Decidability results concerning tree transducers Il

By Z. Esix

1. Introduction

Let 1S T XT; be an arbitrary tree-transformation induced by a top-down
or bottom-up tree transducer A. It is said that A preserves regularity if 7(R)
is a regular forest for each regular forest R Tp. It is natural to raise the question
whether the regularity preserving property of tree transducers is decidable or not.
This question was positively answered for bottom-up transducers in [4]. Even more,
it was shown that a bottom-up transducer preserves regularity if and only if it is
equivalent to a linear bottom-up transducer. Concerning top-down transducers
we have quiet different results. Although every linear top-down transducer preserves
regularity as linear top-down tree transformations form a (proper) subclass of
linear bottom-up transformations (cf. {2]), there are deterministic regularity pre-
serving top-down tree transducers having no linear bottom-up equivalent. Another
distinction lies in the fact that there is no algorithm which can decide the regularity
preserving property of top-down transducers (cf. Theorem 2). However, restricting
ourselves to deterministic top-down transducers we obtain positive result (cf.
- Theorem 1). i
‘ The notations will be used in accordance with [1]. Recall that a top-down tree
transducer A=(F, A4, G, A,, X) is called uniform if each rewriting rule in ¥ is
of the form af—q(a,x,, ..., a,x,) where n=0, f¢F,, a,a,, .., a,€A and g€Tg ,.
In addition, if ¢ is always linear (cf. [2]) then A is called linear. These concepts
extend to top-down tree transducers with regular look-ahead, as well. Further-
more, one-state top-down tree transducers and their induced transformations will be
called homomorphisms. If A is a homomorphism then we omit the single state
in the presentation of ZX.
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2. Deterministic top-down transducers

Let A=(F, 4, G, ay, ) be an arbitrary deterministic top-down transducer
kept fixed in this section. Put t=1,. If there exist

ny,ng,my,meg=0, a€A™m, b€A™, c€A™, dE€A™, p,, p,€ T,.-_l

Pe€Tr, Go€ TG mumy QWETE S, TETTL,, ETE, reTo:
such that we have

*
agPo= qo(axyt, bx),
% *
a, p* = q, (ex{?), bx{"t = r,(dx]?),

* *
cp’=q,, dpi*=r,,

{alicln]} = {cili€[nal}, {biliclm,]} = {dilic[m,]},

and both q;, and r; contain an occurence of a symbol from G then we say that
A satisfies condition (). Observe that our conditions imply that n;, m;=>=0 (i=1, 2).

We are going to prove that A preserves regularity if and only if (%) is not
satisfied by A. The necessity of this statement can be proved easily.

Lemma 1. If A preserves regularity then A does not satisfy condition ().

Proof. Assume that A satisfies condition (*). Then, using the notations of the
definition above, set R={po(p:(---(p1(p2)...))In=0}. R is regular and t(R) consists
n-times
of trees g,(r,,s,) m=0, r,c T, s,€ TgY) with the property that n<rn (r,)=rn (r,..),
n<rn (s,)<rn(s,,,) . Suppose that 7(R) is recognizable by a deterministic tree
automaton D=(G, D, Dy). Let n>m(1+v(G)+...+v(G)!’!'-) be an arbitrary
fixed integer. As (go(r,, s))p€D, also there is a vector of trees s€Tgr with
dp (s)<|D| and (go(r,, s))p€D,. However, as dp (s)<|D| we obtain that rn (s)=
=m;(14+v(G)+...+v(®P1-1). This contradicts t(R)=T(D). Therefore, ©(R)
is not regular, as was to be proved.

To prove the converse of Lemma 1 first we show that z(dom 1) is regular
if A does not satisfy (*). This will be carried out by constructing a linear deter-
ministic top-down tree transducer with regular look-ahead such that t(dom 7)=
=1p(dom 74/). The construction of A’ will be made by the help of other tree
transformations. Thus, we shall have the transformations indicated by the figure

below: .
1,2 >,
6= k\ T

F

Lrn (E)=1n (¥n)+ ...+ 0 (Fany), 0 (Ss) is similarly defined.
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We begin with the definition of F”. Firstlet F= U F,, F ={(f, C, ¢, )| fEF,,

CCB, ¢: B>P(A),y: A>~A for a subset BE A}, 1e (p 1samappmg of B into
the power-set of 4 and  is a partial function on 4. Now the type F” is defined
by F7=F,UF, (n=0). L

The F-depth (dp(p)) and F-width (wd (p)) of a tree p€Ty. are defined by

dp(p) =0, wd(p) =wdy(p) =0 if p€F,
dp(p) =1, wd(p) =wdy(p) =1 if peF,,

B () = max @ @)lichl), wa(p) = max{ 3 W,(e), WIlietl},

wd,(p) = __zlvﬁo(p,-) if p=f(ps,..,p) With n>0, fEF,,

P1, ---aanTF”9
dp(p) = 1+ max {dp(pplic[n]}, wd(p) = max {1, wd(p)li€[n]},
wdo(p) =1 if p=f(ps,..., ) Where n=>0, fcF,,

Dis .- anTF"~

If n, m are given nonnegative integers then T, ., denotes the set of all trees p€ Tp»
with dp (p)<n- and wd (p)=m.
We shall frequently use an equivalence relation denoted by ~ on Ty.. Given
P, g€ Trr, p~q if and only if one of the following three conditions holds:
(1) p’ qe TFs . _
(ll) P=f(P1, seey pn)a q=f(‘]1, LREE] qn) WIth néo, fEFn’ Di> qiETF” and
 pigs (e, _ _
(lll) P—Po(Pn . ’pn) q qo(qla v qn) WIth n>0’ pOa qOETF,n, pi’ qiETF"a

Pi~ s 1L (P, 1t (g)€F GE[n)). o o
If pe Ty then [p] denotes the block containing p under the partition induced by ~.

The next statement can be proved In an easy way.

Lemma 2. [p] is a regular forest for any p€T..

Now we introduce the transducer U. U=(F, U, F’, u,, £”) where
U={(B,B,C, 0, y))BS A, B S B, CSEB, o: B~P(A), Y: A>> A},

as={ao}, 0,0, 0, ¥) with @(a)={a,} and Y(@)=>b if and only if a=b=a,.
Z” is determined as follows.

Let u=(B, B’, C, ¢, ) be an arbitrary element of U, f€F, (n=0). Assume
that in X there is a rule with left side af for any a€ Ug@(B). Thatis, Ug(B)=
={a1, c.0s A, 11y ooy Apyas ooy Quns ooos Ay (L Ly ..., [, =0) and

af ~ qi(baxi, ..., b Xim)EX (i€,
a;f—ciyx;€Z (€[l jelnD, '
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where k=0 (€[l], je[n]), g€ To.—X, ki=§kij GellD, byedrs (i€ll), jeln),

cy€A4 (iefly), j€[n)). . e .
Then Z” is the smallest set of top-down rewriting rules satisfying (i) and (ii)
below.

() If Ha€Blo(@N{ay,...,a} =0} =2 or
{acB"lp(a)N{ay, ..., a;} # oY =1 or
{a€B-Clo@N{ay,...,a} =08} =1 or
ICl=2 and [{a€Blo@N{a;, ..., a} # p}=1

U = (B9 B” C” q)h lpl) (lE[n]),
C’ ={a€Blp(@)N{ay, ..., a;} # 9},
@i(a) = U(Bjilaj€¢(a))u {Cjilaji€<l’(a)} (a€B, ic[n)),

where Bj; denotes the set of components of the vector by (jE[/], i€[n)), ¥i(@)=b
if and only if a=be Ug,;(B) (i¢[n)), f=(f, C’, ¢, ¥) then

uf = fluyxy, ..., U x,)E X"

(i) If not (i), i.e. /=0 or
I=1, C={a,} and a,¢ B’
and for each ig[n]
ui=(B’ Bl: C’ @i, ll/i)’
@; is the same as in the previous case,
V;=yoy; with yj(@)=>b if and only if a=a;, b=c; (j€ll)),

uf~f (U Xy, oo Uy X )EZ".

Observe that U is a deterministic top-down relabeling. The following pro-

and

then

perties of U will be used without any reference. First, if up :>q(v(x1, )
u

(n=0, ucU,v€U") and p,q€Ty, then p=gq. Secondly, let acA* (k=0) be

arbitrary and identify a with the state w=(B, B",0, ¢, ) where B={a;ic[k]},

B’={ajic(k], 3j€lk) i#), a;=a;}, @¢(a)={a) if acB and yY(a)=>b if and only

if a=b¢B. Denote by o, the transformation 7y and similarly, put 7, =7,
k

(ic[k]). Then, for any p€Ty, pédom o, if and only if p€(\dom 1,,.
i=1

,In the next few lemmata we shall point to further connections between A and U.

Lemma 3. If A does not satisfy condition (*) then dp (ca(p))<2|4[?)4Ii2
holds for any a€A4* (k=0) and p&€T; provided that o,(p) is defined and there

. . *
exist trees r¢Tr, and r’¢Tg, with ar=r (ax%).

Proof. Let L=|A]*|A||*> and suppose that a0r=:>r'(ax’{) and aﬁ(aa(p))§2L.
Then k=2 and there exist po,...,Por-1€Tr1, Per€Trs Gos o> Gor—1€Ten 15
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Gor€Tpry Uy, ..., Uy €U such that
p= Po(--- (PzL)---), q= qu(m (‘12L)--~),
* * . *
aI’of> go (41 x1), uipiz:qi(ui+1x1) (i=1,..,20L-1), uzLPzL'—;" qar

furthermore, r1t(g)¢F, say, rt (9) = (i, G, 0, ) (i=1,...,20). Let D,=
=C,UGC,, ..., D,=Cy; _;UC,,. Tt is not difficult to see by the definition of U that
for any ze[L] there exist indices j;k; (j;, ki€[k]) with a;, a,€D;. On the other
hand, as L=|A|*|A|? there exist i;<i, (11, i,€[L]) such that a; (S G =
=a, , Sy =S8, and T; =T, where S; and T; are defined by S <p2. l(a,)

and T,= U(goz, 1(a)l jé[k], Jj#j;). Without loss of generality we may take j;, =j,=1
and k

11 lz

As a.(p) -1s defined also 7,(p) is defined for any i€[k]. Thus, if r=
—'Po( (1’2;l 2)-- )"2—P2u-—1( (p212-2) )"3 =Pai,~ 1( (Pap)-- )then the derivations

alrl? si(erxiY), (ag, -.., a)ri? ?tl(dix’{‘l),
* *
¢, r3t 2 S (coxf?), dyrgt g t, (d, x7),

* *
C,I3? = S35 d,rje 2 t3

exist where s;€7Tg ,, t€TE L, s, € T8, t,eTo , s,€TH, ,6TE and c€dm,
dcA™ (i=1,2). © )

’ Since 1,2€D;, we have that both s, and t, contain an occurence of a symbol
from G. Furthermore as the sets S;,S;,T; and T; coincide with the set of

i ig9 i 12
components of ¢, ¢,, d; and d,, respectively, it follows that ¢, and d, have the
same set of components.as ¢, and d,.
By

*
aogr(ry) e (s (e X1,  t(d, x’l"‘)),
* * *
o ryt = Se (cx7?),  dyrj? 2> t, (d,x7'2),
n * m * .
czraafssa d2r32=A>t3 _
this yields that A satisfies condition (), which is a contradiction.
Lemma 4. Let acA* (k=0) be arbitrary. Put B={g;|i€[k]} and assume that
* ’ * /7 ’
ape7> Po(u (%15 -5 xn))’ P> Po(“ (*15 o) xn))s

* , ¥

up=q, u'p=>q,
u ua

1t (q) = rt(q)cF”
where n=0, py, po€ Tr s P, PETE, @,  €TE, u, WU
Then n=|A| and T(Po(P))=1,(pi(p)) for any beB.

6 Acta Cybernetica V1/3
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Proof. Suppose that rt (g)=(f;, C;, ¢;, ¥;) (i€[n]). It is not difficult to see by
the definition of U that for any i€[n] there is a state b€ B with ;(b) being defined

and bp, % W;(b)x;. Therefore, n=|B| and also n=|A|. Similarly, for each b¢B
there is an integer i€[n] such that ,(b) is defined and bp, % V(b)) x;, bpg % V(D) x;.
From this 7,(po(p))=1s(p;(p)) follows immediately.
Lemma 5. Let acA* (k=>0) and define the set B as previously. Set B'=
= {a;|i€[k], 3j€[k] i #j, a;=a;} and assume that
*®
aPo(f(Pl: «eo5 Pi-15 xla pi+15 R ] pn)):“> ro(f("l, cees Fiea, Uxy, ri+1’ reey T")),
s ’ ’ ’ ’ * 7 ’ ’ ’ ’
aPo(f(Pb -eos Pic1s X1 Pig1s -0 Pn)):: "o(f("la ceey Tim1y UKy Tigas ooes rn))a
* ’ * ’ v
ugo=> qo(V(x1s s X)) Ugg= o (V' (%15 - Xn))s
* Vo 4 * 7/
vg=>s, vq'=¢,
rt(s) = rt(s)eF™,

Wheren>0’ sz, iE[n],Po,P(’)ETk',l,fan,]:(f, Ca o, ‘/’)EF..,P,',P}ETF, o, TGE TF”,I’
ri’ r.,iETF” (]E[n]—{l})’ qO’ q(’leTF,m9 qa q’ETI"'"’ S, S,ETI-’!}H uEU, v, v,EUm~

If ICI—Z—Z or CﬂB’#@ then Tb(l_)o(f(l?l:-"spi—la %(Q), pi+1,--'apn)))=
=1,(Po(f(P1s > Pi-1> 96(Q); Pi+15 ---» D)) s valid for any b€B. If [C|=1 and
CNB’= then we have the same equality for any b¢ B—C. Furthermore, m=|A4|.

Proof. Similar to the proof of Lemma 4.

By succesive applications of the previous two lemmata we obtain

Lemma 6. Assume that ap % q where acA*, peTk q€TE k=0. If a.(p)~...

..~0.(p,) then there is a tree p,c Ty with 6.(pg)~0a(py) and ap’g% q. Further-

k —_—
more, if r¢() domt, then wd (ca(M)=14].

i=1
Lemma 7. Let acA* (k=0), f¢F, (n=0), b;;cA™s (m;;=0, ic[k], jé[n]) and
q:€T6,m (i€[k], mi= 3 m;). Assume that each of the productions a;f—
j=1

~qi(byx1%, ..., by X, ™) (f€[K]) is in 2. Furthermore, let p;, p€ Tr, ¢;=(by;, .., by)
(icln]). Then ac(p)~oe(pi) (i€[n]) implies oa(f(p1; .., P))~0a(f(P1; .., PD))-

Proof. The proof will be carried out in case of n=1 only. As n=1 we may
simplify our notations: put p=p,, p’=p;, b;=b;; (i€[k]), c=¢,. Moreover, let

B={ajicik]}, B’'={alick], 3jelk] i#j, a=a;} C={cili€[,_§1 m;l}, C'=

k k
={glic[ 3 m;], 3i'€[ 5 m;] i'#i, ci=cu}.
=1 j=1

.
wldis: ..
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As p,p’c ﬂ ﬂ domt,, and the productions above exist also f(p), f(p")€

i=1 j=1
€ ﬂ dom 1,. This implies that both 6,(f(p)) and ¢.(f(p")) are defined.

In the remaining part of the proof we shall make some transformations on the
trees f(cc(p)) and f (ac(p )) by the help of a determlmstlc top-down tree trans-
ducer V= (F",V,F" vy, Zv). In this transducer = {po}U{(D, ¥)|D & B,
W: A>~A} and Zv consisits of the following five types of rules:

(i) If g,=x, for every i€[k] then

vof =~ F((D, ¥)x1)€ Zy

where Y (a)=>b if and only if a=a; and b=b,, for an index i€[k].
@) If D={aic[k], g;#*x,} is not empty then

vOf g (f’ D’ ?, lp)((D’ ‘/ll)xl)é ZV

where ¢@: B—>P(A), p(a)={a} (a€ B); moreover, Y(a)=a if a€B, y(a) is undefined
if a¢ B;y,(a)=a if acC, otherwise ¥,(a) is undefined.
(iii) (D, ¥)g —~&((D, ¥) xy,..., (D, ¥} x))€ Zy for any (D, Y)€V and g F, (/=0).
(iv) If (D, y)eV, D'’CC and either |D|>=1 or DNB'#@ or
{ail{bis, ..., bim }ND’'# B}# D then

(D, ll/)(g’ DI, (P,, lp,) g (g’ D”, (P”, lp”)(( ”’ l//I)XIa LA ] (D”’ '/’l)xl)EEV
for any (g, D', ¢, ¥)cF, (I1=0) with ¢: C—»P(A) where D”={a;lic[k],

{bias s bim D'~ B} ¢”: B~P(A) and ¢"(a)= U(p(bu) (clkl); Y =yoy’

and ¥;(a)=>b if and only if a=bd and a occurs in the rlght side of a rule cg—s¢ X
with c€ Ug’(C).

) If (D,y)eV, D’SC, furthermore |D|=1, DNB'=g and {aic[k],
{bi1s s Bim }ND'=B}=D then for every (g, D', ¢,y )eF, with ¢’: C—~P(4)

(Ds lp)(g9 D,a (p,s W) - g((Ds lpl)xla e (Da l/’l)xl)ezv

where ¢, Yon; and n;(a)=>b if and only if ag—~bx;€Z.

It can be seen that tv(f(oc(p)))=0a(f(p)) and 7v( flo(p))=0.(f(p"). On
the other hand, by a.(p)~0c.(p’) it follows that tv(f(oc(p)))~1v(f(0c(p")). There-
fore, aa(f(p))'va,(f(p )), as was to be proved.

< We now turn to the definition of F’. For every integer i=1 let K; denote

the maximal number of occurences of the variable x; in the right side of a rule
in . Put K=max {l, Kjlic[v(F)]}, F;x=F, (n=0) and F, = otherwise.

As it was mentioned we introduce two homomorphisms ¢S TrX T and

0’ S T X Ty connecting Tr and Tg,. The rules deﬁning o are f—f(xX, ..., xK)

(fe F,, n=0), while the rules corresponding to ¢’ are f=f (xi,5 ..o X)) (fEF,,

n=0) with i,€[K], ..., ,€[nK]—[(n—1)K]. Observe that ¢ is determmlstlc and we

have o’(e(p))={p} for any peTy.
We continue by defining the transducer A’=(F’, 4’, G, aj, £’). In this

6.
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system A’={(a, B, B)|acB, BC A, B'S B}, a;=(a,, {a,}, J) and Z’ is the
smallest set of rewriting rules with the following property.
Let >0, B={a,,....,a}S A, B'={a,,, ....a,} A=m=<..<m=l), a=aq,.
Assume that the rules a,f —»q,(a,lxl 5 e a,,.x,,"') are in Y where n=0, f€F,
kij=0, a,;€4%, € TG o v 4k, (16[1] ]E[n]) Furthermore, let r;e T(2|A]| Al IAI),
and set Rj_{peTF” IQ (p)Sa ([r.l])} (_]E[n]) where b (aljﬁ .. al_n myj> o mkj)
R; is regular by Lemma 2 and some results in {2). Finally, denote by B the
set of components of b; and put Bj={b€A|b occurs at least twice in b} (JE[n])
ciy=ayy (i€[n), je[ky)), k =ky; (ze[n]) Then the rule

((a, B, B)f —~ ‘h((cu, B,, B)xy, ..., (Clk,s B, B{)xkl,

secy (cnls Bn’ Br,l)x(n—l)K+17 ey (cnk,., B,,, Br,l)x(n—l)K+k,,)’

Ry,...;Ry, ..., Ry, ..., R)
e Nt petted
K-times K-times

isin X’

Observe that with the definition above A’ becomes a linear deterministic
top-down tree transducer with regular look-ahead. Just as in case of A” we may
treat any vector a€ A'— but now with />0 — as an element of A": if acA4' (I >0)
then identify a with (a,, B, B’) where B={a;|i€[l1}, B’ ={a;li€[l], J;€[l] i}, a;=a;}.

Assume that ap%q (p€Ty,, qeT). Then one can easily prove that o'(p)S
L
€ N domt,. However, there is a much more close connection between A and

i=1
A’. This is shown by Lemmata 8 and 9. In these Lemmata we shall assume that
A does not satisfy condition (%).

Lemma 8. t(dom 1) E7"(dom 7).

Proof. We shall prove that if a,p, % go(ax¥) and ap"%q where k=0, py€ TF’I,
PETE, g€ Ta,k, qETE, ac A* then also ag(p)% ¢,. From this the statement fol-

lows by taking py=x;. -
If dp(p)=0, i.e. p€F,, then ag(p)% g, is obviously valid. We proceed by

induction on dp (p). Therefore, suppose that dp (p)=0 and the proof is done
for trees with depth less than dp(p). Then p=f(p,, ..., p,) where n>0, f€F,,
Dis -, Po€Tr and dp (p)<dp (p) (i€[n]). As the generalization to arbitrary n is

straigthforward we shall deal with n=1 only. Since ap"% q there exist rules
aif ~ri(b;xV)e X (i€[k), I,=0, r;€ T6,1,, bi€4%) such that bipll‘=:> s; and q; =r(s)
hold for some s;€T¢. Put I=kL+..+k, b=(by, ..., by, B={b|b occurs in b}

={blb occurs at least twice in b}. As a,py( f(xl))% Go(ri(byxy), ..., r(be X3 ¥)) and
bp{=*> (s1, ...»s;) we have that o,(p,) is defined, ab(pl)éT QAP A2, 1A4]) (cf.
Lemmata 3 and 6). Set R={p’¢Tr|0'(p) Sos ‘([ov(py)])- By the construction of
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A’ we know that (af—r,((bys, B; B')xy, ..., (bu,, B, B)x,), R, ..., R) is in X. Now,
i K-times

if ;=0 then we get ag(p) % g, immediately. If [, >0 then we obtain
(b11, B, BYo(py) % S115 +os (buys B, B’_)g( ) % sy, by the induction hypothesis.
As ¢(p))ER we again have 'ag(p)% g

Lemma 9. 7" (dom ") St (dom 7).

Proof. We are going to show that if ap’ =:3 q where acA'(I=0) p’ €Ty, qcTg

then there exist trees réTy and p€o; '([r]) with ¢’ (p")Soa'(r]) and a,p =:> q.

If dp(p’)=0 then it is trivial: take p=p’, r=0,(p). Assume now that this state-
ment is valid for trees with depth less than dp(p) and dp(p’)=1. Then
p'=f(p1s ...spn) (n=0) with dp(p),...,dp (prx)=<dp(p"). We shall restrict

. , %
ourselves to the case n=1. Since ap =4q we get

(af ~ 9o((bs> B, B) %, ..., (bi» B, B)Xi), R, ..., R)EY,

K-times

(b B, BYpi= a; GE[K), pi€R (Gi€[KD),

7= qo(qy; ---» @) _
for some k (0=k=K), b,,...,b,€4, B,B'SA with {by,...,0}EB, B'SB,
90€T6. k> qus s q€Ts; and a tegular forest R={s¢ Ty |o'(s)Sos ([r])} where
r€Te and c is an arbitrary vector containing one component ¢; for each element

¢; of B and a distinct component c; for each element ¢; of B’. We have by the
definition of A’ that a, f—~q, (blxl, vy bpx)E X Furthermore as o' (pD), ...

wes €'(PY)E 67 ([r1]), by Lemma 7 we have o’ (f (1, e p;())ga; Y([r)) for a suitable
réTy..

If k=0 then let pcg’(p;) be arbitrary, p=f(p). o, p% g follows obviously.
By peo’(py) also f(®)co'(f (P, - PX)- Thus, p=f(p)€a, 1(Eﬁr])- .

If k=0 then there are trees p,, ..., px€o. (ri]) with b, p, = g1 s b,‘pk? q-
From this, by an application of Lemma 6, it follows that there is a tree peo ([r,)
with b, p =*> Gis eees DD ;> qr- Put p= f (p). Again, we have aq, p => g. On the other
hand, pEa ([r]) Indeed let p,€ Q’( p;) be arbitrary. Then, as ac( p)~06(Pr),
oa(f( p))~aa( f(py) follows by Lemma 7. By f(P€oa X([r]) this means that
f(pesa'(r).

Now we are ready to state the main result of this section:

Theorem 1. A deterministic top-down tree transducer A preserves regularity
if and only if (*) is not satisfied by A. The regularity preserving property of deter-
ministic top-down transducers is decidable. ,
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Proof. The necessity of the first statement of our Theorem is valid by Lemma 1.
To prove the converse suppose that A=(F, 4, G, a,, £) does not satisfy condition
(%), and take a regular forest RS Tr. R is recognizable by a deterministic tree
automaton B=(F, B, B;). Without loss of generality we may assume that B is
connected, i.e., for any state b€ B there is a tree p€ Ty with (p)a=b

First let B, be a singleton set, say B,={b,}, and take the deterministic top-
down tree transducer A’=(H, AXB,G, (ay,by), Z’) where H,={(f,b,, ..., b,)|
|f€F,, by, ..., b,€B} (n=0)

Z, = {(a! b)(_/; bla (AR bn) - q((al7 bil)xila LER ] (ann bim)xi,,.)l
[m,n=0, a,a,,..,a,A4, by,...,b,EB, iy, ..., 1,€[n]

a.f_> q(alxils (] amxim)ezy b = mB(bla cnty bn)}

It is not difficult to see that 1,(R)=1t4.(dom 14.). On the other hand A’ does not
satisfy (#). By Lemmata 8 and 9, and the fact that linear top-down transducers
with regular look-ahead preserve regularity (cf. [2], [3]), this implies that 15(R)
is regular.

The general case, i.e. when B, is arbitrary, is reducible to the previous one.
Indeed, if B={b,, ..., b,} then put B,=(F, B, {b;}), R,=T(B)) (i¢[n]). Obviously,

1a(R)= U Ta(R). As all the 14(R;) are regular and regular forests are closed under

union, 1t follows that 75(R) is regular, as well.

The second statement of Theorem 1 is a consequence of the first one because
it is decidable whether () is satisfied by A.

As every uniform deterministic top-down transducer is equivalent to a non-
deterministic bottom-up transducer, by the characterization theorem for regularity
preserving bottom-up transducers in [4], it follows that a uniform deterministic
top-down transducer preserves regularity if and only if it is equivalent to a linear
bottom-up transducer. In general, we do not know any similar characterization
for regularity preserving deterministic top-down transducers.

3. Nondeterministic top-down tree transducers

In this section we prove

Theorem 2. The regularity preservmg property of nondeterministic top-down
tree transducers is undec1dable

Proof. Let H be an arbitrary type containing unary operational symbols
only. Take a Post Correspondence Problem (a, §) (o, B¢ H*™, m=>0) and choose
I in such a way that lo], [i|<! (i€[m]). Set Fy={s}, Fy=[m] ((ImINH=Q),
F=FUF, Gy=F, G=FRUHU{f} (f¢ FUH), G,={g}, G=G,UG,UG,.
We shall give a top-down tree transformation t& TpX T such that 7 preserves
regularity if and only if (&, ) has no solution.
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Consider the top-down transducer A;=(F, {a,, a;, as, by, b, b3}, G, ay, Z)
with X consisiting of the rules from (1) to (8) where i€[m]:

(1) agi ~ agx,,
(2) api - g(f(arxy), «a;(byxy)), *
aoi - g(f(ayx), w(bsxy)) (WEH™, |w| = lo], w # o),
) a1i > flayx), ag# —~3#,
(4) byi -~ o(byx), byi —w(byx) (WEH?* |w| =g, w#ay),
(5) byi -~ w(byx) (WEH™ |w| =0y, wsa), bydt—3#,
(6) agi + g(asx;, w(bsxy) (WEH* 1 =|w| =),
agi — g(f(azx)), w(bsxy)) (WEH™, |o| < |w] = 1),
(D) azi - apxy, ayi —~f(asxy), a% — 3,
(8) byi = w(bsxy) (wWeH*, || = |w| = 1), byt —~ 3.

Denote 74, by 7;. It can be seen that 7, consists of all pairs (i, ... {(3#),
g(f*~i(3), w(#))) where k=1, 0=j=k, weH*, 0=|w|=kl and wxzq;, ... q,.
Similarly, a top-down tree transducer A, inducing 7, can be constructed with
1, containing the same pairs as 7, with the exception that w#g; ..., . Taking
the disjoint sum of A, and A, we obtain a top-down transducer A inducing
T=11U7:2.

Assume that (o, ) has a solution. Then let i,...i; be a solution to (e, p)

with minimal length. Put L= {(i;...5)"(3)In=0}, w=a; ..o (=F;,... i), T=7(L)N
N{g(f(3)s v(#))Ir=0,veH*}, R={g(f*"(#), w'(3))n=0}. We are going
to show that T=R. As the class of regular forests is closed under complementa-
tion and meet, furthermore, the forest {g(f"(3), v(#))|r=0, v€H*} is regular
while R is not, from this follows that 7(L) is not regular. Since L is regular
this implies that = does not preserve regularity.

Suppose that g(f*"(3), w"(3))€t(L). Then there exists an integer r (0=n=r)
with  g(f*(3), w'(#))et((y...5)"(#)). Therefore, either w" = (o, ...a;)" or
wh£(B;,... B )" As i...J is a solution to (a, ) both cases yield a contradiction.
Thus, RST. To prove the converse suppose that g(f(s), v(#))¢{g(f*" (%),
w'(#))In=0} (r=0, v€H*). Let n=max {r, [v| /1} be the least integer divisible
by k, ji...j,=0...i)"% If r is a multiple of k, say r =kt, then vzw!, ie.
v#a; ,,...a;, . If r is not a multiple of k then, as i,...{, was a minimal solution

to (a, B), jr+1..-J» is not a solution to (a, p). Therefore, either v=a; ,,...a; or

n

2 If Fis a unary type and vzfil...f}‘ €F* then we denote by v the tree f,(...(fi(x))...)€ T,
as well.
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v#B; .....B;,. Moreover, as n=|v| /I, in both cases |v|=In. This together with
n>0 means that g(f"(#), v())€t(j...j,(3#))E1(L), as was to be proved.

Next assume that (e, ) has no solution. Then t(L)={g(/ (), v(#))lr=0,
veEH *}—{g(#, #)} holds for any infinite LS Tr. Consequently, A preserves
regularity.
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