following
(Vo1, 026V, YERE[MN((nA = 024 = jAv, 5 vy) =
= (01, K)CE & (vp, K)EE)). (3)

T is A-homogeneous if and only if, for all j¢[n], T is A-homogeneous on level j.
Clearly, any path p€ P, considered as a tree, any complete tree and any tree exactly
of level 1 is A-homogeneous.

Let r bea binary relation on {/} and T a l-rooted l-ary tree exactly of level n.
We can extend r to paths of T by defining (p, q)€r« for all j€ln), (p;, g))€r,
where P=(pl: ---9pn)’ q=(ql’ sees qn)EPT

The following assertion, although it is trivial, gives some insight into the very
nature of A-homogeneous trees.

Lemma 4. Let r be an arbitrary binary relation on {l}, let T be a 1-rooted
l-ary tree exacily of level n, and let F denote the extension of r to Py defined
as above. Then for every pe€Py, the set {p’|p’€ PrA\(p, p"YEF} uniquely determines
a A-homogeneous subtree of T.

Proof. Tt follows that {p’|p’€P+A(p,p’)€F} defines a unique subtree of T;
let T, , denote this subtree, and let p=(k,, ..., k,). Letussuppose, that v;, 0,6V,
such that v,#v, and v,A=v,A=h for some h€[n]. Then, v,0=v,0 and for all
jelviel, (01, )EEU, kp)ere (s, HEE. But then ((vy, EE=(v,, JEE) (), kper,
hence T, , is A-homogeneous on level h. Being h arbitrary, we have that T, ,
is A-homogeneous.

If r is nonempty and total (i.e. Vx3y((x, y)€r)), then T, , is not empty.
We also note, that the converse of the lemma is not true; more precisely, if T, is
a A-homogeneous subtree of 7T, then it may well happen that there is no binary
relation r on {/} such that T;=T, , foran appropriate p€Pr.

In particular, if r is a partial ordering or is a non-trivial equivalence or
r={(x, nx)|xc{I}} where n is a permutation of {/} with I/g cycles of the same
prime length ¢, then T, , is A-homogeneous by Lemma 4. All of these relations
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are total so if r=@, then T,,=0 for any p€P;. This observation establishes
some links between A-homogeneous trees and (three) types of maximal closed classes
exhibited by Rosenterg’s completeness theorem. The main interest of this paper
is, however, to use A-homogeneous subtrees of a tree to portrait some elementary
properties of the function to which the tree at hand is associated by Theorem 13
below, hence we do not provide similar results for the other (three) types of maximal
closed classes. Instead, we-study fuirther A-homogeneous trees. The following
lemmata are immediate.

Lemma 5. Let T be a l-rooted l-ary tree exactly of level n. If T, is a A-homo-
geneous subtree of T, then there exists a maximal A-homogeneous subtree T, of
T containing Ty; i.e. Py CPp,C Py and T, is not a subtree of any A-homogeneous
subtree of T containing T, other than T,.

Note, that T, is not unique in general.

Lemma 6. Let T be a l-rooted l-ary tree exactly of level n, let r be a non-
empty reflexive binary relation on {l}. Then, for every pcPy, the tree T, , is the
unique maximal A-homogeneous subtree of T which contains p.

Proof. Since r is reflexive, p€Py,_ . ,1 homogenity and uniqueness follow
from Lemma 4. It remains to prove that’ is maximal. It is, however, trivial
by definition since if for some p’€ Py, (p, p )Er then p'€Py, ,, henceno A-homoge-
neous subtree of T exists which contains p and 7,, properly

4.2. Let T be a terminated m-rooted /-ary tree and let tc{l/}. T issaid'to be
t-homogeneous with respect to (in short w.r.t.) ¢ if and only if (VpePq)(pret).
T is called guasi T-homogeneous w.r.t.- ¢t if and only if

BprePr)(prd NV P EPD(p'Tdt = p = p')).

In particular, if t€{l/}, then T is t-homogeneous w.r.t. ¢ if and only if (Vp€&Pr)
(pr=t) and T is quasi t-homogeneous w.r.t. ¢ if and only if for all but one p in
Pr, pt=t.

Let T be a terminated m-rooted l-ary tree and let r be a partial ordering on
{I}; F is the expansion of r to Pr. T is t-increasing w.r.t. r if and only if

(Vp, p)((p, P)EF = (p1, P'1)ET).

Lemma 7. Let T be a 1-rooted l-ary terminated tree exactly of level n. Let
T, be a A-homogeneous subtree of T which is t-homogeneous w.r.t. some tC{l}.
Then there exists a maximal A-homogeneous subtree of T which contains T, and
is t-homogeneous w.r.t. t.

Lemma 8. Let T be a l-rooted l-ary terminated tree exactly of level n; let
r be a partial ordering on {l}. Then, for every p€P;, there exists a maximal
A-homogeneous subtree T, of T such that

(l) pEPTICPT,. CPT,

(i) 7 is 1—mcreasmg w.r.t. r.

Lemma 9. Let T be a l-rooted terminated l-ary tree exactly of level n; let
r be a nonirivial equivalence relation on {l}. Then, for every pEPy, there exists
a maximal -homogeneous subtree T, of T such that
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)] PEPTICPT CPT, .
(i) T, is r-homogeneous wr.t. r; ie (Vp, P'EPT,)((- p, peF=(pr, p"t)Er).

Note, that T, is not unique in general in either of the above three lemmata.
Proofs are immediate by finiteness of trees.

Lemma 10. Let T be a 1-rooted l-ary terminated tree exactly of level n. Let
T, be a J-homogeneous subtree of T which is t-homogéneous w.r.t. some t€{l},
and assume that for some v€Vy, , vAi=j and for kl, ko€{l}, ky#=ky, we have both
(v, k1)€E11 and (v, k))€Er,. Let p=(by,....b; 1, k1, 054155 b,) and gq=
=(bls cery b_’—-l’ kz, bl+19 ey n) Then’ pEPTlﬁqEPTl

Proof. Let wvy,0,€Vy,0h=v,d=h. Let p=(1f,2f,..,(n+1)f), g=
=(1g, 2g, ..., (n+1)g). Let us suppose that, hf =v,, hg=v,. Let the root of the
tree be &. Then 1f=¢=1g, moreover for h<j, hf =hg by simple induction.
For h=j, we have v,=v, and (v;, k))€Et,, (v, k)€Ey, by assumption. For
h>j, we have (v, b,)€Er,<(vy, b)€Ey, by A-homogenity.

Lemma 11. Let T be a 1-rooted I-ary terminated tree exactly of level n. Let
T, be a i-homogeneous subiree of T which is t-homogeneous w.r.t. some t€{l}
and is complete on level j for some j€[n]. Then every path of the form (by, ..., b;_,,
k,bjir,....b,) with fixed by, ..,bj_1,b;.1,...,b,€{l} and arbitrary kc{l} is
in Pr,.

Proof. 1t follows from Lemma 10 by an easy mductlon

Let tc{/} and define r, by

(VI LE(ID ((h, 1)er, < LEtALer).
Clearly, r, is an equivalence relation. The following assertion is immediate.

Lemma 12. Let T be a l-rooted I-ar)} tree exactly of level n. Let us fix tc{l}
and let p€ Py, qcPr. Then T, ,=T, ,(p,q)Er,.

It follows from Lemmata 4,5, 12, that r, determines a unique max1malr
A-homogeneous subtree of 7. We shall denote it by T,,.

4.3. Let T be a terminated £-augmented m-rooted l-ary tree. T is E-homo-

geneous if and only if
(Vaco' ) (Ire{IP(attciz™?).

4.4. Some further considerations concerning different types of homogenity will
appear in later parts. In particular, the notions of anti-A-homogeneous trees and
of combs will be introduced and investigated.

5. Representation of finite functions by terminated trees

5.1. Let f€O™™ and let T be an m-rooted l-ary complete tree of level n.
We define a terminated tree for f, T,=(T, 1), as follows. Let ke{mi"} be
arbitrary and k4-'=(i, (ky, ..., k,)). Then, let

(ko™ 1)T =f*Galkys s Xalkr). ®
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By Lemmata 1, 2, the definition (9) is correct.

Theorem 13. Let fcO{™»™. Then every m-rooted l-ary complete terminated
;;eeoil‘ fl)_(T 7); for f is isomorphic to a terminated tree T{=(T’,v), with
C n

Proof. 1t follows from Lemma 2 that any two m-rooted /-ary complete termi-
nated trees of level n for f are isomorphic. It is sufficient therefore to prove that
there exists a terminated tree (77, t"), for f with VO™V, which is m-rooted,
l-ary, complete and of level n. We define (77, 1) by recurrence. Let i€[m] and
&;=fi(xy, ..., x,) where f; is the i-th component of f. If g(x,/ky, ..., Xp_1/kn_1)Xs
Xpy1 ... X, is defined as a point of V' Neg; Dy on level £, then let

8lxi/ky, ...y xh—l/kh—l)xhxhji-l . xpe=l and gl/ky, ..., Xp—a/kn-D)XXnsr.. . Xu D=
= {g(xr/ky, s Xp_rfKn—1s Xu/K)Xp 41 - Xa|KE{}}
and for all ke{/},
(g(xl/kla coes Xy /Kh—) XpXpgq oo Xns k)a = g0aafky, ooy Xu/k) Xpsr - Xy

We stop this recursion on level n, where no point depends on any variables; i.e.
evely points on level n is of the form g(x,/k,, ..., x,/k,). The leaves of the tree
obtained are the points on level n. If p is a path in this tree, then pt” is defined
by (9). It is not hard to see that ¥ hence T'=((V, g), 0, (¢, ..., &,)) are well
defined. Clearly, T’ is m-rooted, l-ary complete tree of level n, and (T7,7’) is
for f.

The terminated tree 7/, defined uniquely up to isomorphism by Theorem 13
is called the tree associated to f (recall that T is defined after fixing an ordering
of the variables of f it is clear that T, depends heavily on this ordering). In the
sequel we simply write T, to denote the tree associated to f.

From now on in this section we shall assume that m=1. The general case can be
treated in a similar way at the expense of some complication of technical details.

5.2. Let feO™"V. fx,...x;...x, is partially degenerate in x; if and only if
for arbitrary bl, ...,bj_l,bj_H,.. b,e{l}, there exist k,, k,e{l}, k,#k;, such
that f*b;...b;_1kibjyy ... by=1" b1 b1k, b,+l .b,. If for all kl,kze{l}
this equatlon holds then f is called degenerate in x;. Let PD{Y and DY
denote the sets of functions (in Of~V) partially degenerate and degenerate in x
respectively. The set of nondegenerate functions is defined by ND™D=0{)—

U DJ(" ,1)
jelnl

Theorem 14. Let fcO™Y and let (T, ©)=T,. Then, the following two assertions
are equivalent. For jc[n], :

(@) fePD{™Y.

(i) For every maximal A-homogeneous subtree T, of T, which is t-homogeneous

w.r.t. some t€{l}, there exist ky, ky€{l}, ky#ky such that T, contains

. the edges (v, k) and (v, ky) for all veVy,, vl =J.

Proof. Let fePD{™Y and assume that 7, is a maximal A-homogeneous
subtree of T, which is 7-homogeneous w.r.t. some t€{/}. By definition, for all
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p,P'€Pr,, we have [*(p)= fA(p). Let p=(by, ..., b;,...,b)EPr,. Since f is
partially degenerate in x; and 7, is maximal, there ‘exists an ac{l} such that
a=b; and p'=(b,,...,aq, ..., b)EPy,. Let kl—b ky=a. Then we obtain, that

for some v on level j, (v, k,) and (v, k,) are in ET1 T, is A-homogeneous, hence
for all v'€Vy,v'A=j we have (v, k,)€Er, and (v, k))€ET,.

Conversely, assume that for every maximal A-homogeneous subtree 7; of
T which is t-homogeneous w.r.t. some t€{/}, there exist k,, k,€{/} such that
k,#k, and Er, contains (v, k,) and (v, k,) for all v€Vy, on level j. Let p=
=(b1, ..., b;, ..., b)EPr, be arbltrary By Lemma 7, there exists a maximal A-homo-
geneous subtree T, of T which is t-homogeneous w.r.t. pr. By assumption, there
exist kl,k2€{1} such that &k, #kg and (u k))€Er,, (v, k))€EEy, for all veVoq,
on level j. By Lemma 10, p’'= (bl,... ,...,b,,) and p”=(b1,...,k2,...,b,,)
arein Pr,. Then, by t-homogenity, f*b,...k,...b,=f*b,...k,...b,, hence fePD{"b.

Theorem 15. Let f€ O™V andlet (T,1)=T,. Then, the following two assertions
are equivalent. For j€[n],
(i) feD{™Y.
(ii) Every maximal A-homogeneous subtree Ty of T which is t-homogeneous
w.r.t. some t€{l} is complete on level j.

Proof. Let feD{™Y. Then, by definition, for arbitrary fixed by, ...,b;_,,
bjyis - be{l}, and for all kl,k e{l}, k1¢k we have f*b,...k;...b,=f*b,...k,...b,.
Consider all paths of the form (b,, ..., %, ...,b,) where k varies over {/}. It is
easily seen, that these paths gives rise to a )u-homogeneous subtree 7, of T which
is complete on level j. Clearly, any maximal A-homogeneous subtree T, of T
containing 7, is again complete on level j, hence those maximal A-homogeneous
subtrees of T which are t-homogeneous w.rt. some ¢{/}, namely w.r.t.
f*by..ky...b, and contain T, are complete on level j. Since by, b,,...,b;_4,
bji1, ..., b, are chosen arbitrarily, it follows that every maximal A-homogeneous
subtree 7, of T which is --homogeneous w.r.t. some ¢€{/} is complete on level ;.

Conversely, assume that every maximal A-homogeneous subtree 7; of T
which is 7-homogeneous w.r.t. some, t€{/} is complete on level j. Consider all
paths of the form (b, ..., k, ..., b,) for fixed by, ..., b;_1,b;,4, ..., b E{l} ‘and for
all ke{/}. These paths forma i- homogeneous subtree T, of T whxch is complete
on level j. But T is contained in a maximal A-homogeneous subtree of 7' which
is t-homogeneous w.r.t. some ¢ and complete on level.; by Lemma 11. It follows,
that f*b,..b;_,kb;,...b,=t for all ke{l}. '

Corollary 16. Ler f€O{™" and let (T,1)=T;. Then, the following two asser-
tions are equivalent:
(i) feND™D,
(ii) No naximal A-homogeneous subtree T, of T exists such that T, is t-homo-
geneous w.r.t. some t€{l} and complete on some level j, j€[n).

Degenerate and partially degenerate functions will be investigated further in the
next part [3].

5.3. Let f€O{™"Y. Let r be a partial ordering on {/}. fx;...x;...x, Is
r-preserving in x; if and only if for arbitrary by, ...,0; 1, 58,4, .. b E{l} and
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for all ky, k,€{l}, (ky, k2)€r entails
(f*by ... bj_ykibjyq ... by, f¥by .. b kobjyy ... b )ET.

It Xc{xy, ..., x,}, then we say that f is r-preserving in X if and only if f is
r-preserving in x; for all x;€X. f is called r-preserving if and only if fis r-preserving
in {xy, ..., x,}. We shall denote by MY, MP, M™D, the sets of functions

which are r-preserving in Xx;, in X and in X1s oees Xps respectively.

Theorem 17. Let fcO™V and let r be a partial ordering on {l}. Then, the
following two assertions are equivalent. For j€[n],
(l) feM(n 1
(i) For every p= (pl,. s Pjs s PR)€Pr,, the subtree generated by {qlg=
=(p1s o Qjs - PNy, q)Er Nq;€{1}} is t-increasing w.r.t. r.

Proof. Trivial.

Theorem 18. Ler fcO™Y, XC{xy, ..., x,}, X={x;,....x;} and let r be

a partial ordering on {l}. The following two assertions are equwalent

(1) fEM(”'l)
(“) FOI‘ every p= (pls . aph 1s pjl’p“’+1, ' ’pjk.—l’ pjk’p_[k+l, . 5pn)EPTf’ he
subtreegenerated by {gla=(p1, ..., pj,- ~1> Gju> Pjywts oo Pim1s Qino> D 15+

o PG, o 45, YNV sE[KD) ((p,s g, )€r)} is t-increasing w.r.t. r.
Proof. 1t follows from Theorem 17, by easy induction.

Theorem 19. Let f€O/™Y and let r be a partial ordering on {I}. Then, the
Sfollowing two assertions are equivalent:
(@) feMi»n. ‘
(i) For every p¢Pr,, the (unique) maximal A-homogeneous subtree of T,
generated by p and r is t-increasing w.r.f. r.

Proof. By Lemma 4, T,, is A-homogeneous and is obv1ously maximal.
Taking X ={x, ..., x,}, Theorem 19 follows from Theorem 18 since if p=

=(p15 cre pn), then T:, {qlq (ql, A qn)/\(VIE[n]) (ql {l}/\(pn I)Er) .
This characterization of r-preserving functions will be used later to estimate

the cardinality of M™% [4].
5.4. Let tc{/} and define \
D = {fIfeOf"V ANV a)(f*ac) (10)
the set of r-valued functions. We have immediately:

Theorem 20. Let fcO{™Y, tc{l}. Then, the following two assertions are
equivalent:

@) fer».

(i) T, is T-homogeneous w.r.t. t.

Theorem 20 will be used in later parts to establish strong decidability of some
finite-valued sentential calculi in which the elements of ¢ are designated and, using
some additional arguments, to prove the strong completeness of some finite-valued
predicate logics. )
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Let tc{/}, and define
0/ = {f1/€0 DA€ {Y)(fad DAY b (f*bé 1 = b = a)}

the set of quasi t-valued functions. Elements of Q™" are natural generalizations
of functions associated to conditional sentences (Horn sentences, or quasi-equations)
of the two-valued propositional logic. They have almost all of the nice properties
of the two-valued functions associated to Horn sentences and hence it is of some
interest to characterize them by trees. We have immediately

Theorem 21. Let f€O{™Y and tc{l}. Then, the following two assertions are
equivalent:

(@) feQib.

(i) T, is quasi t-homogeneous w.r.t. r.

Let tc{/} and r, be the equivalence relation generated by 7. We set

Pt("'I) = {f|f€01("'1)/\(va: bE{l}")((a, b)er, '_"(f*a’ f*b)ert)}’

the set of t-preserving functions. The following claim is trivial.

Theorem 22. Let f€Of™Y and tc{l}). Then, the following two assertions are
equivalent:

(i) fepi™D. '

(ii) T,,, the subtree of T, determined by r, is 1-homogeneous w.r.t. r,.

55. Let feO™Y and n be a permutation of the set [n). f preserves m if
and only if for all ay, ..., a,€{l}, we have f*a,...a,=f%a,qy ... Gy Let
Seb={f|feofv and f preserves all permutations = of the set [n]}.

Theorem 23. Let f€O™V and let (T, 1) be a terminated ¢-augmented 1-rooted
l-ary tree associated to f. Then the following two assertions are equivalent:

(i) fes™b.

(i) (T, 7) is E-homogeneous.

Proof. The theorem follows immediately from the well-known fact [7], that
fES™Y o (Vacw'™L, Vp,, ps€a& = (py1 = pp1).
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