
Grammatical constructions in selective
substitution grammars

B y J . GONCZAROWSKI*, H . C . M . KLEIJN**, G . ROZENBERG**

0. Introduction

Selective substitution grammars were proposed as a unifying framework for
"grammatically oriented" formal language theory (see [R2]). Informally speaking,
a selective substitution grammar consists of a base (this is the underlying grammar
providing productions) and of a selector (which prescribes the use of productions for
the rewriting of strings). If one allows the use of arbitrary productions of the form
b—w, where b is a symbol and w is a word, then one deals with the so-called
EOS bases. A selector for such a base is a language over a set of symbols consisting
of letters and their barred (activated) versions.

- An element y of the selector (called a selector word) prescribes the rewriting
mode of a word x as follows.

If y results from x by barring some occurrences in x, then y gives conces-
sion for x to be rewritten; then the rewriting consists of applying productions from
the base to all and only those occurrences in x that appear barred in y. Thus,
given a word x, a direct rewriting of x consists of two steps: (i) matching a selector
word y which gives concession to x and (ii) applying to x productions from the
base in the fashion prescribed by y.

This defines the direct derivation relation in a selective substitution grammar and
(through its transitive and reflexive closure) the derivation relation. A somewhat
informal but useful way of thinking about selective substitution grammars is to
think of productions as instructions and of the selector as the program in the word
processing system that a given selective substitution grammar defines.

Typical research projects concerning the theory of selective substitution gram-
mars are the following.

(1) Specifying (language theoretical) properties of selectors which guarantee
that selective substitution grammars using them represent rewriting of a context-free
nature. The main theme here is to detect those properties of selectors that allow the
transmitting of context during the rewriting process (see, e.g., [KR]).

(2) Discussing the "standard" issue of the difference between sequential and
parallel rewriting in a uniform framework. This research sheds some additional
light on the difference between those two classical modes of rewriting as well as it

240 J. Gonczarowski, H. C. M. Kleijn, G. Rozenberg

leads to the investigation of new (and natural) classes of rewriting systems (see
[EMR] and [KR2]).

(3) The influence of the choice of either various classes of allowable productions
(under a fixed class of selectors) or various classes of selectors (under a fixed class
of allowable productions) on the language-generating power of the resulting classes
of selective substitution grammars (see, e.g., [K.R] and [RW]).

In this paper we consider the influence of the properties of selectors on the pos-
sibilities of performing several standard grammatical transformations.

A transformation of a grammar to another one (preserving the generated
language) is a step done very often in grammatically oriented language theory.
Such transformations should lead to grammars which are in a convenient form either
from the "user point of view" (e.g., for parsing) or from the analytical point of view
(e.g., for proving properties of the generated languages). Once we allow the use
of all context-free productions in selective substitution grammars, the fact whether
or not a given grammatical transformation can be performed within a given class
of selective substitution grammars must depend on (the form of) the selectors available.
This dependence is the topic of this paper. In particular we investigate a number of
standard grammatical constructions, such as removing A-productions, removing
right recursion, removing chain productions, restricting the right-hand sides of pro-
ductions to the length 2 and synchronization.

We assume the reader to be familiar with the basic formal language theory
(see, e.g., [S]); as far as the theory of selective substitution grammars is concerned,
the paper is self-contained.

1. Basic concepts and definitions

We assume the reader to be familiar with formal language theory as, e.g., in
the scope of [S] and [RS]. Some notations need, perhaps, an additional explanation.
For a word w, denotes its length. X denotes the empty word. For a finite set
X, # X denotes the cardinality of X. We shall usually identify a singleton set with
its element. Alphabets are finite nonempty sets of symbols. For a word w, alph(w)
denotes the set of symbols in w. For a language L, alph (L) = t j alph (w).

w €L
Let Li and L2 be languages. Then Lx and L2 are considered equal if

LxU{1}=L2U{A}.
Let G be a rewriting system. Then L(G) denotes the language of G. Two

rewriting systems are equivalent if the languages they generate are equal.
Let I and be alphabets. We denote the family of total homomorphisms

from I* into <t>* by HOM{I, <P) and the family of total finite substitutions
from I* into (subsets of) i>* by FSUB(Z, <Z>). A homomorphism h£HOM{I, <P)
is a coding if A(a)£ <t> for all a61 . A homomorphism h^HOM (I , <P) is a weak
identity if h(a)£{a, X} for all A finite substitution <p£FSUB (I , <P) is
a letter-to-letters substitution if (p(a)cz4> for all I.

A letter monoid (monoid, for short) is a language of the form 0* where 0 is
an alphabet. A word monoid is a language of the form L* where L is a finite set
of words.

Grammatical constructions in selective substitution grammars 241

In context-free grammars only non-terminal symbols can be rewritten. Very
often it is convenient to permit the rewriting of terminal symbols as well. Thus we
arrive at EOS systems (see, e.g., [KR]).

Definition 1.1. An EOS system G is a quadruple (I , h, S, A), where I is the
alphabet of G, h is a total finite substitution from E* into (nonempty subsets of)
I* called the substitution of G, A is the start symbol of G and AczS is
the set of terminal symbols of G. •

As customary, if a£ Í and wdh(a) then (a, w) is called a production in G.
Prod (G) denotes the set of all productions in G and Maxr (G)=max {|w|:

(a, w) 6 Prod (G)}.
*

The direct derivation relation in G(=>) and the derivation relation in G(=>-)
G G

are straightforward generalizations of the analogous relations for context free gram-
mars. It is easily seen that EOS systems generate precisely the class of context-free
languages.

Whenever an EOS system does not contain productions of the form (a, X) (called
erasing productions or /.-productions) we call it propagating.

REMARK. (1) Throughout this paper we will assume that the start symbol of
an EOS system does not occur in any right hand side of a production rule.

(2) Note that, unlike in context-free grammars, it is required that the substitution
of an EOS system is a total mapping. However, a finite substitution h' on I* that
is not total, can be "completed" to a total finite substitution h as follows. Let
F be a "new" non-terminal symbol, called the failure symbol, for which h{F) = F.
Then, we let h(a) = F for all those symbols a for which h' is not defined. We shall,
in fact, use this as a convention throughout this paper: whenever there is no pro-
duction specified for a symbol, say a, we imply the existence of the production
(a, F). The symbol F will be used for this purpose only. •

The mode of rewriting in a selective substitution grammar is given by means of
selectors, see, e.g., [RW] and [KR].

Definition 1.2. A selector K is a 3-tuple (Z, L, A), where E is the alphabet
of K, denoted by Al (K), 1= {a:_a£ X} is the set of activated symbols of K (we
assume that 1 0 1 = 0) . Lcz(Il)S)* is the language of K, denoted by La (AT)
and A c I is the set of terminal symbols of K, denoted by Term (K). •

REMARK. An activated symbol is thus denoted by barring the corresponding
symbol from the alphabet of the selector. The "bar notation" is used for no other
purpose throughout this paper; thus for an alphabet 0, 0 = {a:a£0} (it is assumed
that, for all _alphabets I and 0 of non-activated symbols, 001=0). 0 will
denote 0 (J 0 . •

A selector added to an EOS system will form a "rewriting system" (where the
EOS system provides productions and the selector specifies the mode of rewriting).
Certain "consistency conditions" are needed to put together a selector and an EOS
system.

Definition 1.3. Let G={I, h, S, A) be an EOS system and let K={I', L, A')
be a selector. G and K fit it J n (Z " - ¿ T) = 0 and AT)(S-A)=8. •

242 J. Gonczarowski, H. C. M. Kleijn, G. Rozenberg

Definition 1.4. An EOS-based s-grammar H is a pair {G, K), where

Base (H) = G is an EOS system and

Sel (H) = K is a selector that fits G. •

Let H — (G,K> be an EOS-based ¿-grammar where G—(I,h,S,A). Then
we specify H also in the form H = (Z, h, S, A, K).

To simplify the notation, we will write Maxr (G) and Prod (G) to denote
Maxr (Base (G)) and Prod (Base (G)), respectively.

We will denote the total alphabet of an .s-grammar G (i.e. the union of the
alphabets of Base (G) and Sel (G)) by Total (G) and the total terminal alphabet of
G by Teral(G).

REMARK. In [R W] and [K R] a selector is just a language and it appears as
one component in the specification of a selective substitution grammar. For the
purpose of this paper it is necessary to include more structure in the notion of a selec-
tor, because we want to be able to treat selectors as separate entities independent
of a base. By requiring additionally to the "fit condition" that the alphabets of the
base and of the selector are the same (which is a mere technicality) one arrives at
the EOS based ¿-grammars from [KR].

Since in EOS systems productions are available for all symbols (i.e. all symbols
are active) we allow every symbol in a selector alphabet to be activated. If one
considers selective substitution grammars with other kinds of bases (e.g. context-
free) one can impose on a selector K={I, L, Á) the condition that L c (Z L M)
should hold, where Aal is the set of active symbols (e.g. A = E\Á), or, equi-
valently, add A as a fourth component to the specification of K. In our study we
shall be concerned with EOS-based ¿-grammars only. We will thus write "¿-gram-
mar" rather than "EOS-based ¿-grammar".

We distinguish between non-terminal and terminal symbols in a selector because
in the sequel various constructions of selectors depend on this distinction. The
central component of a selector is its language.

When considering equality of selector languages we will assume that selector
languages differing by X only are still different. This different treatment of selector
languages allows us to look more carefully into their structure and in particular
into their role in controlling rewriting in ¿-grammars. For example, if we would
not have this special treatment of selector languages, the language obtained from an
arbitrary selector language La (X) by an inverse weak identity cp that intersperses
symbols from an alphabet 0 would always include 0*. This may drastically
change (as compared to the obvious intention) the structure of rewriting in an
¿-grammar where the selector with the language <p(La (K)) would be used. •

Several kinds of homomorphic mappings will be particularly useful throughout
the paper. They are defined now.

(1) Let I and 0 be alphabets. Then
— idenr is the coding in HOM (£, I) defined by

idenz (a)=idenx (a)=a for all a€.I.

Grammatical constructions in selective substitution grammars 243

— P r e s i ,e is the weak identity in HOM (1,0) defined by

, . f a if a £ 0 pres I (e(a) = ^ ^

— eraseii e is the weak identity in HOM (I , Z — 0) defined by
erasex > e(a)=pres^ I- e(a) for all a£Z.

Whenever I is clear from the context we will write iden, prese and erase« rather
than iden i ; presj>e and erasej e , respectively.

(2) Let G={I,h, S, A, K) be an j-grammar. Let Ix be the set {ia: a£Z}
such that I x nProd(G)=0. Then

— lhbar is the homomorphism in HOM (lx U Prod (G), I) defined by
lhbar ((a, w)) = a for all (a, w)€Prod(G) and
lhbar (O —a for all ifl€li;.

— lhs and rhs are the homomorphisms in HOM (Ij U Prod (G), I) defined by
lhs (7t)=iden (lhbar (re)) for all TtSl^U Prod (G),
rhs ((a, w)) = w for all (a, w) 6 Prod (G) and
rhs(i a)=a for all *

Definition 1.5. Let G=(I,h, S, A, K) be an ¿-grammar.
— A derivation of length 1 (in G) is a word w^I^UProd (G))* with

lhbar (w)€La (K), and such that lhs (w)^ lhbar (w).
— For x, y£E* we say that x directly derives y (in G) if there exists a deri-

vation w of length 1 with lhs (vv) = x and . rhs (w) = y; we write then x=>y.
G

— A. derivation of length i > 1 (in G) is a sequence (n^, w,) of words from
" (ijUProd (G))* such that '(»%,.. . , Wj-j) is a derivation of length z —1, is

a derivation of length 1 and rhs (w i_1)=lhs (wt). For x,y£Z* and 1 we say
that x derives y in i steps (in G) if there is a derivation of length i, (w1; ..., W;),
where lhs(w1)=x and rhs (iv;) = y; we write then x=> y.

G
— A derivation (in G) is a derivation of length i for some i s 1; the length

of a derivation D is denoted by |D|.
If D = (h'J, ..., w), i s 1, is a derivation then D is a derivation of rhs(vf() from
lhs (Wi) {in G).

For x, y£Z* we say that x properly derives y (in G) if there is a derivation
of y from x; we write then x=>y. G

* . + Let =>• be the reflexive closure of =•. We say that x derives y (in G) for
G G

*
x, y£ I* if x ==>• y.

We write x=>y whenever x=y. G
— Let D = (wlt ..., w j be a derivation. The barred trace of D (Btrace (Z)))

is the sequence of words (lhbar (wj), ..., lhbar (w,)). The trace of D (Trace (Z)))
is the sequence of words (lhs (wj, ..., lhs (w,), rhs (vv,)). If lhs (n^) = S then the
elements of Trace (£>) are called sentential forms (of G).

*
— The language of G is the set L(G) = {w£A*\ S=> w). •

2 Acta Cybernetica VI/3

244 J. Gonczarowski, H. C. M. Kleijn, G. Rozenberg

The following example will illustrate the above notions.

Example 1.1. Let G = ({A, B, C, a, b, c, S}, h, S, {a, b, c}, K>, where

K = ({A, B, C, a, b, c, S}, S(jAa*Bb*Cc*y {a, b, c}>

and h is defined by

h(A) = {Aa, a}, h(B) = {Bb, b}, h(C) = {Cc, c} and h(S) = ABC.

h(d) = d, for all d£{a, b, c}.

Table 1.1 shows a derivation, its barred trace and its trace.

Table LI

Derivation Btrace Trace

(S, ABC) S
(A, Aa)(B, Bb)(C, Cc) ABC ABC
(A, Aa)ia(B, Bb)ib(C, Cc)ic AaBbCc AaBbCc
{A, Aa)iaia(B, Bb)ibib(C, Cc)icic AaaBbbCcc AaaBbbCcc

AaaaBbbbCccc

Obviously ~L(G)={a"bncn: «>0}. •
Following [KR] various features common to different types of "context-

independent" rewriting are formalized and imposed as restrictions on selectors.

Definition 1.6- Let K=(E, L, A) be a selector.
K is active bar-free (abf) if, for all v,w£L* and for all a£Z, whenever

vaw^L then vaw£L.
K is context bar-free (cbf) if, for all v, w^I* and for all a£Z, whenever

vaw£L then vaw£L.
K is bar-free (bf) if K is abf and cbf. •

Definition 1.7. Let K — {I, L, A) be a selector.
K is active_symbol-free (asf) if, for all v, vv£f* and for all a£l, whenever

vawdL then vXwcL.
K is context symbol-free (csf) if, for all v, and for all a£Z, whenever

vaw£L then vIwaL.
K is symbol-free (sf) if K is asf and csf. •

Definition 1.8. Let K = (Z, L, A) be a selector and 0 c £ .
K is active 0-interspersed(0-ai) if, for all v, w^S* and for all a£Z, whenever

vaw£L then v0*a0*w<zL.
K is context 0-interspersed (0-ci) if, for all v, and for all a£l, when-

ever vawZL then v0*a0*w<zL.
K is 0-interspersed (0-i) if K is 0-ai and 0-ci. •

Definition 1.9. Let K=(Z, L, A) be a selector and 0 c l .
K is 0-universal (0-u) if, for all w>€0*, there is a v£L, v^w, such that

iden (v) = w.

Grammatical constructions in selective substitution grammars 245

K is 0-occurrence-universal (0-ou) if, for all w2£0* and for all
there exist v1,v2(i&* such that v1av2£L where iden(t;1) = w1 and iden (u2) = w2. •

Definition 1.10. Let K = (Z, L, A) be a selector and 0<z%.
K is ©-erasing (&-e) if, for all w£L, erasee (w)£L. •
If 0 is an alphabet and G is an s-grammar, then G is abf (cbf, bf, asf, csf, sf,

0-ai, 0-ci, 0-i, 0-e) if Sel (G) is abf (cbf, bf, asf, csf, sf, 0-ai, 0-ci, 0-i, 0-e,
respectively). If 0 is the alphabet of Base (G) we omit 0 as a prefix in the above
acronyms. Moreover we say that G is universal (u), respectively occurrence universal
(ou), whenever Sel (G) is 0-u, respectively 0-ou, where 0 is the alphabet of
Base (G).

The definitions given above correspond to those given in [KR] (with the ex-
ception of Definition 1.10, which does not appear there), for the case that all symbols
are active. However, one should take into consideration that in [KR] the above
notions are defined directly for ¿-grammars and hence subject to the assumption
that the alphabet of the base and the not specified alphabet of the selector are the same.

The traditionally considered grammar and language families, as seen from the
point of view of the theory of ¿-grammars, are defined using a fixed selector (if the
alphabet is fixed); grammars differ only by the set of productions they use. In this
way one talks, e.g., about all context-free grammars or all EOS systems (where the
selector language is of the form Z*(Z —A)Z* or Z*ZZ*, Respectively), or about
all EOL systems (where the selector language is of the form f +) . To define a family
of selectors based on (the structure of) one selector only we proceed as follows.

Definition 1.11. A family of selectors Sf is a selector scheme if
. _ . . (a)-Sf contains a selector K0 of the form {{a}, L0, {a}).

(b) For all alphabets Z and Acz I there is exactly one selector K in Sf
with Al = r and Term (K) = A it is also required that La (K) — (p¡;(L¿),
where (p^FSUB (a, Z) is defined by

<Ps(a) == 2 a r |d (pz (a) = I. •
It is straightforward to see that if Sf is a selector scheme and K^Sf then

K is sf. Moreover, for every sf selector K there exists exactly one selector scheme
Sf with K£Sf. As a matter of fact a selector scheme represents the selector of
a pattern grammar (see [KR]).

Note that whenever a selector scheme Sf contains an abf (cbf, bf) selector
then all the selectors in Sf are abf (cbf, bf, respectively). Hence we can speak
of an abf (cbf, bf) selector scheme. .

In the sequel we will attempt to investigate properties of selectors that allow
us to perform various operations on ¿-grammars. We will consider two approaches
in parallel (whenever possible): properties of general selector families on one hand
and properties of selector schemes (or selectors) on the other hand. Although we
distinguish between non-terminal and terminal symbols in an individual selector
for the purpose of this paper it suffices to assume that every family X of selectors
that we consider satisfies the following condition:

If (Z,L, A)£JÍT, then, for every 0 c Z, (Z, L, .
The notion of closure for language families is extended to families of selectors

in the following way.

2*

246 J. Gonczarowski, H. C. M. Kleijn, G. Rozenberg

Definition 1.12. Let jf be a family of selectors and let r be an n-ary mapping
on languages, n s l . We say that Ji is closed under z if, for every ...,
there is a selector such that

A1 (K) = iden (alph (T ((AL (K,))*, ..., (A1 (#„))*))) and

The word "universal" has been used in the theory of ¿-grammars to express
different phenomena (see, e.g., [RW] and [KR]). To avoid confusion we use the
following notion to describe "universality with respect to generative power".

Definition 1.13. Let SC be a family of languages. An EOS system G=
= {I,h, S, A) is an s-generator of ££ (with respect to A) if for all with
La A* there exists a selector K that fits G such that

2. The existence of normal forms

Let ^ be a family of grammars. If '€ is a set of conditions and if the sub-
class <3<e (consisting of all those grammars of that satisfy (£) still generates
all the languages generated by grammars from <$ then we say that (€ constitutes
a normal form of

Investigation of normal forms for various classes of grammars constitutes
a major research topic in formal language theory. In this section we investigate the
existence of various normal forms in the general framework of ¿-grammars.

The basic conditions (imposed on ¿-grammars) that we will consider in this
paper are defined as follows.

Definition 2.1. Let G=(E, h, S, A, K) be an ¿-grammar.
— A symbol a^I is versatile (in G) if there is a production (a, w)(i Prod (G)

with w^a. Let a^S. A rule (a, w) is a chain in G if w consists of a single
versatile letter.

— G is chain-free if either there are no chains in G or every chain in G is
of the form (S, a), where a£A* is such that, for all w£h(a), w contains only non-
versatile symbols and w£A* implies w=a.

— G is synchronized if, for all a£A, a ̂ =• w implies that w is not in A*.
— G is binary if, for all a£Z, w^hia) implies that |vv|
— G is propagating if for all a£I — S, X is not in h(a).
— G is right-recursive (left-recursive) if there exists a versatile symbol a and

a word vv£ Z*. such that a =>• wa(a => aw, respectively). •
Base(G) v Base(G)

R E M A R K . (1) The above definition adopts the notions of chain-freeness,
synchronization, etc. as used in the theory of context-free grammars and ETOL
systems to the framework of ¿-grammars. For example the classical notion of chain-
freeness is modified by the use of versatile symbols to account for the fact that ter-
minal symbols can also be rewritten.

cr

Grammatical constructions in selective substitution grammars 247

(2) We will use the above terminology (chain-freeness, synchronization, etc.)
also for ETOL systems. Although ETOL systems are not ¿-grammars this should
not lead to confusion. •

In the rest of this section we will demonstrate that the restrictions discussed
above on the form of ¿-grammars, even when combined with additional restrictions
on the properties of selectors used, do not affect the language-generating power
(of the whole class of ¿-grammars).

The following results are generalized versions of theorems in [KR]. The proofs
are similar. However, basic constructions in the proofs had to be modified. In the
proofs below we provide such basic constructions, and leave to the reader the (not
difficult) task of proving that these constructions yield ¿-grammars with properties
as required in the statement of the theorems in question.

Theorem 2.1. Every language L can be generated by a chain-free synchronized
propagating non-left-recursive (or non-right-recursive) binary and bf s-grammar.

Proof Let LCA*. We define G—(Z, h, S, A, K) as follows:

Z={S, T, F}\JA\J0%, where 02={[a,b]\a,b<iA}

such that A,{S,T,F) and 02 are pairwise disjoint, h is defined by

h(S)={aT: a£A}\J{w<iL: |w| ^ 2}U{a[b, c]: a, b, c£A}.

h(T) — {aT: a£A}U {a[b, c]: a,b,c£A}.

h([a, b]) = ab and

h(a) = F for all a£A\J{F).

K=(Z, Z*(SUT)U U L*laM[^b]A), where
A,B£A

Z.[0,6] = {w£A*: iden(wa&)CL} for all a, b£A.

It is easily seen that L=L(G) and, moreover, G is chain-free, synchronized, pro-
pagating, non-left-recursive, bf and binary. •

Theorem 2.1 yields immediately to the following result.

Corollary 2.1. For every s-grammar there is an equivalent bf s-grammar that
is chain-free, synchronized, propagating, non-left-recursive (or non-right-recursive)
and binary.

Theorem 2.2. Every language L can be generated by a chain-free synchronized
propagating non-left-recursive (or non-right-recursive) binary abf, asf and u s-grammar.

Proof. Let L^A*. We define G=(Z, h, S, A, K) as follows.

Z = {S, T, F}UziUS 4U0 4 , where

Si = {{a, b, c, d): a, b, c, d£A},

= b, c, d]: a, b, c, d£A}

248 J. Gonczarowski, H. C. M. Kleijn, G. Rozenberg

and A, {5, T, F}, S4 and 0 4 are pairwise disjoint, h is defined by

h(S)= {w£L: |w| == 2}V{aT: a£A}\J

{a[b, c, b, c]: abc£L}U {(a, b, c, d)[a, b, c, d]: a, b, c, A},

h(T) = {aT: a£A}ll{(a, b, c, d)[a, b, c, d]: a, b, c, d£A}.

h({a, b, c, d)) = ab and h([a, b, c, d\) = cd for all a, b, c, d£A, and

h(a) = F for all a£A{J{F}

K= (Z, Z*Z{J{a1...ak-ib[ak_3,ak_2,ak_1,ak\: a^.M^L, k S 4 and b£Z}, A).

Clearly G is chain-free, synchronized, propagating, non-left-recursive, binary,
abf, asf and u. It can easily be seen from the construction that L~L(G). o

Corollary 2.2. For every s-grammar there is an equivalent abf, asf, and u s-
grammar that is chain-free, synchronized, propagating, non-left-recursive (or non-
right-recursive) and binary.

Theorem 2.3. Every language L can be generated by a chain-free synchronized
propagating non-left-recursive (or non-right-recursive) binary abf and ai s-grammar.

Proof. Let L^A*. We define G=(Z, h, S, A, K) as follows.

Z = {S, T, i?}U/dU0 2U0 4 , where

0 2 = {[a, b]: a, b(=A},

0 4 = {[a, b, c, d]: a, b, c, d£A}

and A, {5, T, F}, 0 2 and 0 4 are pairwise disjoint, h is defined by

h(S) = {w£L: |w| ^ 2}U {aT: a£,d}U

U {[a,b,a,b]c: abc£L}l) {[a, b, c, d][c, d\: a,b,c,d£A},

h(T) = {aT: a<iA}U {[a, b, c, d\[c, d\: a, b, c, d£A},

h([a, b, c, d]) = h([a, b]) = ab for all a, b, c, d£A and

h(a) = F for all a£dU{F}.

i = { l , r { i r } r u u LlaMZ*[^b]Z* U U Z*[Z~bXd]Z\ A), where
a, bed a,b,c,ded

L[a ,b] = K - - - a n - 4 [« n - 3 > a, b]: a1...an_2ab£L, n S 4}.

It is easily seen that L=L(G) and, moreover, G is chain-free, synchronized, pro-
pagating, non-left-recursive, binary, abf and ai. •

Corollary 2.3. For every s-grammar there is an equivalent abf and ai s-grammar
that is chain-free, synchronized, propagating, non-left-recursive (non-right-recursive)
and binary.

Grammatical constructions in selective substitution grammars 249

Theorem 2.4. Every language L can be generated by a chain-free synchronized
propagating non-left-recursive (non-right-recursive) binary cbf, csf, ci and ou s-gram-
mar.

Proof Let L c j * . Let G=(Z, h, S, A, K), where

Z = {S, T, F } L M U 0 2 U 0 3 U 0 4 U S 2 , where

0 2 = {[a, b]: a, b£A},

0 3 = {[a, b, c]: a, b, c£A},

@4 — {[^J b, c, d]\ a, b, c, d£A},

S2 = {(a, b>: a, b£A}

and A, {S, T, F}, 0 2 , 0 3 , 0 4 and 3 2 are pairwise disjoint, h is defined by

h(S) = {w£L: |w| ^ 2}U {[a, b]T: a, b£A}U
U{a<6, c): abc£L}U{(a, b)(c, d):abcd£L},

h(T) = {[a, b]T: a, biA}U{[a, b, c, d]d: a, b, c, d£A}U
U {[a, b, c]c: a, b, c£A},

h([a, b, c, d]) = (a, b)c for all a, b, c, d£A,
h([a, b, c]) = h({a, b)) = ab for all a, b, c£A,
h([a, b]) = ab for all a, b£A and

h(a) = F for all a^AV){F}.

K= (Z,I+l)S*T\jl7z*\jZ*{(a, b): a, b£A}Z*,A), where

L' = {[a1; a^...[a2k-5, a2k_i][a2k-3, a2k_2, a2k_1, a2)J: a^.M^L, k fe 3}U

U{[a^aJ- . - ta^-s , a2*-4][a2t_3, a2k_2, a ^ - J : a1...a2k_1eL, k ^ 3}.
Clearly G is chain-free, synchronized, propagating, non-left-recursive, binary,
cbf, csf, ci and ou. It can easily be seen from the construction that _L=L(G). •

Corollary 2.4. For every s-grammar there is an equivalent cbf, csf, ci and ou
s-grammar that is chain-free, synchronized, propagating, non-left-recursive (non-
right-recursive) and binary.

Theorem 2.5. Every language L can be generated by a chain-free synchronized
propagating non-left-recursive (or non-right-recursive) binary csf and i grammar.

Proof. Let L<=A+. We define G = (Z, h, S, A, K) as follows.

Z= {S, 7 \ F } L M U 0 2 U 0 3 U S 2 , where
0 2 = {[a, b]: a, be A},
0 3 = {[a, b, c]: a, b, c£A},
E2 = {(a, h): a, beA}

250 J. Gonczarowski, H. C. M. Kleijn, G. Rozenberg

and A, {S, T, F}, 0 2 , 0 3 and 32 are pairwise disjoint, h is defined by
h(S) = {w£L: |w| ^ 2}U{<a, b)T: a, b€A}U

U {(a, b)c: abc<=L}U{(a, b)[c, d]: a, b, c, d£A),
h(T) = {[a, b]T: a, bZA}(J{[a, b][c, d]: a, b, c, d£A}U

U {[a, b,c]c: a, b, c£A),
h((a, b» = h([a, b}) = h([a, b, c]) = ab for all a, b, c£A and
h(d) = F for all a€-dU{F}.

K = (Z, Z * U ip (I7), A), where

L' = «ax, a2)[a3, ad...^^, a j : ct^.M^L, n s 2}(J

U {(fli, a2)[a3, flj—ffla,-!, a^, a ^ + J : a^.M^+^L, n S 2}U
I I //— 1A. -c Al \\u9 t//. UUt^ , JU1 SwiAlW t-C^1/

and ip is the substitution on Z* defined by ij/(a) = Z*aZ* for all a£Z. It is easily
seen that L=L(G) and, moreover, G is chain-free, synchronized, propagating,
non-left-recursive, binary, csf and i. •

Corollary 2.5. For every s-grammar there is an equivalent csf ^and i s-grammar
that is chain-free, synchronized, propagating, non-left-recursive (or non-right-recursive)
and binary. v'

Theorem 2.6. Every language L can be generated by a chain-free synchronized
propagating non-left-recursive (or non-right-recursive) binary abf, ci and u s-
grammar.

Proof. Let LcA*. We define G=(Z, h, S, A, K) as follows.
Z = {S,T,F}\JA\J02U 0 3 U S 2 , where

02 = {[a, b]: a, b£A},

0 3 = {[a, b, c]: a, b,
32 - {{a, b)i a, b£A}

and A, {5, T, F}, 0 2 , 0 3 and S2 are pairwise disjoint, h is defined by
h(S) = {W€L: |W| S 2}U {[a, b]T: a, b£A}U

U {a[b, c]: abceL}D{[a, b][c, d]: a, b, c, d£A}U
U {[a, b] [c, d, e]: a, b, c, d, A},

h(T) = {[a, b]T: a, b<iA}U
U {[a, b][c, d]: a, b, c, d£A}U{[a, b][c, d, e]: a, b, c, d, e£A},
h([a,b, c]) = a(b, c) for all a, b, c£A,
ft ((a, b)) = h([a, b]) = ab for all a, be A,
h(a) = F for all a e d U ^ } .
K= {Z, Z*ZVil/(u),A)

Grammatical constructions in selective substitution grammars 251

where ip is the substitution on Z* defined by ¡j/(a) = {a}UZ*aZ* for all a£Z and

L' = {[ai,ua2]...[a2t-i> «aJ: ^...a^L}^

U{[a1; a j . . . ^ . ! , a2k, a2k+J: a1...a2it+16Z,}.

Clearly G is chain-free, synchronized, propagating, non-left-recursive, binary,
abf, ci and u. It can easily be seen from the construction that L=L(G). •

Corollary 2.6. For every s-grammar there is an equivalent abf, ci and u s-
grammar that is chain-free, synchronized, non-left-recursive (or non-right-recursive)
and binary.

We observe that the construction used in the proof of Theorem 2.1 yields a rather
strong normal form for ¿-generators.

Corollary 2.7. Let be the family of all languages containing no word of length
less than 3. Then there is an EOS grammar that is chain-free, synchronized, propagating,
non-left-recursive (or non-right-recursive) and binary, that is an s-generator of J5?0.

REMARK. The common feature of all the constructions used in1 this section to
obtain normal forms is "language-dependency" rather than "grammar-dependency".
That is, to demonstrate that ¿-grammars satisfying a particular set of conditions can
generate a language, we would use this language explicitly in constructing a selector;
this is done without any knowledge whatsoever about the way that this language is
grammatically generated. Thus, in general, our results are per se non-effective. From
the grammatical point of view it is certainly more desirable to obtain normal forms
starting with a language given through an ¿-grammar where, moreover, the resulting
¿-grammar has a selector of the same kind (belonging to the same selector family)
as the selector of the originally given ¿-grammar. The rest of this paper will consider
the latter approach. •

3. ETOL systems and CS grammars — the ¿-grammars point of view

In the sequel we will investigate properties of (families of) selectors which allow
one to perform various operations on ¿-grammars using these selectors. In this
section we look at ETOL systems and the family of context-sensitive grammars
from the point of view of ¿-grammars. The results of this section allow us to provide
some applications of the results obtained in the sequel; they also give us a sort of
guideline as to which operations on families of selectors (not) to consider.

We shall specify an ETOL system as a quadruple {Z, J f , S, A), where Z, S
and A are like in EOS systems and ffl is a finite set {hx, ..., FSUB(Z, Z)
(of tables) such that and hl(d)P[Z*SZ* = 0 for all a£Z and 1
(This is a normal form for ETOL systems, as, e.g., shown in [RS].)

Whenever an ETOL system is propagating we call it an EPTOL system.
Whenever for an ETOL system G=(!,#?, S, A) the set Jf is a singleton,

we call G an EOL system.

Theorem 3.1. Let G=(Z, h, S, A, K) be an s-grammar, where La (K) is
a union of nSl letter monoids. Then L(G) can be generated by an ETOL system
with n tables.

252 J. Gonczarowski, H. C. M. Kleijn, G. Rozenberg

h,(a) =

Proof. We shall construct an ETOL system H that is equivalent to G. Let

La (K) be of the form U (0 , U #,.)*. Let H be the ETOL system <2:U{F},
i = 1

{h1, ...,h„}, S, A), where F is the failure symbol and hi is defined as follows,
for l ^ z ^ n :

h(a) if a^Qi-Qi
a if a£0i-<Pi

h(a)Ua if a£0iOfy
„ F otherwise.

It is easy to see that there is a derivation in G if and only if there is a corresponding
derivation in H,_ because whenever a sentential form is rewritten in G using
a word in (0,- U (Pi)* it can be rewritten in H in the same way using and vice
versa. •

Corollary 3.1. A language L can be generated by an ETOL system with n tables
if and only if it can be generated by an s-grammar with a selector that is the union of
n letter monoids.

Proof. The if direction follows from Theorem 3.1. The only z/direction was
shown in [EMR], where it was proved that every language that can be generated
by an ETOL system with n tables can be generated by an n SC-grammar, i.e.

n
an ¿-grammar with a selector the language of which is of the form IJ 4>*. •

¡=1
A context-sensitive grammar G will be specified in Penttonen Normal Form.

Hence G is a quadruple (Z, P, S, A) where Z, S and A are as in EOS systems
and P is a set of productions of the form (b, a) or (b, cd) or (be, bd), where
b,c,d£Z—A and a£A.

That grammars in this form generate all (and only) context-sensitive languages
was shown in [P].

Theorem 3.2. For every context-sensitive language L there is a propagating
s-grammar G such that L (G)=L and La(Sel(G)) is a word monoid.

Proof. Let H = (Z', P, S, A) be a context-sensitive grammar for L. Let each
production in P be numbered distinctly, by a number between 1 and in an
arbitrary manner. Let (^¡6,-, ^¡w,) be the i'th production in P, where
A£{Z'-A)\J{X},b£Z'-A and w£l'*.

Let G be the ¿-grammar {Z, h, S, A, K) where
Z = Z'U {a<j): aeZ' and 1 ^ j ^ # i>}

where all the are new symbols, h is defined by
h(a) = {au>: 1 == #i>} for all a£Z',

{w; if b, — a
for all a e z and a otherwise

K = (Z, (f ' U L M - ^ p)

The equivalence of G and H is easily established. Hence the theorem holds. •

Grammatical constructions in selective substitution grammars 253

Corollary 3.2. A language is context-sensitive if and only if it can be generated
by a propagating s-grammar with a selector the language of which is a word monoid.

Proof. The if direction can be shown by a standard automata-theoretic
construction. The only if direction follows from Theorem 3.2. •

Corollary 3.3. Every context-sensitive language can be generated by an s-grammar
with a selector of the form (<P, h(0*), £), where 0 and are alphabets,
£HOM(0, $) and £<=

Proof. Immediate from Corollary 3.2. •
This result implies that we should be careful when using homomorphisms or

(finite) substitutions in ¿-grammar constructions because we are liable to arrive
at very large language families. Corollaries 3.1 and 3.3 show that a homomorphism
may take us from the family of EOL languages to the family of context-sensitive
languages.

4. On shadows

The following grammatical construction will often be used in the sequel. It
generalizes the classical construction used to obtain the synchronized version of an
EOL system (see, e.g., [RS]) to the case of ¿-grammars. The main goal of this con-
struction is to obtain an equivalent ¿-grammar where the "representational" and
the "generative" role for terminal symbols are separated.

Definition 4.1. (1) Let 0 and T be . alphabets such that 0 f ! T = 0 and
0 = # r. Let q be a fixed injective coding in HOM (0, F).

For an alphabet <P such that 0 s 4 > and fl T = 0 we define the finite substi-
tutions shad®^ and fshad0>(, in FSUB ($, 3>Uf) as follows.

For all ae$-0,
shad„ije(a) = fshad4,e(a) = a,

for all a£ 0 ,
shad«,>i(,(a) = fshad®je(a) = {a, g(a)}

and, for all a £ 0 ,
shad®i0(a) = g(a) and

fshadtf, e(a) = {a, g(a)}.

(2) Let K — {<P, L, 0) be a selector and let r be an alphabet such that
i>, 0, r and g are as in (1).

The shadow of K with respect to g, ^denoted by she (K), is the selector
(4>\jr, shad® e(L), 0) and the full shadow of K with respect to Q, denoted by
fshe (K), is the selector <$Ur , fshad^^L), 0) .

(3) Let G = (I,h, S,A,K) be an ¿-grammar and let Total (G) and
0=Teral (G). Let <P, 0 , T and Q be as in (1). The shadow of G with respect to
Q is the ¿-grammar (ZU o(zl)U {F}, h', S, A, shG, (K)) where Q is the restriction

254 J. Gonczarowski, H. C. M. Kleijn, G. Rozenberg

of Q to Term (K), F is a new symbol,

h'(e(a)) — shad®, e (ft (a)), for all a£Z and

h'(a) = {F}, for all a£A\J{F).

The full shadow of G with respect to Q is the ¿-grammar {F}, h", S, A,
fshe, (K)), where Q' is the restriction of Q to Term (K), F is a new symbol,

h'(Q(a)) = fshad0te(h(a)), for all a£Z-A and

h'(a)={F}, for all a£JU{F}.

(4) A (full) shadow of a selector K is the (full) shadow of K with respect
to some injective coding Q.

A (full) shadow of an ¿-grammar G is the (full) shadow of G with respect
to some injective coding Q. n

Theorem 4.1. Let G be an s-grammar. Then, for all shadows and full shadows
H 0 / G , L (#) = L (G) .

Proof Immediate from the definition. •

Theorem 4.2. Let G be an s-grammar and let H be a shadow of G. If G is
abf (ai, ci, csf, e) then so is H.

Proof Immediate from the definition. •
As a matter of fact, a shadow of an ¿-grammar is not necessarily cbf or asf

or u or ou, if the original ¿-grammar is cbf or asf or u or ou, respectively.
This observation should be contrasted with the following result.

Theorem 4.3. Let G be an s-grammar and H a full shadow of G. If G is
abf (cbf, ai, ci, asf, csf, ou, u, e) then so is H.

Proof. Immediate from the definition. •
Let Z and 0 be alphabets and let <p be a mapping from Z* into 0*.
— <p is bar-preserving if <p(a)^0* and <p(a) ^ Q* for all a£ Z.
— <p is bar-invariant if it is bar-preserving and, furthermore, cp(a) = q> (a)

for all Z. •
Theorem 4.4. Let X be a family of selectors that is closed under bar-preserving

letter-to-letters substitution. Then for every every shadow of K is also in 3C.

Proof. Immediate by the definition of a shadow. •

Theorem 4.5. Let be a family of selectors that is closed under bar-invariant
letter-to-letters substitution. Then for'every K^jf every full shadow of K is also
in

Proof. Immediate by the definition of a full shadow. •

Lemma 4.1. Let S? be a selector scheme. Then if is closed under bar-invariant
letter-to-letters substitution.

Grammatical constructions in selective substitution grammars 255

Proof. Immediate from the definition of a selector scheme. •

Corollary 4.1. Let Sf be a selector scheme and let Then every full
shadow of K is also in £P.

Proof Immediate from Lemma 4.1 and Theorem 4.5. •

5. Synchronization

In this section we will investigate the possibilities of obtaining synchronized
normal forms for ¿-grammars. We start by using the operations of shadowing and
full shadowing.

Theorem 5.1. Let G be an s-grammar. Then every shadow and full shadow of
G is synchronized and equivalent to G.

Proof. Immediate from the definition of shadows and full shadows and Theo-
rem 4.1. •

However the use of the full shadow construction (rather than the shadow
construction) gives us additional advantages in the sense that we stay within a family
of selectors satisfying some additional properties (see Theorem 4.3).

Theorem 5.2. Let № be a family of selectors that is closed under bar-invariant
letter-to-letters substitution. Then for every s-grammar G with Sel (G)€Jf there
is an equivalent synchronized s-grammar H with Sel (H)^^C.

Proof. This is immediate by Theorems 4.1, 4.5 and 5.1. •

REMARK. If one changes the statement of the above theorem by requiring
"bar-preserving" rather than "bar-invariant", then the proof (of such a modified
version) of the theorem can be obtained by using the shadow operation. •

Continuous grammars were introduced in [EMR] as a "missing link" between
sequential and parallel rewriting as seen from the theory of ¿-grammars. In the
sequel we will apply some of our results also to continuous grammars.

Definition 5.1. Let n £ l . An (n-)continuous selector is a selector K, where
n

La (K) is of the form \J 0*$*3* for alphabets 0 l 5 ..., 0„, ..., and
;=i

Sj, . . . ,£„ of symbols without bars.
An ¿-grammar with an «-continuous selector is termed a (n-)continuous grammar.

A continuous language is the language of a continuous grammar. •

Corollary 5.1. Let n^ 1. For every n-continuous grammar there is an equivalent
synchronized n-continuous grammar.

Proof. This is immediate from Theorem 5.2 because bar-invariant letter-to-
letters substitutions preserve the structure of selectors of «-continuous grammars. •

Corollary 5.2. For every ETOL system there is an equivalent synchronized
ETOL system.

Proof. This is an immediate consequence of Corollary 3.1 and Theorem 5.2. •

256 J. Gonczarowski, H. C. M. Kleijn, G. Rozenberg

Corollary 5.3. For every EOL system there is an equivalent synchronized EOL
system.

Proof. Immediate from Corollary 3.1 and Theorem 5.2. •

Corollary 5.4. Let if be a selector scheme and let G be an s-grammar with
Sel (G) € i f . Then there is an equivalent synchronized s-grammar H with Sel (H)££f.

Proof. Immediate from Lemma 4.1 and Theorem 5.2. •
Grammars considered in classical formal language theory (for example context-

free grammars) do not rewrite terminal symbols. A straightforward simulation of such
grammars by ¿-grammars yields productions of the form (a, a) for each terminal
symbol a. Productions of this form yield "total desynchronization". ¿-grammars
containing such productions will be considered now.

Definition 5.2. An ¿-grammar G is totally desynchronized if for all terminal
symbols of Base (G), (a, a) € Prod (G) and a£alph (La (Sel (G))). •

Theorem 5.3. Let Jf be a family of selectors that is closed under union with
monoids and under bar-invariant letter-to-letters substitution. Then for every universal
s-grammar G with Sel (G)£yT there is an equivalent universal totally desynchronized
s-grammar H with Sel (H)£JF.

Proof. Let G' = (I , h, S, A, K) be a full shadow of G. Let <Z> = A1 (K) and
0 = T e r m (K). (la <t> because G is universal). Note that Let T b e a n
alphabet disjoint from I with # r = # 4 . Let cp in_HOM($, (£ - I) U f) be
a bar-invariant injective coding that is the identity on $—A.

Let H be the ¿-grammar (XUT, h', S, A, K'), where

K' = (<p($), (L a (/ 0) U r * U (r U r U Z) * , Term (K))

and h' is defined by
h'(a) = h(q>(a)) for a£Z-A and

h'(<p(aj) = h'(a) = a for a£A.

It is straightforward to see that L(H)=L(G) and that H is totally desynchronized"
Since it follows that K'£Jf. Moreover, K' is universal and hence the
theorem follows. •

REMARK. It is well-known (see, e.g., [R S]) that a totally desynchronized normal
form exists for the family of ETOL systems but it cannot exist for the family of
EOL systems. Theorem 5.3 together with Corollary 3.1 allows one to see this well-
known fact in a more general perspective. •

6. Chain-freeness

In this section we will investigate the possibilities of obtaining chain-free normal
forms for ¿-grammars. Our first method for obtaining chain-free normal forms
preserves also the propagating property.

Theorem 6.1. Let Sf be a bf selector scheme and G an s-grammar with

Grammatical constructions in selective substitution grammars 257

Sel (G)Ç6f. Then there is an equivalent chain-free s-grammar H with Sel (H) £ y.
Moreover, if G is propagating then so is H.

Proof Let G be a full shadow of G. By Theorem 4.1 and Corollary 4.1,
Sel (G)e£f and L(G) = L(G). First we consider the symbols of Total (G) -Al(Sel(G)).
Without loss of generality we may assume that for every non-terminal symbol
A of G that is not in Al (Sel (G)), (A, F) is the only production in G in which
A appears. Note that the failure symbol F is not versatile in G and thus produc-
tions of the form (A, F) are not chains. For every terminal symbol c in G that
is not in Al (Sel (G)), we remove all productions with c as a lefthand side and add
one production (c, c). Hence, in the resulting grammar G', c is not versatile
anymore and thus productions of the form (b, c) are not chains. Clearly G and
G' are equivalent. So L(G') = L(G)., Moreover, for every chain (b, c) in G',
both b and c are in Al (Sel (G')).

The following algorithm yields a chain-free s-grammar H.
— Let P be an initially empty set of chains and let H' be G' initially.
— If H' = {E,h,S,A,K> is chain-free then let H = H'.
— Otherwise let (b, c) be a chain in H', b^S, and let h^FSUBÇE, E) be

defined by

K{b) = h{b)-{c} and

h1(a)=h(a) for a£I-{b).

We add (b, c) to P. Let h' eFSUB (E, E) be defined by

h'(a) = (h1(a)U{F}U

U {u0dv..un^dnun: d l 5 ..., dn£{b, c), u0, ..., u„£(Z-{&})*

and w0&w1&...Hn_1&w„£/i(a)})— {d: (a, d)£P} for all a£E.
We then iterate this step for H' = (E, h', S, A, K).

Clearly, this procedure terminates and produces a chain-free grammar. Thus
it suffices to show that each iteration in the above algorithm preserves the generated
language.

Let H' = (E, h, S, A, K) be an ¿-grammar as above and let H1 be the ¿-grammar
obtained from H' by eliminating the chain (b, c). If a derivation in H' does not
rewrite b into c then this is obviously also a derivation in i ^ . Let thus (a, u^buÇ)^
6 Prod (H') for some a(LE and u, We look at the trace of a derivation
in H' that contains this production and that rewrites the occurrence of b thus
obtained into c at some further step,

(5", ..., WxaVi, w2u1bu'1v2, ..., w3u2bu2v3, w^cu'^v^.

K is csf and abf, and Al (K). Thus for every wbw'Ç_ La (K) and vvCw'ÇLa (K),
wcw'Ç. La (K). It follows that there is a derivation in Hx with a trace of the form
(S,..., x^ayj., x2z1cz'1y2, ..., x3z2cz'2y3, x4z3czá j4), where every x¡, yh z¡ and z¡ can
be obtained from w¡, v¡, u¡ and u'¡, respectively, by replacing some occurrences
of b by c.

Note that b is always a non-terminal symbol since we construct a full shadow

258 J. Gonczarowski, H. C. M. Kleijn, G. Rozenberg

first. Hence, if w4uscu'3v4 is a word over the terminal alphabet, it equals xiz3cz3yi.
Thus :L(/ f) cL(f f ,) .

The opposite inclusion can be shown similarly because K is sf and bf and
A1 (K) (thus on one hand, ivcvv'^La (K) implies that iv6u>'£La (K), whw'^Ln(K)

and iden (w)5iden (w')6La (K), and on the other hand, n>cu>'£La (K) implies
that iden (w)B iden (w')€La(A:)).

Therefore L(i / 1)=L(/ / /) and hence L(#)=L(G) . •

REMARK. Note that the conditions of Theorem 6 .1 do not lead to strong limits
on the language-generating power. In [KR] it was shown that bf and sf ¿-gram-
mars generate arbitrary length sets. •

The following example illustrates the method from the proof of the above
theorem.

Example 6.1. Let G be the s-grammar (I , h, S, A, K), where

I = {5, A, B, C. a, b, c, FY

A = {a, b, c},

K = {I, L, A), where L = IU (J (2lsnUZ13»+,i),
»21

and h is defined by
h(S) = asAa6B,
h(A) = {a7A, b5A, a2},

h(B) = {a6B, b8B, C, a2},

h(C) = {c8b, c8a2} and

h(a) =h(b) = h(c) = h(F)= {F}. •

Clearly G is bf and sf, but not chain-free.

Let H be the ¿-grammar (E, h', S, A, K), where h' is defined by

h'(d) =h(d) U {F}, for d£ {A, a, b, c, F),

h'(S) = {a5AaeB, a5Aa6c, F},

h'(B) = {a«B, a6C, b8B, b*C, a2, F} and

fc'(C) = {csB, c8C, c*a2, F}.
H is chain-free, Sel (/f)=Sel (G) (because G was synchronized there was no
need to change the selector) and

L(H) = L(G) — {a5(p(w)a2a6il/(w)a2: w£{0, 1}*},

where cp£HOM({0, I}, {a, b}) and if/^FSUB ({0, 1}, {a, b, c}) are defined by

<p(0) = a\ <p{\) = b\

iKO) = a6, 1^(1) = {b8, c8}. • .

Grammatical constructions in selective substitution grammars 259

REMARK. There are ways to specify conditions on a general selector family JT
that allow the classical "context-free style" chain elimination for an ¿-grammar G with
Sel (G)€X~. The conditions known to us do, however, involve intersection of the
selector language with the set of sentential forms generated by G, in the following
sense. Say that we are given a chain (b, c). We want to be able to introduce c in
the new grammar, say H, wherever b could occur in a derivation of G. The
problem arises from the fact that there may be a word in Sel (G) of the form wcw'
that was not applicable in G (because no such sentential form existed there) but
it becomes applicable in H (which derives iden {wcw') from its start symbol).
To eliminate such a case we have to get rid of all the words w in Sel (G) for which
iden (w) is not a sentential form of G. This does, however, complicate the structure
of a selector to such an extent as to make the result "useless". For this reason we
do not present an analog of Theorem 6.1 for the case when Sf is a selector family
other than a selector scheme. •

In the rest of this section we consider methods for achieving chain-free normal
forms that make use of erasing productions.

Theorem 6.2. Let K be_a selector, such that A1 (K) —Term(K) and Ad
cTerm (K). If K is {T, T}-e and {T}-i and if A*^La (K), then for every
s-grammar G = (I , h, S, A, K), where I , there is an equivalent chain-free
s-grammar H with Sel (H)=K.

Proof Let H=(ZUT, h', S, A, K), where h' is defined by
h'(a) = (h(a)-Z)U{bT: bih{a)C\I} for all a£Z and
h'(T) = X.

Since H is chain-free it remains to show that L(if)=L(G).
Let S=g w, w£A*. Then S=>-v for some v with erase^}(v) = w because

K is {T}-i. But t)=>w because (¿lU{T})*cLa (K). Hence L (G) c L №) .

Vice versa it can easily be seen by induction on i that if S=> x then
H

*

5=>erase{T}(x) because K is {r, T}-e. Therefore L (i /) eL (G) and hence the
equality holds.

Note that T-e is necessary here, because there may be a word w in La (K),
such that u=eraseT()v)^ La (K). v is blocked in G but w is unblocked in H and,
hence, additional words may be generated in H. •

Theorem 6.3. Let № be a family of selectors that is closed under union with
monoids. Then for each s-grammar G with Sel (G)£ Jf" there is an equivalent chain-
free s-grammar H with Sel (//)£ Jf".

Proof. Let G={I,h, S,A,K) and let T be a new symbol. Let Base (H)
be as in Theorem 6.2 and let

Sd(H) = <A1(A-)U{T}, La (K) U (£ U {T})*, Term (K)).
The equivalence of G and H can easily be seen by observing that every derivation
D of length 1 in G is simulated by a derivation D' of length 1 or 2 in H \ the
first step of D' rewrites like D, maybe introducing some occurrences of T. If
any T's were introduced the second step of D' erases them. •

3 Acta Cybernetica VI/3

260 J. Gonczarowski, H. C. M. Kleijn, G. Rozenberg

Corollary 6.1. For every ETOL system there is an equivalent chain-free ETOL
system.

Proof. Immediate from Theorem 6.3 and Corollary 3.1. •
We define now an operation that is based on the well-known shuffle operation

(see, e.g., [HU] and [RS]) that allows us to specify conditions for achieving chain-
free normal forms (also applicable to the EOL case).

Definition 6.1. Let K and L be languages over A and 0 , respectively.
The full shuffle of K and L, denoted by KILL, is defined by

K]LL = KULU
{x1y1x2yt...xnyn: n S 1, xlt ...,xn£A*,

yx, ..., y„£0*, Xi-.X^K and yv..y„eL}. •
Theorem 6.4. Let Jf be a family of selectors that is closed under bar-preserving

letter-to-letters substitution and full shuffle with monoids. Then for each s-grammar
G with Sel (G)£ Jf" there is an equivalent chain-free s-grammar H with Sel(i7)£Jf.

Proof. Let G' = (I, h, S, A, K) be a shadow of G and let T be a new symbol.
Let H be the ¿-grammar <IU {T}, h', S, A, K'), where

K' = (Al (K)U{T}, La (K) J1f *, Term (K))

and h' is defined by
h'(a) =(h(a)-(Z-A))U{bT: b£h(a)n(Z-A)}, for a^I-A,
h'(a) = a, for a£A, and
h'(T) = X.

The equivalence of H and G', and hence of H and G, follows from the
observation that for all a(i A, alph (La(^f)) and hence replacing the productions
for those a by identity does not change the generated language. (As a result the
terminals are not versatile and productions of the form (A, a), a£A, are not chains.
This implies the chain-freeness of H.)

Since the symbol T is only introduced together with a non-terminal symbol
it follows that (in a successful derivation) it can be erased in a next derivation step.
Moreover K ' e t f and the theorem follows. •

Corollary 6.2. Let Jf be a family of selectors that is closed under bar-preserving
letter-to-letters substitution and inverse weak identity, such that for each K£Jf,
).£ La (K). Then for each s-grammar G with Sel(G)6JT there is an equivalent
chain-free s-grammar H with Sel (H)d^.

Proof The corollary is immediate from Theorem 6.4 because for all languages
L with l^L and for all monoids 0* such that 0f la lph(L) = 0

1 1 0 * = erased HZ-)- •
Corollary 6.3. For every EOL system there is an equivalent chain-free EOL

system.

Proof. This follows immediately from Theorem 6.4 and Corollary 3.1. •

Grammatical constructions in selective substitution grammars 261

7. Removing ¿-productions

In this section we will investigate the possibilities of removing erasing produc-
tions. As a first step towards this goal we introduce and investigate a normal form
for ¿-grammars in which the "erasing", and "terminal-generating" roles of symbols
are separated; i.e. if a symbol derives A (in the base of the grammar) then it
cannot derive (in the base) a word containing any terminal symbols.

Definition 7.1. Let G=(Z, h, S, A, K) b e a n ¿-grammar. G is in A normal
form (ANF) if for all a£Z—{S} with a====>A, a ====>• w implies that

ase

The set I : a Base(G) A} is then called the X-alphabet of G and is denoted
by Lamal(G). •

REMARK. From the constructions in Theorems 2 . 1 through 2 . 6 it can be seen
that ANF is indeed a normal form for ¿-grammars. •

Theorem 7.1. Let Jf be a family of selectors that is closed under bar-invariant
letter-to-letters substitution. Then for every s-grammar G with Sel (G)£jf there
is an equivalent s-grammar H in ANF with Sel

Proof. Let G=(Z, h, S, A, K).
Let Z' = {a^Z — {5}: a-Ba*(c)->A} and Zx={ax: af_Z'}, such that Zx is an

alphabet of new symbols.
Let <p be the infective coding in HOM(Z', Zx) defined by (p(a)=ak.

Let ip£FSUB (Total~(G), T ^ a R c) UZ x) be defined by

\j/(a) = {a, a1} for a£Z'.

ip{a) = a for a6 (I -Z ')U(Al (K)-Z) and

il/(a) = for a 6 Total (G).

Let H be the ¿-grammar (¿"UI^, h', S, A, K'), where

K' = (ip (A1 (*)), ¡A(La (K)), Term (K))

and h' is defined by

h'(a*-) = (p(h(a)f)Z'*)U{F} for all a£Z'.

h'(a) = (ip(h(a))n(IUZX)*Z(ZUZx)*)U {F} for all adZ-{5} and

h'(S) = \j/(h(S)).
It is easy to see that L(/ /)=L(G) and that H is in ANF. Moreover, K' is in

and hence the theorem holds. •

Corollary 7.1. Let n & 1. For every n-continuous grammar there is an equi-
valent n-continuous grammar in ANF.

3«

262 J. Gonczarowski, H. C. M. Kleijn, G. Rozenberg

Proof. Immediate from the definition of continuous grammars and Theorem
7.1. •

Corollary 7.2. For every ETOL system there is an equivalent ETOL system
in ANF.

Proof. Immediate from Corollary 3.1 and Theorem 7.1. •

Corollary 7.3. Let £f be a selector scheme. Then for every s-grammar G with
Sel (G)££f there is an equivalent s-grammar H in ANF with Sel

Proof. Immediate by Theorem 7.1 and Lemma 4.1. •

Corollary 7.4. For every EOL system there is an equivalent EOL system in ANF.

Proof. Immediate from Corollaries 7.3 and 3.1. •
We will now investigate the possibilities of obtaining propagating ¿-grammars

from ¿-grammars in ANF.

Theorem 7.2. Let G be an s-grammar in ANF that is Lamal (G)-i and
Lamal (G)-e. Then there is an equivalent propagating s-grammar H with Sel (H) =
=Sel (G).

Proof. Let G=(I,h, S, A, K) and let Ex=Lamal (G).
Let H be the ¿-grammar (I — Ix,h',S,A,K) where h! is defined by

h'(a) = erase£;i(/i(a)) for all

Obviously, H is propagating. It remains thus to show that G and H are equi-
valent. We shall show by induction on i that there is a monotonously increasing
sequence of integers j0,ji, • •• such that if u for some word w£1* then

G

eraseiA(w).

BASIS. Let / =0. Then j\ =0.
INDUCTION. Let the induction hypothesis hold for i.
Let x=> y. By induction sM- eraseiA(x). If eraseiA (>•)=eraselA (x) then

G G H
the hypothesis is also true for z'-f 1 by letting ji+1=ji-

Otherwise there must be a word z£La(X) with iden (z)=x, such that (z)
is the barred trace of a derivation of length 1 of y from x. Since K is it
follows that erasej (z)£La(^T). Therefore erase^x) => erase^y) , which proves the
induction hypothesis for /+1, letting j i + i = j i +1.

Thus L (G)cL(i i) .
The converse inclusion can easily be proved in a similar manner, showing that

there is a monotonously increasing sequence of integers j0, ju ... such that if
S=> x for some word x££* then there is a word zEerasej/fx) such that z.

H G
Hence L(H)=L(G) and the theorem follows. •

Grammatical constructions in selective substitution grammars 263

8. Productions in binary form

In this section we will investigate the possibilities for ¿-grammars of obtaining
equivalent binary ¿-grammars.

Let S and 0 be alphabets. A mapping from I* into 0* is called a barring
mapping.

Theorem 8.1. Let be a family that is closed under inverse weak identity and
barring letter-to-letters substitution. Then for every s-grammar G with Sel (G)iJC'
there is an equivalent binary s-grammar H with Sel

Proof. If G is already binary, then the statement of the theorem follows for
H = G. Let thus Maxr(G)s3 . Let G=(E, h, S, A, K) and let / = # Prod (G).
Let (aj,bjynj ... bJtl), I = j ^I, be the productions in Prod (G), in some arbitrary
order, where a}, bjA, ..., bjn£E for l ^ j ^ l .

A derivation D of length 1 in G will be simulated by a derivation D' in
H of length Maxr(G) —1 as follows:

— Every symbol a that is not rewritten in D occurs as (a, 2) and every
symbol a that is rewritten in D occurs as itself in the (left hand side of the) first
word of D'.

— Every symbol in the z'th word of Trace (£>'), 1 ^ / < M a x r (G)—2, is either
a tuple of the form (a, Maxr (G)—z) or [j, Maxr (G)—/] or (a, Maxr (G)—i).
The tuples within angled brackets represent symbols that are not rewritten in D.
If a symbol a is rewritten using the j ' t h production in Prod (G) (i.e. (a, bj„...bJtl)),
it is first rewritten in H into [7, Maxr (G)] (or into ibj n j , Maxr (G))[j, Maxr (G)]
if nj = Maxr (G)). The tuples [j, m] within square brackets keep track of the y'th
original production by deriving a pair of tuples (6y,m_i, m — l)[y, m — 1] for m^
s + 1 and by "counting down" to [j, m— 1] if m > n j + \. The tuples within
parentheses keep on "counting".

— Finally, every tuple of the form (a, 3) or (a, 3) is rewritten into a or
(a, 2), and every tuple of the form [J, 3] is rewritten into CJ^CJ^, where cJA is
either bJti or (pJti, 2).

Formally, let

$ = {(a, i): a € l and 3 s i s Maxr (G)} and

0 = {(a, i>: a£Z and 2 ^ i S Maxr (G)}U

U{[/c, ¿]: 1 3= k I and 3 =5 i S Maxr (G)}

such that 0 and Total (G) are pairwise disjoint.
Let <p be the barring letter-to-letters substitution in FSUB (Total (K),

Total (K) U 0) defined by

<p(a) = {<a,j>: 2 ^ j ^ Maxr (G)} for all adl,

(p(a) = a U {[j, i]: a} = a and Maxr(G)} for all a£l,

cp(d) = q>(a) = a for all aiM(K)-X.

264 J. Gonczarowski, H. C. M. Kleijn, G. Rozenberg

Let H be the ¿-grammar <ZU<£U0, h\ S, A, K'), where

K' = (<i>Uiden(<p(Al (£))), erased1 (cp (La (K))), Term (AT))

and h' is defined by

h'(a) = {[j, Maxr (G)] :aj = a and tij Maxr (G)}U

U {(bJ>nj, Maxr(G))[/, Maxr(G)]: = a and rij = Maxr(G)}

for all a£Z,

m] otherwise

for all 3 32 m s= Maxr (G) - 1 and 1 ; ^ 1,

'{W. c£{bhi,(bjiit2)} for if {1,2}} if n , s 2
h'([j,3])= <f>y>1,2>} if n j = 1.

X otherwise
for all I S j ^ l ,

h'((a, i + 1)) = (a, i) for all a£Z and 3 S i S Maxr (G) - l ,
h'({a, i + 1)) = (a, i) for all a£Z and 3 =a i si Maxr (G) - l ,

ft '«a, 3» = h'((a, 3)) = {a, (a, 2>} for all a^Z and
h'((a, 2» = (a, Maxr (G)> for all a£Z.

Since H is binary and K'dcdT whenever it remains to show that
um=UG)-

Let \j/£FSUB(Z,ZU0) be defined by
[¡/(a) = {a, (a, 2)} for all a£Z

and let x be the injective coding in HOM (Z, I U 0) defined by
X(a) = (a, 2) and
X(a) = a.

It can now easily be seen from the construction of H that every derivation
D of length 1 in G can be simulated in H. Let Trace (D)=(x, j>) and Btrace(£>) =
= (z). Then x(z) M a ^ G) ~ 1 >» for aU

Thus, L (G) c L (#) .
The converse inclusion follows from the fact that tuples (i.e. symbols from

0 U <P) can only occur together in a sentential form of H if they have identical
second components. Moreover, if the second component of the tuples is not 2,
then this sentential form consists exclusively of tuples; otherwise, symbols from
Z can occur together with symbols of the form {a, 2) where a£ Z. Hence, successful
derivations in H simulate successful derivations in G as described above. Therefore,
L (i) c L (6) , and thus we have that L(/ /)=L(G). This completes the proof of
the theorem. •

Grammatical constructions in selective substitution grammars 265

REMARK. A similar construction can be performed in which every derivation
of length 1 in G is simulated by a derivation of length flog2 Maxr (G)] in if using
a "balanced" decomposition of the original productions. •

Corollary 8.1. For every EOL system there is an equivalent binary EOL system.

Proof. Immediate from Theorem 8.1 and Corollary 3.1. •

Theorem 8.2. Let be a family of selectors that is closed under union with
monoids. Then for every s-grammar G with Sel (G)£ Jf there is an equivalent
binary s-grammar H with Sel (H)£ J f .

Proof. If G is already binary, then the statement of the theorem follows for
H = G. Let thus Maxr(G)=?3. Let G = (Z, h, S, A, K) and let / = # Prod (G).
Let (aj, bJt„j, ...,bjA) I s j s l , be the elements of Prod (G) in some arbitrary
enumeiation, such that a5, bjtl, ..., bj nj£Z for I s j = l.

Let 0 = {[j, i]: 1 = 7 = / and 3 ¿iSnj} such that 0 and Total (G) are
pairwise disjoint.

Let H be the ¿-grammar (ZU0 , It', S, A, K'), where

K' = <AICT)U2;U0, LaCfi:)U(0UZ)*, Term (K))

and h' is defined by

h'(a) = (h(a)-ZZZ+)U{bLnj[j, n}]: a = as and nj ^ 3} for all a£Z,

h'([j, m + l]) = bJtm[j, m] for all 1 ^ j S I and 3 S m ^ ny and

h([j,3]) = bJi2bJtl for all I S j ^ l with n, 3.

Obviously, It can now easily be verified that, for all x, y£Z*, x=> y if and G

only if x=>y for some 1 Si^Maxr (G) — 1. Hence, L(//)=L(G). Moreover, H
H is binary and thus the theorem holds. •

Corollary 8.2. For every ETOL system there is an equivalent binary ETOL system.

Proof. Immediate from Theorem 8.2 and Corollary 3.1. •
Note that the constructions presented in Theorems 8.1 and 8.2 are of a basically

different nature. The former is of a "parallel" nature, while the second one is of
a "sequential" nature.

REMARK. TO apply the construction of Theorem 8.1 to the case of a selector
scheme ^ we note that the construction requires all symbols in the resulting
selector to be barred. Thus, for all K^if, La (K) c A1 (K)*.

The construction requires that every K£ y must be A1 (A>interspersed and,
in order not to add new words to the language by unblocking, A1 (A")-erasing.
These conditions imply, however, that = A1 (K)*, which restricts the family of
generated languages to EOL languages (see Corollary 3.1).

A similar argument can be used for the construction of Theorem 8.2. •

266 J. Gonczarowski, H . C. M. Kleijn, G. Rozenberg

9. Removing right recursion

In this section we will investigate the possibilities of obtaining non-right-
recursive normal forms for ¿-grammars. First we will consider the introduction of
erasing productions as a method to eliminate right recursion.

Theorem 9.1. Let & be a family of selectors that is closed under inverse weak
identity, bar-preserving letter-to-letters substitution and union with monoids. Then
for each s-grammar G with Sel (G)6 JT there is an equivalent s-grammar H with
Sel (/ /) € X that is not right-recursive.

Proof. Let G'={I,h, S, A, K) be a shadow of G and let T be a new symbol.
K is in Jf by Theorem 4.4.

Let (p£HOM (I, IliT) be defined by

q>(a) = a for

<p(a) — aT for a i I - (J U { 5 }) .

Let H be the ¿-grammar <IU {r}, (poh, S, A, K'), where

K' = (A1 (A")U {T}, erasef1 (La (AT)) U(¿1U T)*, Term (K)).

It is easy to see that H is equivalent to G and that H is not right-recursive. More-
over, . Hence the theorem holds. •

REMARK. The conditions that are necessary to apply the construction of Theo-
rem 9.1 to selector_schemes yield a trivial result; each selector language would be
either of the form I* or of the form I* for some alphabet I . (For an analogous
argument see section 8.) •

The following example illustrates the method from the proof of Theorem 9.1.

Example 9.1. Let G be the right-recursive ¿-grammar (I , h, S, A, K), where

I = {S, S', Z, Alt A2,B1, B2, B3, F, a, b},

A = {a, b},

K= (1,(1-2)*, A)

and h is defined by

h (S) = 5', h(S') = A,Z, h(Z) = faS', Bs},

h(A]) = {A,A2, a}, h(Bj = {B,B2, b},

h(A2) = {A2, a), h(B2) = {B2, b}, h(B3) = b,

h(a) = h(b) = F.

Let H be the ¿-grammar (XU {T}, h', S, A, K'), where
K' = <ru{r}, ((i-2)U:r)*U(^UT)*, A)

Grammatical constructions in selective substitution grammars 267

and h' is defined by

h'(S) = S',

h'(C) = h(C)T for C£{S',Z,A1,A2,B1,B2, £3},

h'(a) = h'(b) = F and

h(T) = l.
Clearly ~L{G)=~L(H)={a2"bZn~1...a2b:n^l}. Moreover, if is not right-recursive. •

REMARK. Another method to eliminate right recursion is the classical Greibach
Normal Form construction (see, e.g., [S]). We conjecture that there is no non-
trivial condition that allows us to apply this construction to ¿-grammars, because
it changes the structure of the grammar in a very severe way; for instance, symbols
are shifted from one end of a production to the opposite end, other symbols are
eliminated and yield thus changes in the length of derivations.

Formally we base our conjecture on the result that there is no Greibach Normal
Form for EPTOL systems, as shown in the next theorem. •

Definition 9.1. (see, e.g. [R]). Let G=(Z, S, A) be an ETOL system.
— Let n s l . Let Jfn={hilo...ohin: h£Jif}.

For every let <p' be the finite substitution in FSUB(Z,Z) defined by

(p'(S) = {wfZ*: s 4 w for O s j s n } and
G

(p'(a) = cp(a) for a€ i ; -{S} .
The speedup of G by n, denoted by speed„ (G), is the ETOL system (Z, {cp':
q>t*„}, S, A).

— An ETOL system H is a speedup of G if there is an integer n s 1 such that
/T=speed„ (G). •

Note that, for every ETOL system G and for every integer L(G) =
=L(speed„ (G)).

The following lemma can easily be established using standard techniques from
the theory of ETOL systems.

Lemma 9.1. Let G£(Z, S, A> be an ETOL system. Then there is an ETOL
system H that is a speedup of G such that, for all symbols b£Z — {S} which derive
a word in A* and for all derives a word in A* in j steps.

Theorem 9.2. Every EPTOL system that generates the EOL language L=
= {a2nb2n~1a2n~2...b3a2b: n^ 1 } is right-recursive. '

Proof It follows from Example 9.1 and Corollary 3.1 that L is an EOL
language. Let us assume that there is a non-right-recursive EPTOL system G±=
=(Z, S, {a, b}) with L(GX)=L.

For the rest of this proof we will make use of derivation trees as customary
in L system theory (see, e.g., [RS]).

The symbol b is the rightmost symbol of every word in L. Thus, the right-
most path in every derivation tree of a word in L (up to "the first occurrence of b)
cannot be longer than # Z because, otherwise, Gx would be right-recursive. Since

268 J. Gonczarowski, H. C. M. Kleijn, G. Rozenberg

L is an infinite language, it follows that b must derive itself (because, in a given
ETOL derivation tree, all paths that lead from the root to a leaf have the same
length). If there was a production (b, w) in Gx with w^b then b would be
versatile and, hence, G¡ would be right-recursive. Therefore h(b)=b for all
hdJiP. The same argument can be used to show that h(a)=a, for all /¡gjf, with
an analogous reasoning for the second path from the right in derivation trees.

Note that, for every symbol c£X and for every word x£X*, if c=> x and G |
/ £ # X, then either x^X*{a, b) or x£Z*{d} for some non-versatile non-terminal
symbol d (i.e. h(d)—d for all h^Jf). In the latter case, x can never be rewritten
into a string in A*.

Let G2=speed#x(G1). Note that L(C2)=L and that G2 is not right-recursive.
Moreover, every production in G2 that can occur in the derivation of a word u^L
must be of the form (c, wa) or (c,wb), where c€X and w£X*.

Let us consider derivation trees of G¿. Since a and b derive only themselves,
we will "prune" every path in such a tree at the uppermost occurrence (i.e. the one
closest to the root) of a or b. We call the tree thus obtained a pine tree (see Fig.
9.1). Note that in a pine tree every rightmost path of every (non-trivial) subtree
is of length 1.

Let us look at the pine tree of an arbitrarily large word w£L. Let n be some
path in that tree that contains more than one occurrence of a symbol. Let C" be
the uppermost occurrence of some symbol c that occurs more than once on n and
let C be the lowermost occurrence of c on n. Let v denote the subword of w
derived from C' and let n be the number of symbols in vv from v on to the right
end of w. We will first show by contradiction that v cannot contain a subword
of the from a'bJak or b'aJbk, for some 1. We can intercalate the subtree
with root C' (not including the subtree with root C) n times. We "fill" the pine tree
arbitrarily to the left and to the right such that it yields a word w' in the language
(this is possible by Lemma 9.1). Note that w' still contains v as a subword. It

S

Fig. 9.1

Grammatical constructions in selective substitution grammars 269

contains, however, at least n symbols to the right of v, because each intercalated
subtree derives at least one symbol to the right of C (we recall that every produc-
tion with left hand side c must be of the form (c, wa) or (c, wb) if it is to occur
in the derivation of a word in {a, b}*). This is a contradiction. Hence, v must
either be of the form a'bJ or of the form b'aJ for some i,j with iJrj = \.

We can thus decompose every path n (from the root to a leaf) in the pine tree
into two parts; is the subpath of it from the root to the first occurrence, say
C', of the first symbol occurring more than once on n, and n2 is the subpath
of 71 from C' to the appropriate leaf. Note that every such path % is of length
^ Thus, there are at most A: = Maxr (G2)#i distinct nodes in all these paths
iix together.

For short, let us call a maximal adjacent sequence of a-s (b-s) in w a block.
Note that every node in each path % as above can derive at most 2 blocks in w.
Thus, w can contain at most 2k blocks. This is a contradiction.

Thus every EPTOL system G with L(G)—L is right-recursive. •

Abstract

This paper investigates the possibilities of performing grammatical transformations on selective
substitution grammars. The influence of the form of the selectors available on the possibilities of
performing various grammatical constructions is considered. The grammatical transformations
under investigation include standard ones, such as:

removing chain productions, removing A-productions, restricting the right hand sides of
productions to length 2 and synchronization.

• INSTITUTE O F M A T H E M A T I C S
A N D C O M P U T E R SCIENCE
THE HEBREW UNIVERSITY O F J E R U S A L E M
JERUSALEM, ISRAEL

•» INSTITUTE O F APPLIED M A T H E M A T I C S
A N D C O M P U T E R SCIENCE
UNIVERSITY O F LEIDEN
P. O. BOX 9512
2300 RA L E I D E N
T H E N E T H E R L A N D S

References
[E M R] EHRENFEUCHT, A . , H . MAURER and G. ROZENBERG, Continuous Grammars, Inform, and

Control., v . 4 6 , 1 9 8 0 , p p . 7 1 — 9 1 .
[H U] HOPCROFT, J. E and J . D . ULLMAN, Introduction to automata theory, languages, and compu-

tation, Addison-Wesley, Reading, Massachusetts, 1979.
[K R] KLEIJN, H . C. M . and G . ROZENBERG, Context-free like restrictions on selective rewriting,

Theoret. Comput. Sci., v. 16 , 1 9 8 1 , pp. 2 3 7 — 2 6 9 .
[K R 2] KLEIJN, H . C . M . and G . ROZENBERG, Sequential, continuous and parallel grammars,

Inform, and Control, v. 4 8 , 1 9 8 1 , pp. 2 2 1 — 2 6 0 .
[P] PENTTONEN, M., One-sided and two-sided context in formal grammars, Inform, and Control,

v . 2 5 , 1 9 7 4 , p p . 3 7 1 — 3 9 2 .
[R] ROZENBERG, G „ On slicing of ^-iteration grammars, Inform. Process. Lett., v. 4 , 1 9 7 6 ,

p p . 1 2 7 — 1 3 1 .
[R2] ROZENBERG, G., Selective substitution grammars (towards a framework for rewriting

systems). Part I: Definitions and Examples. Elektron. Informationsverarb. Kybernet, v. 13,
N o . 9 , 1 9 7 7 , p p . 4 5 5 — 4 6 3 .

[R S] ROZENBERG, G. and A. SALOMAA, The mathematical theory of L systems. Academic Press,
New York, 1980.

[R W] ROZENBERG, G . and D . W OOD, Context-free grammars with selective rewriting, Acta Inform.,
v. 13 , 1 9 8 0 , p p . 2 5 7 — 2 6 8 .

[S] SALOMAA, A., Formal languages, Academic Press, New York, 1 9 7 3 .

(Received Jan. 13, 1983)

